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ABSTRACT 

Xinyu Zeng, Hardware-Software and Metrological Support of Drones. – Qualifying 

scientific work on manuscript rights. Dissertation for the degree of Doctor of 

Philosophy in specialty 152 "Metrology and Information-Measuring Techniques" - 

Lviv Polytechnic National University, Ministry of Education and Science of Ukraine, 

Lviv, 2025. 

This dissertation focuses on the research, development, and implementation of 

advanced soft and hardware systems used in drones, with a particular emphasis on 

metrological support for their performance optimization. A significant part of the 

dissertation is devoted to ensuring the accuracy and reliability of measurements in 

drone operations through advanced calibration techniques and testing platforms, due 

to the drone’s ability to perform autonomously with a high degree of precision in 

various environments. 

Chapter 1: Starting with Amphibious Design 

The first chapter introduces the design and development of a drone system capable of 

amphibious operations, taking inspiration from water striders. The chapter explores 

the integration of hardware such as Nvidia Jetson for real-time control and ROS for 

system modularity and software integration. The aim is to ensure smooth transitions 

between water-surface and underwater operations, with a particular focus on the 

metrological challenges involved in designing a system that operates in two 

dissimilar physical environments. Additionally, this chapter discusses the technical 

and environmental factors that influence the accuracy of measurements and their 

significance in the design process. 

Chapter 2: Building a Test Platform for Hydrodynamic Performance 
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The second chapter focuses on the development of a test platform to measure the 

hydrodynamic performance of the drone in real-world water conditions. Key 

parameters such as thrust, energy consumption, and response speed are analyzed to 

optimize the propulsion system's performance. The chapter discusses the metrological 

provision required to ensure accurate measurements, considering factors like sensor 

calibration, environmental impacts, and the repeatability of measurements. By 

evaluating the drone’s performance in controlled conditions, this chapter provides 

insights into the relationship between energy usage and propulsion efficiency, laying 

the groundwork for further refinement. 

Chapter 3: Enhancing Stability through Filtering Algorithms 

The third chapter addresses the control challenges posed by the drone’s underwater 

environment, with a focus on optimizing its stability and posture through advanced 

filtering algorithms. The integration of Complementary and Kalman Filters helps 

improve the drone’s attitude control, allowing it to maintain stability and recover 

quickly from disturbances. This chapter emphasizes the importance of real-time data 

processing in enhancing the drone’s performance, particularly in dynamic 

environments, where precise control is critical. The filtering techniques discussed 

here provide metrological provision by minimizing error and improving the reliability 

of sensor data. 

Chapter 4: Data-Driven Hydrodynamic Modeling 

The fourth chapter presents a data-driven hydrodynamic model, developed using 

real-time data from force sensors installed on the drone. This model allows the drone 

to adapt to various underwater conditions by predicting hydrodynamic forces and 

adjusting its behavior accordingly. The application of machine learning techniques, 

such as linear regression, helps optimize the drone’s movements and enhances its 
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operational efficiency. This chapter demonstrates how metrological support is vital in 

validating the accuracy of the data collected and ensuring that the model reflects 

real-world conditions accurately. The results of this chapter show significant 

improvements in the drone’s performance, particularly in terms of accuracy and 

energy efficiency. 

 Keywords: drone, hardware, software, metrological support, control, uncertainty, 

error, sensor calibration, hydrodynamic modeling and simulation, filtering 

algorithms, underwater robotics, performance assessing. 
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LIST OF CONVENTIONAL DESIGNATIONS 

 

  IMU – Inertial Measurement Unit 

  R&D – research and development 

  GPS – Global Positioning System 

  ROS – Robot Operating System  

  UAV - Unmanned Aerial Vehicle 

  UWV - Unmanned Water Vehicle  

  DC – Direct Current 

  IMU - Inertial Measurement Unit 

  PZT – Lead Zirconate Titanate (used in actuators and sensors) 

  PWM – Pulse Width Modulation 

  GPIO – General-Purpose Input/Output 

  I2C – Inter-Integrated Circuit 

  SPI – Serial Peripheral Interface 

  UART – Universal Asynchronous Receiver-Transmitter 

DMI – Digitalize Miniaturize Inteligentized 

  USB – Universal Serial Bus 

  DVL – Doppler Velocity Log 

  LIDAR – Light Detection and Ranging 

  DDS – Data Distribution Service 

  QoS – Quality of Service 

  GPU – Graphics Processing Unit 

  TTL – Transistor-Transistor Logic 

  RS485 – Recommended Standard 485 (used for serial communication) 

  MPC – Model Predictive Control 
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PID – Proportional-Integral-Derivative 

  AUV – Autonomous Underwater Vehicle 

  ROV – Remotely Operated Vehicle 

  MEMS – Micro-Electro-Mechanical Systems 

  FS – Full Scale 

  St – Strouhal Number 

  Re – Reynolds Number 

  RBF – Radial Basis Function 

  MLE – maximum likelihood estimation 

NLML– negative log marginal likelihood 

RMSE – Root Mean Squared Error 

MAE – Mean Absolute Error  
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INTRODUCTION 

 

The formation of the scientific work "Hardware-Software and Metrological 

Support of Drones" immediately refers its topic to a number of the most difficult 

R&Ds of a scientific and technical product - drones, especially of marine 

applications. Similar topics were preceded by centuries of intense work in this field.  

The previously obtained research results made a significant contribution to the 

development of the first two generations of underwater robots while the current one 

differs in the use of flexible materials with large deformations instead of traditional 

metal structures and buoyancy materials. The production processes of underwater 

vehicles have been innovatively changed thanks to the application of 3D printing 

technologies, which have replaced the conventional methods of welding and forging. 

In addition, traditional control systems have been replaced by artificial intelligence, 

and standard sensors have been replaced by nanosensors.  

Returning to metrology, let's recall the classic’s Lord Kelvin [1] back in the 

19th century, acting as the Chief-engineer of the intercontinental communication 

project with the help of electric cables, faced the problem of measuring the electrical 

resistance of the insulation of a submerged cable. As a result, he invented a device 

that we use today. Namely, the light beam or mirror galvanometer “lengthens” the 

needle of the tool with a light beam, increasing the sensitivity of the measurement. 

Similar things can work in modern drones, where the a priori limited size and 

weight device is equipped with the sensors and actuators necessary for operation and 

metrological verification and provision. For example, in [2], it was found that when a 

24-bit ACD was used during design development, and a 16-bit ACD during its 
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operation, additional component errors occurred, caused by the industrial replacement 

of the ACD. 

When moving, for example, the arm of a robot - from p. A to p.B - a number of 

spatial characteristics due to stability over time become important. In total, these 

concepts in the case of mechanical integrity of the structure are to be described by the 

term "metrological reliability". In the case of drones, its manifestations are 

repeatability and reproducibility of characteristics, their drift, etc. At the same time, 

when moving, the drone must be controlled by fairly sophisticated control programs, 

which include, for example, MPC control software. 

The "water" specifics of the design of the drone, which corresponds to the 

direction and the task of the dissertation, are characterized by significant 

mass-volume limitations, which are transferred to hardware and software-technical 

ones. Therefore, it is in this order that they are considered further in this work: first, 

the design of the tool, then the software and technical solutions aimed at obtaining 

reliable metrological results in the water environment and, finally, the repeatability 

and reproducibility of the characteristics for a small number of samples or repetitions 

when using the same drone, which is achieved due to metrological support. 
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GENERAL CHARACTERISTICS OF WORK 

 

Justification of the topic of research. For the further development of marine 

technologies, for example, for the extraction of metals, it is necessary to develop new 

technologies that were not available yesterday. The example of water drones is quite 

clear, as the war in the Black Sea in 2022-2024 highlighted this. In our case, the 

setting of the topic was carried out and executed in parallel. The trinity of the topic: 

hardware, software, and metrological support act as the cornerstones of the 

foundation of the dissertation. Each of them and in every aspect contributes to the 

implementation of the mentioned research, relying on sub-technologies that form the 

rapid rise of Industry 4.0. Among those involved in use we note the information 

flows in difficult environmental conditions, the involvement of methods and means 

of processing information, its management, the development of special methods of 

metrological support, increasing the accuracy of measurements and reducing the 

uncertainty of the implementation of drone’s functions. 

Unmanned controlled vehicles, in this case - water ones, are rapidly developing, 

using technologies and smart devices in water conditions to ensure, for example, to 

receive and transmit information through underwater communication.  

Connection of dissertation work with plans, topics, and scientific programs. The 

dissertation work is aligned with the fixed scientific direction of the Department of 

Information and Measurement Technologies - theoretical and applied foundations of 

metrology and measurements in information technologies (information and 

measurement, cyber-physical, robotic, and other systems); product and software 

quality testing. 

The purpose and tasks of the research.  
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The main goal of this research is the development and implementation of a 

comprehensive system of metrology support for UAVs and UWVs which integrates 

both software and hardware components. This system improves the accuracy of 

measurements related to movement parameters such as altitude, speed, depth, and 

positioning, ensuring the reliable operation of drones in both dissimilar environments. 

To achieve this goal, it is necessary to perform the following tasks: 

 To analyze existing designs of unmanned robotic vehicles (drones) for 

movement in the air, on water, and under it, as well as to determine 

recommendations for metrological support of certain types of drones  

 To study current control systems for drone launch and movement; to 

investigate the metrological basis of accuracy, reproducibility, and other 

characteristics, especially for systems of underwater drones: control, 

navigation, communication, etc.  

 To study the characteristics and develop methods ensuring the calibration of 

sensors used in drones, including accelerometers, gyroscopes, GPS systems, 

altimeters, and depth sensors.  

 To investigate digital and special methods of improving the accuracy of 

information production by drones in the underwater environment, including 

through the implementation of digital filtering methods.  

 To propose a methodology for the real-time metrological support of hardware 

and software elements of underwater drones. 

Object of research  

The thesis focus is metrological support for drones, with an emphasis on hardware 

and software systems that measure and control key parameters such as positioning, 

speed, and depth in various industries, including logistics, surveillance, and an 
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underwater research. 

The subject of the study is the characteristics and calibration methods of sensors and 

control systems integrated into drones. The research also covers the development of 

software tools for real-time monitoring, diagnostics, and calibration of drones in both 

aerial and underwater environments. Particular attention is paid to improving 

metrological repeatability and accuracy, as well as high precision, such as marine and 

underwater surveys. 

Research methods 

The study combines both theoretical and practical approaches to metrological 

support, in particular: 

 Analysis of existing standards and measurement methods for drones, focusing 

on sensor calibration and accuracy of control systems for both aerial and 

underwater applications.  

 Experimental calibration of hardware components such as GPS modules, 

inertial measurement units (IMUs), altimeters, and depth sensors.  

 Development of software algorithms to improve the accuracy of real-time 

measurements and error adjustment calibration for drones.  

 Using modeling tools to simulate drone trajectory and underwater dynamics 

and analyze the impact of metrological errors on their performance. 

 To effectively manage and interpret sensor data, issue the employed Gaussian 

Process Regression (GPR) by modeling the underlying uncertainty in 

fluid-structure interactions, which allows for more precise predictions in 

complex and varying environments.  

 The probabilistic nature of GPR enables quadruped robots to handle noisy data 

and provide robust, uncertainty-aware decision-making strategies. That seems 
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to be the advanced metrology equipment and calibration systems from the 

world's leading scientists and focuses on improving the accuracy of drone 

measurements, ensuring reliable operation in surveillance and underwater 

environments. 

Scientific novelty.  

The following scientific results were obtained in the dissertation work:  

1. The method for testing the dynamic characteristics of amphibious robots has 

been enhanced. It utilizes an integrated approach to trajectory drift control, enabling 

the robots to adapt effectively to variable and complex underwater conditions. 

2. The methods for filtering signals from inertial measurement devices have 

been optimized through the integration of advanced hardware and software solutions. 

3. A predictive model has been developed using machine learning techniques 

to analyze the influence of hydrodynamic forces and immersion depth. This model 

enhances the maneuverability and stability of movement in amphibious robots. 

Application of research results. The research spans various disciplines, 

including ocean engineering, robotics, mechanics, materials science, energy, control 

systems, computer science, and sensor technology. A key achievement was the 

successful sea trial of the 2,000m Sigu I bionic underwater vehicle in 2023 in Hainan, 

China. 

The research also led to an advanced platform for parallel underwater data 

collection. This platform has been optimized for improved communication protocols 

and solving synchronization problems in multi-system environments. It is capable of 

recording an average of 5,760 sets of hydrodynamic data per day and integrates with 

automated experimental equipment to collect and analyze parameters in real-time. 
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In addition, the research has played a key role in the development of a 

dual-environment quadruped robot that uses IMU sensors and data fusion to provide 

a seamless transition between terrestrial and underwater environments. By increasing 

the frequency of sensing algorithms and integrating data from the hydrodynamic 

testing platform, accurate hydrodynamic modeling was created to optimize the robot's 

motion underwater. 

In addition, the robotic buoy developed during the study was funded under the 

R&D initiative in Zhejiang Province in 2023. It has become an important tool in 

identifying key factors affecting the state of aquatic ecosystems and in measures to 

restore them. 

The obtained results were used in the educational process by the department 

"Information and measurement technologies" of the National University "Lviv 

Polytechnic" for the training of specialists in the specialty 152 "Metrology and 

Information - Measuring Equipment " and in the specialty 175 "Information – 

Measuring Technologies", including masters in teaching the discipline "Robotics, 

systems and complexes", and graduate students in teaching the discipline "Aalytical 

and numerical research methods". 

Personal contribution of the acquirer. Algorithms for maintaining the 

balance of the robot were personally developed and implemented by the acquirer. 

After which they were applied by a leading robotics company in China. These 

algorithms have ensured the stability and accuracy of the movements of robots used 

in various fields of industry and research activities. In addition, the acquirer 

optimized control systems and integration of sensor data to increase the efficiency of 

robots in difficult operating conditions, which contributed to the acceleration of the 

process of developing new robotic solutions. 
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Approbation of the results. The scientific propositions and research results 

presented in the work were reported and discussed at Ukrainian and international 

scientific-practical and scientific-technical conferences: 1
st
 and 2

nd
 International 

Scientific Conference "Information and Measurement Technologies", 22/10/2022 and 

13/11/2024; Lviv, Ukraine, and 60th International Scientific Colloquium, Sept. 

04-07, 2023, Ilmenau, Germany. 

Structure and scope of work.  

The composition of the dissertation includes: a list of notations, an introduction, 4 

main sections with conclusions to them, general conclusions, a list of references and 

appendixes. The total volume of the work is 163 pages, of which 136 pages are the 

main text, containing 35 figures and 8 tables. The references include 72 items.  

Publications. Based on the results of the dissertation research, 10 scientific 

works were published, of which 4 articles were published in specialized publications 

of Ukraine, 2 articles was published in international publications (Scopus), as well as 

4 theses in collections of international scientific conferences. 
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Chapter 1 

Design of an Amphibious Robot for Surface and Underwater Operations 

 

The evolution of robotics has brought about significant advancements in the 

design of robots that can operate in multiple environments. One of the most 

challenging yet promising fields is the development of amphibious robots—robots 

that can transition seamlessly between surface and underwater environments [3]. 

These robots are increasingly important in fields such as environmental monitoring, 

search and rescue, and underwater exploration, where mobility and adaptability are 

critical to success. 

This chapter introduces the conceptualization, design, and development of a 

generalized amphibious robot, highlighting both the hardware and software systems 

required for its operation. The chapter begins by exploring the fundamental design 

principles for creating a robot capable of both surface and underwater locomotion, 

focusing on the robot’s mechanical structure, propulsion systems, and buoyancy 

control mechanisms. The integration of cutting-edge hardware—such as the Nvidia 

Jetson platform—and advanced software systems—particularly the ROS (Robot 

Operating System) framework—are examined in detail, showcasing how these 

technologies enable real-time control and adaptability in dynamic aquatic 

environments. 

Additionally, the chapter addresses the importance of metrological assurance in 

the robot’s design. Ensuring the accuracy and reliability of the robot’s sensors, 

actuators, and control systems is essential for maintaining performance across a 

variety of conditions. Calibration techniques, sensor fusion, and environmental 
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compensation methods are discussed to ensure that the robot can operate effectively 

with minimal errors or performance deviations. 

Through this combination of hardware design, software integration, and 

metrological validation, this chapter sets the foundation for further exploration and 

optimization of the robot’s capabilities, which will be covered in subsequent chapters. 

The development process, described in this chapter, is aimed at creating a versatile 

and reliable robotic platform that can meet the diverse demands of both surface and 

underwater operations. 

 

1.1 Conceptualization and Design of a Generalized Amphibious Robot 

with Metrological Assurance 

 

Here I consider the Robots of different design compositions with dissimilar 

Hardware and Software as well as different metrological provisions. 

1.1.1 Water Strider Robot: Surface Locomotion and Limitations 

The development of amphibious robots stems from the aspiration to replicate 

natural systems that demonstrate efficient locomotion in aquatic environments. One 

early design approach center on water strider robots, modeled after the Gerridae 

insect, known for its ability to glide across water surfaces using long, hydrophobic 

legs that harness surface tension [4]. These robots are lightweight, energy-efficient, 

and adept at navigating calm waters, laying the groundwork for further exploration 

into surface locomotion technologies for environmental monitoring and exploration. 

A notable study, Design of the Water Strider-like Robot, investigates the 

integration of smart sensors and lightweight materials to enable these robots to glide 

smoothly over water without submerging . The design emphasizes creating a 
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low-energy, low-noise system tailored for surface-level environmental monitoring. 

The research highlights the application of hydrophobic and microporous materials to 

enhance buoyancy, ensuring that these robots can float and traverse water surfaces 

efficiently [5][6]. 

The surface locomotion of water strider robots is accomplished by exploiting 

surface tension, a natural phenomenon that enables the insect to remain afloat without 

breaching the water’s surface [7]. Through precise engineering, the robot emulates 

this behavior by distributing its weight across elongated legs coated with hydrophobic 

materials, which repel water and reduce drag [8][9]. This design ensures buoyancy 

while promoting smooth movement across calm waters. Furthermore, the robot's 

construction minimizes disturbances to the water surface, enabling silent operation, 

which is particularly advantageous for ecological monitoring and wildlife observation 

in sensitive aquatic habitats [10][11][12]. 

 

Table 1.1 Worldwide universities’ design of water striders; major characteristics. 

 

 

Time 

 

 

Institution 

Movement 

Form 

Ability to carry 

sensors 

 

Drive 

method 

Quality 

(g) 

Linearspeed 

(mm/s) 

2003 MIT Sliding No Elastic 

band 

0.35 180 

2010 Carnegie 

Mellon 

University 

 

Sliding 

 

No 

DC Motor 21.75 71.5 

2011 Minzu 

University of 

China 

 

 

Sliding 

 

Yes 

 

DC Motor 

 

6 

 

200 

2015 
Harvard 

University 
Jumping No 

Memory 

Alloy 
0.068 — 
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Figure 1.1 Worldwide universities’ design of water striders; major 

characteristics. 

 

The propulsion system of the water strider robot typically relies on lightweight 

actuators that generate the necessary thrust to move the robot forward. These 

actuators are powered by low-energy sources, ensuring that the robot can operate for 

extended periods without requiring significant power. This makes the design 

2016 
Zhejiang 

University 
Sliding Yes 

Steering 

gear 
439 90 

2017 Shanghai Jiao 

Tong 

University 

 

Sliding 

 

No 

 

PZT 

Driver 

0.165  

151 

 

2017 
Kogakuin 

University 

 

Sliding 

 

No 

 

DC motor 

 

 

4.39 

 

59.2 
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particularly attractive for tasks that involve long-term deployments in remote 

locations, where frequent recharging or maintenance would be impractical. 

Despite its advantages, however, the water strider robot faces significant 

limitations when operating in dynamic aquatic environments [13][14]. The robot's 

reliance on surface tension and its lightweight design restrict its ability to navigate 

through turbulent waters, strong currents, or wind disturbances. Furthermore, the 

robot's performance is significantly hampered in scenarios where submersion is 

required, as its design is specifically optimized for surface locomotion. These 

limitations highlight the need for more versatile amphibious systems capable of 

functioning efficiently both on the surface and underwater, where more complex 

missions, such as underwater exploration or search and rescue, where stability and 

precise control become difficult, demand greater adaptability. 

1.1.2 Amphibious Robots: Expanding Capability with Surface-Underwater 

Transition 

While water strider robots are optimized for surface locomotion, their inherent 

limitations in dynamic and submerged environments have led to the development of 

more versatile amphibious robots. These robots are designed to perform effectively in 

both surface and underwater conditions, overcoming the constraints posed by their 

surface-only counterparts. Amphibious robots can handle a variety of aquatic 

environments, transitioning seamlessly from surface operations to submerged tasks, 

making them more adaptable for complex applications such as ocean exploration, 

search and rescue, and environmental monitoring. 

Amphibious robots integrate a range of features that enable functionality in 

both terrestrial and aquatic environments, beginning with adjustable buoyancy 

systems that regulate depth in water. These systems are crucial for underwater 
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navigation, providing the robot with capabilities to hover, dive, or maintain buoyancy 

as required by the task. Unlike water strider robots, which are restricted to surface 

locomotion, amphibious robots can dynamically modify their buoyancy to 

accommodate operational demands, making them significantly more versatile for 

multi-environment missions. 

The propulsion system in amphibious robots is also more advanced, integrating 

submersible motors and directional thrusters to achieve efficient movement 

underwater. These robots are typically designed with waterproof actuators that can 

withstand the increased pressure of deeper waters, enabling them to navigate through 

both calm and turbulent environments. Furthermore, these propulsion systems are 

optimized for both surface and underwater efficiency, ensuring that the robot can 

conserve energy while maximizing its range of movement. 

From a metrological assurance perspective, amphibious robots offer significant 

improvements over surface-only designs. The ability to transition between surface 

and submerged states requires precise measurement systems that can function 

accurately in a variety of environmental conditions. Pressure sensors, for example, 

must be capable of adjusting to rapid changes in water depth, providing real-time 

feedback on the robot’s position and ensuring accurate control. These sensors are 

calibrated to maintain their precision over extended periods of operation, even when 

subjected to the varying pressures of underwater exploration. 

In addition, IMUs integrated into amphibious robots are calibrated for both 

surface and underwater dynamics, ensuring the robot maintains stability and 

orientation across diverse environments. Sensor fusion techniques further enhance the 

reliability of these measurements by integrating data from multiple sensors, including 

IMUs, pressure sensors, and depth sensors. This method enables the robot to 
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continuously update its internal model of the surroundings, facilitating real-time 

adjustments to its movement and control systems. 

Buoyancy control also plays a key role in metrological assurance, as the robot 

must precisely manage its buoyancy to maintain stable depth during underwater 

missions. Accurate buoyancy sensors and control algorithms ensure that the robot can 

adjust its buoyancy in response to environmental changes, maintaining its operational 

integrity in both shallow and deep waters. This level of precision is particularly 

important in tasks that require fine-tuned depth control, such as underwater 

inspection or sampling missions. 

In conclusion, amphibious robots represent a significant advancement in 

aquatic robotics, offering the flexibility and adaptability needed to operate in both 

surface and underwater environments. The integration of advanced sensor systems 

and metrological assurance techniques ensures that these robots can provide reliable 

and accurate performance across a wide range of tasks. By overcoming the 

limitations of surface-only designs like water strider robots, amphibious robots pave 

the way for more comprehensive and versatile solutions in aquatic robotics. 

  

1.2 Hardware System: Nvidia Jetson and Control Architecture 

 

The success of modern amphibious robots is not solely dependent on 

mechanical design; it also requires robust, real-time processing capabilities that can 

handle complex tasks such as sensor fusion, navigation, and image processing. For 

this reason, the Nvidia Jetson platform has emerged as an ideal hardware system for 

amphibious robots, offering high-performance processing power in a compact, 

energy-efficient form factor [15]. The Nvidia Jetson platform's advanced capabilities 
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enable real-time decision-making, deep learning inference, and the control of 

sophisticated algorithms necessary for autonomous operations in dynamic and 

unpredictable environments. 

In addition to its computational strengths, metrological assurance plays a 

crucial role in ensuring the accuracy and reliability of the data processed by the 

Jetson platform. Amphibious robots must rely on a variety of sensors, such as IMUs, 

pressure sensors, and depth sensors, all of which require careful calibration and 

validation to provide accurate measurements. The Jetson platform supports the 

integration of these sensors and facilitates real-time sensor fusion, where data from 

multiple sources is combined to create a more precise understanding of the robot's 

environment [16]. 

The integration of metrological assurance techniques, such as periodic 

recalibration and environmental compensation, ensures that the robot can maintain 

the precision and reliability of its operations. This level of accuracy is especially 

important in applications like environmental monitoring or underwater inspections, 

where reliable data collection is critical for decision-making. 

1.2.1 Nvidia Jetson: The Heart of Amphibious Robotics 

The Nvidia Jetson platform features a GPU, which is essential for processing 

large volumes of data in real time. Amphibious robots often rely on data from 

multiple sensors, such as IMUs, pressure sensors, depth sensors, and cameras, all of 

which must be processed concurrently to make informed decisions regarding the 

robot's environment and movement. The parallel processing capability of the Nvidia 

GPU enables these calculations to be performed with minimal latency, ensuring that 

the robot can dynamically respond to changes in its surroundings [17]. 

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619



27 

 

Key features of the Nvidia Jetson platform that enhance its suitability for 

amphibious robots include: 

Real-time sensor data processing: The Nvidia Jetson processes sensor data 

from multiple sources, integrating inputs from depth sensors, pressure sensors, and 

cameras to create a comprehensive view of the robot's environment. 

Edge AI and deep learning: The platform is capable of running complex AI 

models directly on the robot, enabling real-time object detection, path planning, and 

adaptive behavior without needing to rely on remote servers or cloud processing. This 

is especially useful in underwater environments, where communication with the 

surface is often limited. 

Energy efficiency: Nvidia Jetson boards are designed to perform 

high-computational tasks while consuming minimal power, an essential requirement 

for robots operating in remote or underwater environments for extended periods. 

Compact size: The compact nature of the Jetson platform makes it ideal for 

integration into amphibious robots, which often have space constraints due to the 

need for buoyancy control systems and propulsion mechanisms. 

 

Figure 1.2 Nvidia Jetson Orin Nano Development Board. 
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1.2.2 Hardware Integration and Control: Nvidia Jetson and Sensor 

Interfacing 

In amphibious robotic systems, hardware integration is fundamental to 

achieving seamless operation across diverse environments. The Nvidia Jetson 

platform serves as the core of the control architecture, providing both the 

computational power for real-time decision-making and the flexibility required for 

integrating a wide range of sensors and actuators. To support essential functions such 

as navigation, depth control, and sensor fusion, the Nvidia Jetson platform 

incorporates multiple I/O interfaces and pinouts that facilitate communication with 

peripheral devices, including sensors, motors, and external controllers [18]. 

 

Table 1.2: Jetson Orin Nano Interface, Purpose, and Example Sensors/Devices. 

Interface Purpose Example Sensors/Devices 

GPIO 
General input/output for basic sensors like limit 

switches, temperature, or proximity sensors 

Temperature sensors, 

proximity switches 

I2C 

Communication with IMUs, depth sensors, 

providing timing-based communication for 

precision 

BNO055 IMU, depth sensors 

SPI 
High-speed communication with pressure 

transducers and other precision sensors 

Pressure transducers, 

temperature probes 

UART 
Communication with external microcontrollers or 

GPS modules for navigation 

UBlox GPS module, serial 

communication devices 

USB 

Connection to external devices like cameras, 

LIDAR, for image processing and real-time 

feedback 

USB cameras, LIDAR sensors 

PWM 
Motor control for DC and servo motors for 

propulsion, buoyancy adjustments, and stabilization 
DC motors, servo motors 

 

Jetson’s I/O Capabilities and Sensor Integration 
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The Nvidia Jetson platform provides several interfaces that are crucial for 

connecting the various sensors required for the operation of an amphibious robot. The 

Jetson Xavier NX, for example, features an extensive set of GPIO (General-Purpose 

Input/Output) pins, along with I2C, SPI, UART, and USB interfaces, enabling 

seamless integration with a wide range of sensors and actuators. 

Key hardware interfaces and their associated sensor functions include: 

GPIO Pins: These general-purpose pins can be configured for input or output, 

facilitating basic communication with sensors like limit switches, temperature sensors, 

or proximity sensors. GPIO pins can also trigger specific actions, such as controlling 

relays or managing external power sources. 

I2C (Inter-Integrated Circuit): This protocol connects IMUs, depth sensors, 

and other peripherals requiring precise timing. For instance, integrating a BNO055 

IMU sensor on an I2C bus enables the robot to measure its orientation, providing 

critical feedback for maintaining stability in both surface and underwater 

environments. 

SPI (Serial Peripheral Interface): This protocol supports high-speed 

communication with sensors like pressure transducers and temperature probes. 

Leveraging SPI for pressure sensors ensures quick and accurate data transmission, 

essential for real-time depth control during underwater missions. 

UART (Universal Asynchronous Receiver-Transmitter): This interface is 

frequently employed for communication with external microcontrollers or GPS 

modules. For example, a UBlox GPS module can be linked via UART to deliver 

positional data during surface-level operations. Although GPS signals are unavailable 

underwater, the UART interface remains crucial for surface operations and hybrid 

navigation solutions. 
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USB Ports: The Jetson platform’s USB ports facilitate the connection of 

external devices like cameras and LIDAR sensors. Cameras connected via USB are 

essential for image processing tasks, including object detection and obstacle 

avoidance. USB connectivity is particularly beneficial for real-time visual feedback 

and executing AI-driven image recognition algorithms. 

Sensor Integration and Metrological Considerations 

The Nvidia Jetson platform’s ability to interface with a variety of sensors 

through its hardware pinouts directly enhances its suitability for amphibious robots. 

Sensors such as pressure transducers, IMUs, and cameras provide critical data needed 

for the robot to navigate and maintain operational efficiency in dynamic 

environments. However, the precision and reliability of these sensors depend on 

metrological assurance—the practice of ensuring that sensors are calibrated and 

validated for accurate measurement. 

Pressure Sensors: These sensors, often connected via SPI, must be calibrated to 

measure depth accurately. Changes in water pressure can significantly affect the 

sensor’s readings, making it essential to calibrate these sensors at regular intervals, 

especially in deep-sea missions. 

IMU: Connected via I2C, provide orientation data but are susceptible to sensor 

drift over time. Periodic calibration is essential to maintain accurate orientation, 

particularly in underwater environments where GPS signals are unavailable. The 

Nvidia Jetson’s processing capabilities enable sensor fusion of IMU data with other 

sensors, such as gyroscopes and magnetometers, enhancing the reliability of 

positional tracking.. 

Actuation and Control 
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In addition to sensor integration, the Nvidia Jetson platform supports motor 

control for propulsion systems through its PWM outputs. These outputs can drive DC 

motors or servo motors that control the robot’s movement on the surface and 

underwater. The PWM outputs provide precise control over motor speed and 

direction, enabling the robot to adjust propulsion based on real-time sensor feedback. 

For amphibious robots, the Jetson’s GPIO and PWM pins also serve to control 

actuators that adjust buoyancy and stabilization mechanisms. These control signals, 

processed in real time, enable the robot to dynamically modify its position in the 

water, facilitating effective navigation through varying currents and depths. 

 

1.3 Integration of ROS for Efficient Communication 

 

The ROS is an essential component in the control architecture of amphibious 

robots, providing a flexible and scalable framework for integrating various hardware 

and software components. ROS serves as the communication backbone that manages 

the flow of data between sensors, actuators, and the robot’s control systems, enabling 

real-time decision-making and adaptability in both surface and underwater 

environments. 

By leveraging ROS, developers can build modular and efficient robotic 

systems that facilitate easy integration of additional sensors, enhanced functionality, 

and future scalability. In amphibious robots, ROS manages sensor data fusion, 

navigation control, motion planning, and state estimation—all of which are crucial 

for ensuring autonomous operation in dynamic environments. 
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1.3.1 Modular Architecture and Scalability 

 

Figure 1.3 Overview of ROS Communication Framework. 

 

One of the key strengths of ROS lies in its modular architecture, which enables 

individual subsystems to be developed and operated independently as ROS nodes. 

Each node is responsible for a specific function, such as sensor data processing, 

motion control, or communication with actuators. These nodes communicate with 

each other through a publish-subscribe model, which is a core feature of ROS. 

The modular structure of ROS is well-represented by Node A, B, and C, as 

shown in the Figure. Each node handles a specific function such as action servers and 

service clients, with nodes communicating via topics and messages. This 

publish-subscribe model enables various parts of the system to function 

independently yet cohesively. 

In the context of an amphibious robot, for example: 

Node A could be responsible for managing feedback from an IMU sensor and 

publishing data about the robot's orientation. 
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Node B could handle depth sensor readings and provide real-time depth 

control. 

Node C might be responsible for controlling propulsion and buoyancy based on 

the sensor data from Nodes A and B. 

This modular approach ensures that individual components can be updated or 

replaced without affecting the entire system. It also simplifies the process of 

integrating new sensors or actuators as the robot evolves to meet specific mission 

requirements. The scalability of ROS is particularly important for amphibious robots 

that may need to operate in increasingly complex environments with additional 

sensors and enhanced control algorithms. 

1.3.2 Real-Time Sensor Data Fusion 

Amphibious robots rely heavily on sensor data for navigation, obstacle 

avoidance, and maintaining stability in aquatic environments. These sensors include 

IMUs, depth sensors, cameras, pressure transducers, and GPS modules (for surface 

operations). However, the accuracy and reliability of each sensor can vary depending 

on environmental factors. For instance, GPS signals may be lost underwater, or 

pressure sensors may drift at greater depths. 

ROS facilitates sensor fusion, a process in which data from multiple sensors is 

combined to improve the accuracy and robustness of the robot’s situational 

awareness. For example: 

Data from an IMU can be fused with depth measurements from a pressure 

sensor to provide more reliable state estimation, particularly in environments where 

GPS signals are unavailable. 

Camera data can be combined with LIDAR for obstacle detection and terrain 

mapping, providing a more comprehensive understanding of the surroundings. 
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By fusing sensor data in real time, ROS helps to compensate for individual 

sensor limitations, ensuring that the robot can navigate and operate effectively in both 

surface and underwater environments. 

1.3.3 Communication Between Surface and Submerged Systems 

 

Figure 1.4 ROS Architecture and Middleware Layer. 

The Figure delves deeper into ROS’s middleware architecture, showcasing its 

flexibility in working across different communication layers. The rclcpp, rclpy, and 

rcljava APIs provide the necessary tools to implement ROS communication for C++, 

Python, and Java. These API layers facilitate interaction between the hardware 

(sensors, actuators) and software (control algorithms) of amphibious robots, ensuring 

real-time decision-making across various operating conditions. 

One key aspect involves employing Cyclone DDS, Fast DDS, or Connext DDS 

as communication backbones for Pub/Sub messaging with QoS. This is crucial for 

maintaining communication between the robot’s surface and submerged systems, 
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particularly during transitions between Wi-Fi communication on the surface and 

acoustic communication underwater. 

The rclcpp (C++ API) or rclpy (Python API) facilitates the implementation of 

sensor data collection and fusion processes. The ROS-to-DDS bridge enables this 

data to be shared across different ROS nodes, ensuring real-time sensor feedback is 

available to all components responsible for controlling the robot's operations. 

The Node Lifecycle management, as shown in the second diagram, is 

particularly important in amphibious robots for managing tasks like power 

management, sensor calibration, and depth control, which are vital for operations that 

involve both surface-level tasks and deep-sea navigation. 

 

1.4 Integration of Hardware and Software for Real-Time Control in 

Amphibious Robots 

 

In previous sections, we discussed the design principles, metrological 

assurance, and the central role of the Nvidia Jetson platform and ROS in amphibious 

robots. In this section, we expand on the practical integration of these systems, 

focusing on how the hardware and software work in unison to provide real-time 

control for surface and underwater operations. This includes detailing the key 

components, interfaces, and control architectures, as shown in Figures 1 and 2. The 

diagrams illustrate the interconnections between various sensors, actuators, 

communication systems, and control platforms, highlighting the crucial role of both 

the Jetson Orin Nano and Pixhawk platforms in enabling efficient and adaptable 

robotic operations. 
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1.4.1 Jetson Orin Nano as the Central Processing Unit 

 

Figure 1.5 Hardware connection diagram. 

 

Figure 1.6 Software protocol diagram. 
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The Jetson Orin Nano, as shown in Figure 1.5, acts as the central computing 

unit in the amphibious robot, interfacing with the topside computer and controlling 

the robot’s motion based on sensor data inputs. The Orin Nano is connected to critical 

sensors such as the IMU, pressure sensors (Bar30 and Bar100), and Water Linked 

Underwater DVL. These sensors provide real-time feedback on the robot’s 

orientation, depth, and underwater velocity. This data is then processed by the Jetson 

Orin Nano using the ROS framework, which enables efficient sensor fusion and 

decision-making. 

Through its USB interfaces, the Jetson Orin Nano connects to peripherals such 

as USB cameras and microphones, providing essential data for surface-level and 

underwater object detection. This data enables the robot to dynamically adjust its 

movements and perform complex tasks such as navigation, obstacle avoidance, and 

real-time video streaming. The integration of GStreamer with ROS facilitates the 

transmission of video and audio streams to the topside computer for further analysis 

and monitoring. 

The application of PWM signals for thruster control and TTL to RS485 

communication for the joint servo ensures precise and adaptive movements of the 

robot both on the water surface and underwater. The Jetson’s processing capabilities, 

combined with its I/O flexibility, enable the robot to manage complex tasks 

efficiently while conserving energy, which is crucial for extended missions in remote 

or underwater environments. 

1.4.2 Pixhawk as the Core Control Module for Underwater Operations 

As depicted in Figures 1 and 2, the Pixhawk (ArduSub) serves as the core 

control module for underwater operations, managing the communication between 

various sensors and actuators. It interfaces with sensors such as the Bar100 and Bar30 
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pressure sensors, leak sensor, and depth sensor, providing vital data on the robot's 

environment. The I2C bus splitter enables the Pixhawk to handle multiple sensors 

concurrently, ensuring reliable data acquisition without communication bottlenecks. 

Pixhawk communicates with the Jetson Orin Nano via ROS topics, 

transmitting real-time motion control data and receiving sensor feedback to adjust the 

robot’s propulsion and stabilization systems. Additionally, it manages the T200 

thruster, servo control board, and joint servo through PWM and RS485 signals. This 

hardware integration enables the robot to smoothly transition between surface 

locomotion and underwater operations, providing enhanced control over buoyancy 

and movement. 

1.4.3 Topside Computer and Closed-Loop Control 

The topside computer plays a crucial role in monitoring and controlling the 

robot’s operations, as depicted in both diagrams. Connected via UDP (ports :3000 

and :3001), the topside computer receives sensor data streams from the Jetson Orin 

Nano, enabling real-time data visualization and analysis. A closed-loop control 

algorithm ensures that sensor feedback is promptly processed to adjust the robot's 

trajectory, propulsion, and buoyancy. 

The joystick interface provides manual control when needed, enabling an 

operator to intervene and guide the robot, particularly during delicate operations such 

as underwater inspection or surface monitoring. Through ROS, the topside computer 

sends motion control commands to the Jetson Orin Nano, ensuring that the robot can 

respond to environmental changes in real time, even when operating at a distance or 

under challenging conditions. 

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619



39 

 

1.4.4 Communication and Sensor Fusion 

One of the most crucial aspects of an amphibious robot is its ability to 

seamlessly integrate data from multiple sensors to make informed decisions. In this 

system, ROS topics facilitate communication between the Jetson Orin Nano and the 

Pixhawk, as well as between the robot and the topside computer. This modular 

architecture ensures that sensor data can be shared in real time across the various 

subsystems. 

As depicted in both figures, the integration of sensors such as IMUs, depth 

sensors, pressure sensors, and cameras enables continuous updates on the robot’s 

surroundings. These sensors work together to provide a comprehensive view of the 

environment, with each sensor compensating for the limitations of the others. For 

instance, the IMU provides orientation data, while the pressure sensors supply depth 

information. The Jetson Orin Nano's GPU processes this data using real-time sensor 

fusion techniques, ensuring that the robot can navigate smoothly through both surface 

and underwater environments. 

This architecture also supports the transition between surface and submerged 

operations, with the communication system automatically adjusting between 

RF-based protocols (for surface-level operations) and underwater communication 

methods (such as acoustic modems). ROS ensures that communication between the 

topside computer, the Jetson Orin Nano, and the Pixhawk remains uninterrupted, 

even when switching between different environments. 

1.4.5 Real-Time Autonomous Operation 

Finally, the integration of all these systems enables the amphibious robot to 

operate autonomously in real time. The Nvidia Jetson's edge AI capabilities empower 

the robot to process complex tasks such as path planning and obstacle avoidance 
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without relying on remote servers. By running AI models directly on the robot, it can 

make decisions in real time, adjusting its trajectory based on sensor feedback and 

environmental conditions. 

With ROS as the backbone of the communication system, the robot can 

autonomously perform missions such as underwater exploration, search and rescue, 

and environmental monitoring. The ability to run deep learning models for object 

detection and dynamic control further enhances the robot’s versatility, enabling it to 

adapt to changing environments without human intervention. 

 

Conclusions to Chapter 1 

The current chapter considers possible cases of all types of security in the 

design, manufacture and operation of drones. However, the novelty of setting and 

solving goals for underwater types of drones highlighted the pioneering spirit of 

solving such problems. The process begins with planning and design, followed by 

integrating appropriate sensors and conducting diagnostic checks, and concludes with 

providing metrological support during assembly. 

Therefore, we have illustrated how the hardware and software systems 

discussed in the following sections come together to provide real-time control for 

amphibious robots. The combination of Nvidia Jetson, Pixhawk, ROS, and advanced 

sensor fusion techniques ensures that these robots can operate efficiently in both 

surface and underwater environments, meeting the diverse demands of modern 

aquatic robotics. This integrated approach sets the foundation for the further 

development of autonomous, adaptable, and resilient robotic systems capable of 

addressing complex challenges in aquatic environments. 
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Chapter 2 

Building a Test Platform for Hydrodynamic Performance 

 

The successful development and deployment of amphibious robots rely heavily 

on understanding and optimizing their hydrodynamic performance. Building an 

underwater test platform is crucial for evaluating and refining these robots’ 

capabilities, particularly when operating in complex aquatic environments. Unlike 

surface environments, where variables such as air resistance and surface tension 

dominate, underwater environments are governed by fluid dynamics, which introduce 

significant challenges such as drag, buoyancy, thrust generation, and pressure effects 

at various depths. 

Establishing a controlled and well-equipped underwater testing platform 

enables researchers to systematically study these factors under real-world conditions, 

ensuring that the robot performs efficiently across a variety of submerged scenarios. 

Such a platform is instrumental in assessing the robot's propulsion efficiency, 

stability, and energy consumption, as well as its ability to respond to different water 

flow rates, pressure gradients, and depth-related variables. By collecting detailed 

hydrodynamic data in a simulated underwater environment, engineers can fine-tune 

the robot's design to enhance its performance in real-world applications such as ocean 

exploration, search and rescue operations, and environmental monitoring. 

In underwater robotics, precise hydrodynamic testing is essential for refining 

not only the mechanical design but also the control algorithms responsible for 

navigation and maneuverability. These systems must work in harmony to ensure that 

the robot can maintain stable and efficient movement despite the unpredictable and 

often hostile nature of underwater environments. Therefore, a robust underwater test 
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platform serves as the foundation for achieving the metrological accuracy needed to 

optimize robotic performance, making it an indispensable tool in the development of 

advanced aquatic robots. 

In this chapter, we will explore the design, implementation, and key metrics of 

an underwater test platform, focusing on the sensor integration, data collection 

techniques, and hydrodynamic parameters critical to evaluating an amphibious robot's 

performance. By establishing a comprehensive testing environment, this platform will 

provide the necessary infrastructure for continuous iteration and improvement of the 

robot’s capabilities. 

 

2.1 Propulsion Testing: Precision Hydrodynamic Measurement and 

Calibration 

2.1.1 Importance of Force Measurement in Hydrodynamics 

In underwater robotics, precise measurement of hydrodynamic forces is crucial 

for assessing the performance of propulsion systems, such as thrusters. 

Understanding forces like thrust, drag, and torque is essential for optimizing the 

propulsion system to improve energy efficiency, stability, and movement accuracy in 

submerged environments [19]. To address these needs, a single-device test platform 

is developed to isolate and evaluate an individual propulsion system under controlled 

underwater conditions [20][21]. 

As highlighted in the study "Design of the Water Strider-like Robot" (uploaded 

document), the testing of propulsion systems often encounters non-linearities, 

including torque-induced oscillations and instabilities, particularly when dealing with 

dynamic thrusters. This test platform is designed to mitigate these issues by focusing 

on a single propulsion system at a time, enabling researchers to gather high-resolution 
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data on the thrust-to-power ratio, motor efficiency, and dynamic response of the 

propeller under various operational conditions. 

General Description of a Thruster 

A propeller is a device that generates thrust for underwater vehicles (Figure 

2.1). It typically consists of a rotating screw-like blade that pushes water backward to 

produce propulsion. The direction of thrust can be adjusted by reversing the 

propeller's rotation. The performance of a propeller is crucial for controlling and 

maneuvering underwater vehicles and can be characterized by various parameters, 

including thrust, propeller speed, and output flow velocity. The thrust generated by a 

propeller is directly proportional to the square of its speed, while the output flow 

velocity depends on thrust, speed, and propeller efficiency [22]. 

To accurately describe the dynamic characteristics of a propeller, researchers 

have developed a physical system model based on force and torque feedback to 

represent the propeller's thrust. This model employs the propeller's angular velocity 

as the dynamic state variable and controls the propeller's motion through input torque. 

In this experiment, propellers manufactured by ROVMAKER were selected, and 

output current was controlled using PWM to regulate the propeller's output torque, 

thereby generating thrust underwater. 

In PWM control, the pulse width range is 1000-2000 microseconds, with 1500 

corresponding to the motor's midpoint. In other words, when PWM outputs 1500 

microseconds, the motor remains stationary. As the control signal increases linearly 

from 1500 to 2000 microseconds, the motor rotates forward, and the speed linearly 

increases. Conversely, during the decreasing process from 1500 to 1000 

microseconds, the motor reverses, increasing its speed [23]. 
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Figure 2.1. Using propellers manufactured by ROVMAKER, voltage supply 

range: 3s-6s, maximum passing current 15A, waterproof to a depth of 300 meters 

under water surface  

 

Lumped Parameter Model Development 

A standard thruster configuration, illustrated in Figure 1, comprises a stationary 

shroud and a propeller propelled by a torque-generating mechanism (T) operating at 

angular velocity (ω). The thruster's shroud possesses a cross-sectional area (A) and 

encloses a volume (V). The surrounding fluid has a density (ρ) and a volumetric flow 

rate passing through the thruster (Q) [24].  

The model development is simplified by the following assumptions (Figure 

2.2): 

1. Negligible kinetic energy of the external fluid environment. 

2. Negligible friction losses in the motor and propeller blades. 

3. Incompressibility of the ambient fluid. 

4. Maintaining parallel flow direction at the inlet and outlet of the thruster, 

disregarding rotational flow effects [25]. 
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A state function of the volumetric flowrate Q can express the kinetic co-energy 

   of the fluid in the thruster: 

 

 
      

 

 
   

 

 
 
 

 
(2.1) 

 

Defining a generalized momentum as： 
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The above relation is that of inertia (momentum related by a static constitutive law to 

the flow in bond-graph   

nomenclature with the effort variable   and flow variable  . 

  has units of momentum/area and is referred to as the pressure momentum. 

Since the energy relations are linear, the  

Co-energy and energy have equal magnitudes, and the kinetic energy   can be 

expressed as a state function of the pressure momentum  . 
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The pressure momentum relation that follows from a power balance is as 

follows: 
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The power input from the thruster propeller is represented by   , the outgoing 

kinetic energy per volume is represented by  , and the time rate of change of the 

pressure momentum is shown by   . 

It is possible to represent the departing kinetic energy per volume   as 

   
    

    
 
  

  
 (2.5) 

 

Where the        is the thruster's fluid momentum per volume.  

The convected linear momentum, which is equal to the thrust created, connects 

the thruster and surrounding fluid: 

 

 Thrust    .(3) (2.6) 

 

The thruster/propeller characteristics and angular velocity   can be linked to 

the volumetric flowrate, provided that the propeller does not cavitate. Slip refers to 

the discrepancy between a propeller's theoretical and actual advance per revolution. It 

is commonly stated as a ratio   as follows: 

 

   
     

   
 (2.7) 

 

where  , also known as the pitch, is the axial distance the propeller blades 

move for every unit of revolution (1 rad),  

The equation above indicates that   ( ) can be expressed as: 

 

           (2.8) 
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Where       is referred to as the propeller efficiency. 

From (1)-(4), the following thruster dynamic state and output equations are 

formed: 

 

    
 

   
   (2.9) 

 Thrust    . (2.10) 

 

The propeller angular velocity R can serve as the thruster dynamic state 

variable in the thruster's dynamic state and output equations, assuming that the 

propeller efficiency ( ), pitch ( ), and duct area ( ) are constants. 

 

    
 

      
 
   

  
     (2.11) 

 Thrust            . (2.12) 

 

Keep in mind that, as was previously stated, the steady state thrust force is 

proportionate to the input torque. 

 

 

Figure 2.2. Major Elements of the Model 
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Thruster validation (response rate, thruster thrust, torque produced, phase lag 

fit) 

The model was validated using a thruster mounted in a rack in an 

aluminum-type table that instrumented the device to measure the output force and 

torque. As shown in the Figure 2.3, the thrust was measured by a six-component 

force transducer using a D6045A sensor from DMI (Digitalize Miniaturize 

Inteligentized), Inc. in a matrix decoupling technique in order to decompose the 

output signal of the six-axis force transducer into its force and torque components in 

different directions and complete the recording [26]. A series of static tests were 

carried out to confirm the previously proposed model and to determine specific 

parameter values a, 0, and Ct. Based on the available measurement data, it was 

possible to confirm that these parameters were reasonable for the physical parameters 

of propeller efficiency and volume involved [27]. 

 

 

Figure 2.3. Direct coupling relationship between thrusters and sensors 

 

Thruster Test 

The thruster was tested in several dynamic thrust measurement experiments. 

These tests included a series of current-commanded step input signals covering a 
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broad range of input levels, as well as a long-period sinusoidal waveform input signal 

[28]. 

Measured variables include motor input current, voltage, and current 

instructions as well as motor speed and net thrust. These measurements are all 

dynamic and are all collected at a sample rate of 50 Hz [29][30]. 

Long Period Triangular Wave Inputs 

We decided to output long-period sine wave signals for the measurement of 

thrust generation before and after in order to produce robust output results. The 

results are displayed in Figure an as a function of motor speed over a 60-second 

period for the thrust produced in the X-axis and the torque produced in the Y-axis. 

The inputs for current and voltage with varying speeds are shown in Figure 2.4. The 

speed versus force generated for the steady state instance is shown in Figure 2.5 This 

number is consistent with the idea that predicted thrust is inversely proportional to 

propeller speed. Due of the strong link between and current inputs, the current/thrust 

behavior is best described by the square law relationship. 

 

 

Figure 2.4. The rotational speed changes in a sinusoidal waveform and outputs the 

corresponding current and voltage input signals. 
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Figure 2.5 The thrust generated by the thruster in the direction of the sensor's X-axis 

and the moment generated by the Y 

Step Input Effects of Amplitude. 

In this experiment, step signals of varying amplitudes were put up to regulate 

the motor's current and, consequently, its speed. The influence of rotational speed 

from 0 to the force corresponding to the steady state reached after the step control 

signal was recorded using eight different sets of current inputs with the same time 

step setting. It was established that the thruster's force output's steady state value 

depends on its current value. 

 

 

Figure 2.6 Different rotational speeds corresponding to the force generated 
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Figure 2.7  Linear relationship with rotational speed exhibited by the mean 

values of the 8 force groups under Gaussian regression 

 

 

Figure 2.8 Linear relationship with rotational speed exhibited by the mean 

values of 8 Lets of moments under Gaussian regression  
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In 2.1, we focused on the isolated testing of single propulsion units to obtain 

accurate data on thrust, torque, and energy efficiency. However, as the complexity of 

the robot's movements and interactions with its aquatic environment increases, the 

need for a more comprehensive, data-driven approach becomes essential. A single 

propulsion system provides limited insights, and real-world performance requires the 

integration of multiple systems operating simultaneously. 

The key to enhancing the efficiency and accuracy of hydrodynamic 

measurements lies in a multi-device platform that facilitates parallel data collection 

from different components of the robot. This data-driven methodology enables the 

simultaneous capture of a broad spectrum of movement profiles, reducing the risks of 

data singularity and measurement biases. By exploring various motion configurations 

concurrently, the system can rapidly identify the most effective combinations for 

achieving optimal propulsion, stability, and energy efficiency. 

Moreover, this multi-device test platform emphasizes the importance of 

metrological assurance by automating the collection of multiple datasets in real-time. 

The parallel nature of this setup not only increases the speed of data collection but 

also improves the accuracy of measurements by minimizing human intervention and 

errors, providing more reliable and repeatable results. By collecting a wide array of 

data points under different operating conditions, this platform enables more robust 

statistical analysis and reduces the likelihood of overfitting to a specific set of motion 

parameters. 

In the next section (2.2), we explore the integration of foil kinematics into this 

multi-device setup. By utilizing this parallel data-driven approach, we can evaluate 

different kinematic configurations and propulsion strategies, optimizing the robot's 

performance while ensuring that metrological standards are upheld. This method 
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enhances not only the speed of data collection but also the precision and diversity of 

the dataset, facilitating more effective performance tuning and error minimization 

across various aquatic environments. 

 

2.2 Exploring Alternative Underwater Propulsion Systems: The Approach to 

Hydrodynamic Optimization 

 

2.2.1 Foil Kinematics in Underwater Robotics 

In the following section of this chapter, we explore the foil kinematics of 

underwater robots, a critical factor that influences the hydrodynamic performance and 

overall efficiency of the propulsion system. Foils, or flapping fins, are increasingly 

employed in underwater robotics to replicate the propulsion mechanisms of aquatic 

animals such as fish and manta rays [31]. These biomimetic systems rely on a 

combination of oscillatory motion and foil flexibility to generate thrust, minimize 

drag, and enhance maneuverability [32]. 

The study of foil kinematics is essential for understanding how different 

movement patterns, amplitudes, and frequencies of the fins contribute to propulsion. 

Specifically, the goal is to optimize the hydrodynamic parameters to ensure that the 

robot can achieve maximum efficiency and stability while operating in complex 

aquatic environments. We explore the kinematic equations, principles, and analytical 

methods that guide the development of efficient foil-based propulsion systems [33]. 

Kinematic Parameters of Foil Motion 

The flapping motion of a foil can be described using kinematic parameters such 

as frequency, amplitude, pitch angle, and phase difference between pitch and heave 

movements [34]. These parameters dictate how the foil interacts with the surrounding 
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fluid to generate lift and thrust forces. The basic equation describing the sinusoidal 

motion of a flapping foil is [35]: 

 

                    (2.13) 

 

Where: 

     represents the instantaneous angle of the foil at time ttt, 

   is the maximum pitch angle, 

  is the flapping frequency (measured in Hz), 

  is the phase angle between pitch and heave motions. 

In underwater robots, the pitch angle and heave amplitude are carefully 

adjusted to ensure that the foil produces the necessary thrust while minimizing drag. 

The phase difference between the two motions   is a critical parameter, as it directly 

influences the generation of forward thrust and the efficiency of the system. Typically, 

a phase difference of around 90 degrees has been shown to optimize thrust production 

in foil-based propulsion systems [36][37]. 

Foil Kinematics and Hydrodynamic Forces 

To understand the forces acting on a flapping foil, the Strouhal number (  ), 

Reynolds number (  ), and reduced frequency (  ) are critical dimensionless 

parameters that provide insights into the flow behavior around the foil and its 

interaction with the water. 

Strouhal number (  ): This number governs the oscillatory motion and is 

defined as: 

 

    
  

 
 (2.14) 
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Where: 

  is the flapping frequency, 

  is the amplitude of the heave motion, 

  is the forward velocity of the robot. 

Research suggests that maintaining a Strouhal number between 0.2 and 0.4 is 

optimal for achieving efficient thrust in biomimetic systems, as this range maximizes 

the propulsive efficiency while minimizing energy consumption. 

Reynolds number (  ): The Reynolds number is a measure of the ratio of 

inertial forces to viscous forces and is calculated as: 

 

    
   

 
 (2.15) 

 

Where: 

  is the fluid density, 

  is the foil velocity, 

  is the chord length of the foil, 

  is the dynamic viscosity of the fluid. 

The Reynolds number helps determine whether the flow around the foil is 

laminar or turbulent, which in turn affects the hydrodynamic forces acting on the foil. 

Reduced frequency (  ): This parameter indicates how efficiently the foil 

generates thrust through oscillations and is given by: 

 

    
  

  
       (2.16) 
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A higher reduced frequency typically corresponds to better thrust generation, 

though it also increases the drag experienced by the foil. The optimization of    is 

critical in designing foil-based propulsion systems for underwater robots [38][39]. 

2.2.2 Foil Kinematics: Optimizing Biomimetic Propulsion for 

Hydrodynamic Efficiency 

In underwater robotics, foil kinematics plays a crucial role in determining the 

hydrodynamic efficiency of the robot's propulsion system. Flapping foils, which 

mimic the motion of aquatic animals, rely on the interplay between pitch and roll 

motions to generate thrust and maneuverability. The following section provides an 

analysis of the kinematics behind these movements, introducing key equations that 

describe the position and orientation of the foil in three-dimensional space [40]. 

The kinematic behavior of the foil is detailed in Figure 2.9 of the referenced 

study, where the foil undergoes both pitch and roll motions. The motion is broken 

down into two stages: first, observing the roll motion from the XoZ plane, and then 

analyzing the pitch motion from the YoZ plane [41]. 

Roll Motion Analysis 

In the first stage, the roll motion is observed in the XoZ plane, where the 

position of the foil can be described by the following kinematic equations: 

 

 
 

               
      

               

  (2.17) 

 

Where: 

  is the distance between the axis of the roll motion and the chord of the 

flapping wing, 
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  is the span of the flapping wing, 

     is the rolling angle as a function of time. 

This analysis captures the basic rolling motion of the foil, which helps generate 

forward thrust and directional control in the water. 

Pitch Motion Analysis 

The second step involves observing the pitch motion from the YoZ plane. The 

kinematic equations for the foil in this plane are: 

 

 

 
 
 

 
 

    

   
 

 
         

   
 

 
         

  (2.18) 

 

Where: 

  represents the chord length of the foil, 

     is the pitch angle as a function of time. 

The pitch motion controls the angle of attack of the foil, directly affecting the 

thrust generated by the flapping motion. By adjusting the pitch angle, the foil can 

produce either forward thrust or lift, depending on the robot's required movement. 

Combined Roll and Pitch Motion 

The final stage of the analysis combines both the roll and pitch motions to 

describe the complete movement of the foil in the three-dimensional coordinate 

system. The combined equations for the x, y, and z coordinates of the foil are as 

follows: 
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  (2.19) 

 

 

Figure 2.9 The kinematics of the flapping wing are analyzed as below: (a) A 

top view of the flapping wing configuration. (b) Roll movement observed in the XoY 

plane. (c) Pitch movement taking place in the XoZ plane. (d) A combined motion 

illustrated within a three-dimensional coordinate system. 

 

The figure presents the kinematic analysis of the flapping wing. (a) shows a top 

view of the wing. (b) demonstrates the roll motion in the XoY plane. (c) displays the 

pitch motion in the XoZ plane. (d) combines the movements within a 

three-dimensional coordinate system. 
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Figure 2.10 The trajectory of the flapping wing is depicted below: (a) The 

position of the two servo motors. (b) The trajectory traced by the end tip of the 

flapping wing in motion. 

 

The figure illustrates the flapping wing's trajectory. (a) highlights the positions 

of the two servo motors. (b) shows the path of the wing's end tip. 

These equations describe the trajectory of the foil’s tip in three-dimensional 

space as it undergoes a combination of rolling and pitching. The foil’s tip trajectory is 

important for determining the robot’s maneuverability and hydrodynamic 

performance, as it influences the distribution of thrust forces and the overall 

efficiency of the propulsion system. 

Kinematic Validation and Optimization 

To validate these kinematic equations, experiments are often conducted using 

high-precision sensors to track the actual motion of the foil and compare it to the 

theoretical predictions. By measuring key variables such as thrust, lift, and torque, 

researchers can optimize the foil’s motion to achieve maximum hydrodynamic 

efficiency. Adjusting the rolling angle      ) and the pitch angle (    ) facilitates 

fine-tuning of the propulsion system to suit different operating conditions, such as 

high-speed travel or precise maneuvering. 
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The combined roll and pitch motions form the basis for optimizing the 

performance of underwater robots, enabling efficient propulsion with minimal energy 

consumption. By refining the kinematic parameters based on experimental data, the 

robot can achieve improved stability, reduced drag, and enhanced thrust generation. 

Impact on Hydrodynamic Performance 

The kinematic parameters described above play a significant role in 

determining the hydrodynamic performance of underwater robots. Through careful 

manipulation of these parameters, it is possible to achieve a balance between thrust, 

energy efficiency, and maneuverability. For example, increasing the heave amplitude 

( ) can generate higher thrust, but it may also result in increased drag, which would 

negatively impact the robot's energy efficiency. 

Moreover, the frequency of oscillation ( ) directly influences the robot's ability 

to accelerate and maneuver. A higher frequency typically leads to more dynamic 

movements, enabling the robot to respond quickly to changes in the environment. 

However, this also increases the robot's energy consumption, requiring a balance 

between frequency and amplitude to achieve optimal performance. 

Experimental Validation of Foil Kinematics 

To validate the theoretical kinematics of the foil motion, experimental setups 

often involve testing the foil under controlled conditions in a submersion tank. 

During these tests, high-precision force sensors measure thrust and drag forces, while 

motion capture systems track the foil's movements. This data helps refine the 

kinematic models and ensure that the robot's foil-based propulsion system meets the 

desired performance criteria. 
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2.2.3 Parallel Testing Platform for Hydrodynamic Performance 

The experimental platform, as shown in the Figure 2.11, demonstrates eight 

synchronized 2-degree-of-freedom (DOF) foil systems operating simultaneously 

within a water tank. These foil units enable the simulation of complex hydrodynamic 

scenarios and facilitate parallel data acquisition from multiple sensors, improving 

both the efficiency and accuracy of experimental measurements. 

 

 

Figure 2.11 Modular Synchronized Foil Testing Platform with Movable 

Gantry. 

 

Synchronized Motion and Control 

Each foil unit features two degrees of freedom: pitch (rotation) and heave 

(vertical motion), effectively simulating aquatic locomotion patterns. Synchronized 

operation across all foil units ensures consistent fluid conditions within the tank, 
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supporting meaningful comparisons and reliable hydrodynamic analysis. 

Additionally, the movable gantry system allows controlled, steady-speed movement 

to replicate realistic aquatic environments, mimicking conditions such as uniform 

water flow around the foils. 

Data Acquisition and Real-Time Monitoring 

The foil units are equipped with strain gauge-based force sensors that record thrust, 

torque, and other hydrodynamic forces during operation. These sensors are connected 

via a communication network, enabling synchronized data acquisition across all units, 

reducing latency-induced errors and improving data consistency. This synchronized 

approach enhances the accuracy and reproducibility of experimental results, 

contributing to more precise hydrodynamic analysis. 

Applications and Optimization 

The multi-unit setup allows researchers to study various fluid interaction scenarios, 

optimize propulsion parameters, and test a range of movement frequencies and 

amplitudes. These experiments are crucial for refining hydrodynamic models and 

advancing underwater robot design. By conducting parallel tests, the platform 

facilitates rapid data collection across different conditions, providing a 

comprehensive set of datasets critical for evaluating and improving robot 

performance in diverse aquatic environments. 

Modular Design and Expandability 

A key feature of this platform is its modular, detachable design. Each foil unit can be 

disassembled and replaced with different foil shapes and configurations, enabling a 

variety of experimental setups. This modularity allows researchers to explore 

different hydrodynamic behaviors by employing alternative foil geometries, 

enhancing the platform's versatility to meet evolving research demands. 
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Integration with Control Algorithms 

The data collected from these synchronized tests plays a crucial role in the 

development of predictive control algorithms such as MPC and the training of 

GPR-based hydrodynamic models, as outlined in Chapter 4. The rich, diverse 

datasets generated by this platform enable robust model development, improving the 

performance of control strategies for underwater robots operating in dynamic 

environments. 

Conclusions of Chapter 2 

1. In the current chapter there was developed a test platform paradigm for 

underwater dynamics measurement that overcomes the limitations of current 

techniques and can improve the accuracy, stability, and uniformity of 

measurements by incorporating advanced control systems and compensation 

techniques.  

2. The considered platform adapts to uncertainties and degradation of thruster 

performance through the use of adaptive sliding controllers which is 

demonstrated through experimental validation, showcasing its superiority over 

existing methods.  

3. The studied proposed test platform paradigm offers a promising approach for 

underwater dynamics measurement providing more accurate and reliable 

measurements in various applications for advancing underwater research and 

technology. Dynamic adaptation or the adaptation within a sliding mode (on a 

sliding surface), based on so-called equivalent control obtained by the direct 

measurements of the output signals of a first-order low-pass filter containing in 

the input the discontinuous control with the specially adapted magnitude value. 
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Chapter 3 

Enhancing Stability and Depth Control through Sensors Fusion 

 

Underwater robots require precise and reliable feedback from multiple sensors 

to ensure stability, maintain orientation, and regulate depth in dynamic and 

unpredictable aquatic environments. Two primary sensor systems are used to achieve 

these objectives: IMUs for attitude control and depth sensors/altimeters for accurate 

depth regulation [42]. This chapter explores the integration of these sensors, 

highlighting how they work together to enhance the robot’s ability to maintain stable 

movement and consistent depth, which is crucial for both autonomous and remotely 

operated underwater missions [43]. 

3.1 IMU-Based Attitude Control 

3.1.1 Working Principles of IMU 

An IMU integrates multiple sensors—typically an accelerometer, a gyroscope, 

and sometimes a magnetometer—to provide detailed feedback about an object’s 

motion, orientation, and rotation. In underwater robotics, these sensors are critical for 

maintaining stability, accurate orientation, and control. Let’s explore the principles of 

these sensors using the figures provided. 

1. Accelerometers 

An accelerometer measures the rate of change in velocity along a specific axis. 

MEMS accelerometers detect linear acceleration through a proof mass suspended by 

springs. When the sensor experiences acceleration along its sensitivity axis, the mass 

deflects, and the amount of deflection is proportional to the applied force (Figure 

3.1(a)). This is how the accelerometer measures the acceleration of an object in 

motion [44]. 
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Figure 3.1 Illustration of Accelerometer Operation in Horizontal and Vertical 

Orientations. 

 

Sensitivity to Gravity: When the sensitivity axis of the accelerometer aligns 

with the Earth’s gravitational field, the sensor also detects pseudo-acceleration caused 

by gravity. This pseudo-acceleration doesn’t correspond to actual movement but 

rather the constant force of gravity (Figure 3.1 (b)). In this case, the accelerometer 

will register an acceleration of -1 g along the vertical axis, even though there’s no 

real displacement. Understanding this principle is important when distinguishing 

between true motion and gravitational effects [45][46]. 

2. Gyroscopes 

A gyroscope measures the angular velocity or the rate of rotation around an 

axis. MEMS gyroscopes operate based on the Coriolis effect, which refers to the 

inertial force experienced by a mass in motion within a rotating frame [47]. In a 

MEMS gyroscope, a mass oscillates along one axis (e.g., the x-axis), and when an 
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angular velocity is applied about another axis (e.g., the z-axis), the Coriolis force 

causes a deflection along the third axis (y-axis), as shown in Figure a. 

 

Figure 3.2 Gyroscope Operation Models – (a) Single Mass Configuration and 

(b) Tuning Fork Configuration (need sign web) 

The Coriolis force plays a central role in the functioning of MEMS gyroscopes. 

The position of a mass   in the body frame is described as: 

     
 
   (3.1) 

The inertial velocity of the mass is derived by considering both the velocity 

due to rotation and the tangential velocity: 

   
   

     
     

  (3.2) 

Further, the inertial acceleration of the mass in the body frame is derived as the 

combination of the derivative of the velocity and the tangential acceleration: 

   
    

           

           
  (3.3) 

The key term here is the Coriolis force that influences the motion along the 

perpendicular axis. From Newton's Second Law of Motion, the force acting in the 

sensing direction (y-axis) is given by: 

                   
(3.4) 
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This explains how the gyroscope detects angular velocity based on the 

displacement of the oscillating mass in response to rotational motion. For practical 

applications, if the mass starts from rest along the  -axis, the resulting force due to 

the Coriolis effect simplifies to: 

          (3.5) 

This force leads to a significant displacement, which is proportional to the 

applied angular velocity  . MEMS gyroscopes often employ a tuning fork 

configuration, where two masses oscillate in opposite directions to cancel out the 

effects of linear acceleration and ensure accurate angular rate measurements. 

Tuning Fork Configuration: Many MEMS gyroscopes employ a tuning fork 

configuration, where two masses oscillate in opposite directions (Figure 3.2(b)). This 

design cancels out the effects of linear acceleration or vibration, which could 

otherwise interfere with the gyroscope’s measurements. The Coriolis forces on the 

two masses act in opposite directions, and the resulting change in capacitance is 

directly proportional to the angular velocity, providing more robust measurements in 

dynamic environments. 

3. Magnetometers 

A magnetometer measures the strength and direction of magnetic fields, often 

employing magneto resistive sensors that change resistance in response to nearby 

magnetic fields. MEMS magnetometers typically measure the Earth's magnetic field, 

enabling the robot to maintain accurate orientation relative to magnetic north. As 

illustrated in Figure 3.3(a), the Earth's magnetic field resembles a dipole with north 

and south magnetic poles. 
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Figure 3.3 Magnetic Field Representation(a) Standard dipole magnet 

demonstrating magnetic field lines. (b) Earth's magnetic field modeled as a dipole, 

highlighting the magnetic poles and spin axis. 

 

Magnetic Inclination and Declination: The direction of Earth’s magnetic field 

varies depending on location. The magnetic inclination is the angle between the field 

lines and a horizontal plane, while magnetic declination accounts for the difference 

between true north and magnetic north (Figure b). In underwater robotics, this data is 

vital for maintaining proper orientation, especially when compensating for gyroscope 

drift over time. However, magnetometers are susceptible to magnetic interference, 

especially in industrial or underwater environments with metallic structures or other 

magnetic sources [48]. 

3.1.2 IMU Data Filtering and Sensor Fusion for Attitude Control 

In real-time control and navigation systems for underwater robots, filtering 

techniques are crucial for ensuring the accuracy and stability of orientation estimates 

derived from sensor data. This section discusses two primary filtering 

approaches—Complementary Filtering and Kalman Filtering—focusing on their role 
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in IMU data processing, with particular emphasis on applications in underwater 

robotics [49]. 

Comparison between Kalman filter and complementary filter 

Kalman Filtering is an optimum estimating approach that combines state 

estimations with observational data [50]. The Kalman Filter's strengths include its 

ability to handle system noise and uncertainty while providing generally accurate 

posture estimate [51]. However, its implementation is relatively difficult, 

incorporating concepts such as state space models and covariance matrices, and it 

requires a large amount of processing resources. This complexity may make it less 

appropriate for usage in resource-constrained embedded devices [52]. 

 

Table3.1 Comparison between Kalman Filtering and Complementary Filtering. 

Comparison Aspect Kalman 

Filtering 

Complementary 

Filtering 

Complexity High Low 

Computational Overhead Substantial Minimal 

Implementation Difficulty Complex Straightforward 

Adaptability to Dynamic 

Environments 

Moderately 

Good 

Limited 

Attitude Estimation Accuracy High Moderate 

Resource Consumption Considerable Low 

Suitability for High-Dynamic 

Movements 

Excellent Limited 

Real-Time Performance Relatively Slow Relatively Fast 

Multi-Sensor Fusion Applicable Applicable 
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On the other hand, Complementary Filtering provides a simple and effective 

way for estimating pose. It accomplishes this by combining data from accelerometers 

and gyroscopes, reducing drift in pose estimation [53]. Complementary Filtering has 

several advantages, including its simplicity of implementation and minimal 

computational load, making it ideal for applications requiring excellent real-time 

performance. However, it may struggle in dynamic situations or during quick motions 

due to accumulated mistakes, potentially resulting in unstable pose estimates. 

 

Table 3.2 Implementation and Derivation of Complementary Filtering 

Comparison Aspect Accelerometer Gyroscope 

Sensitivity to High-Frequency 

Vibrational Noise 

Sensitive Insensitive 

Low-Frequency Attitude Drift Stable Drifts 

Resistance to High-Frequency 

Interference 

Weaker Stronger 

Resistance to Low-Frequency 

Interference 

Stronger Weaker 

 

Complementary Filtering is a commonly applied approach for attitude 

estimation that relies on data fusion from two sensors: the accelerometer and the 

gyroscope. The strength of this strategy lies in leveraging the advantages of both 

sensors to enhance the accuracy and reliability of attitude estimation. 

Processing Accelerometer Data: 

The accelerometer detects the deviation angle between the acceleration and 

gravitational acceleration vectors to determine the object's tilt. However, 
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accelerometers detect gravity-induced acceleration, which can interfere with actual tilt 

measurements. As a result, the accelerometer signal must be adjusted to account for 

gravitational acceleration. Typically, a low-pass filter is employed to reduce 

high-frequency noise created by mechanical vibrations. After filtering, the data better 

captures the object's tilt. 

Processing Gyroscope Data: 

The gyroscope is designed to measure an object's angular velocity, or speed of 

rotation. While gyroscopes are sensitive and precise in detecting rotational 

movements, their measurements can become inaccurate with time, causing drift in 

attitude calculation. To reduce drift, the gyroscope's angular velocity data is paired 

with the accelerometer's tilt information. This fusion is based on the complementarity 

concept, in which the outputs of both sensors are combined using a weighted average, 

thereby complementing each other's strengths. 

Derivation of the Complementary Filter Formula: 

For the gyroscope measurements   ,   ,   , and the error terms   ,   ,   , 

along with their integral components      ,      ,      , the derivation of the 

Complementary Filter can be expressed as follows: 

 

 
 

                           
                           
                               

  (3.6) 

 

The alpha (α) value typically ranges between 0.98 and 0.99, adjustable based on 

the specific scenario and hardware characteristics. 

   represents the proportional gain, which adjusts the influence of the error 

term on the gyroscope measurements. 
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The error terms   ,   ,    represent the cross-product of the estimated 

direction of gravity and the accelerometer measurements. 

The integral components      ,      ,       are the integrals of the error 

terms. 

Overall Implementation Process: 

a) Input Conversion: Convert angular velocity to radians per second. 

 

 
 

                
                
                

  (3.7) 

b) Normalization of Accelerometer Measurements: 

                     (3.8) 

 Compute and norm 

e) Integration of Error Terms: Integrate the error terms. 

 

 
 
                    
                    
                    

  (3.9) 

 

f) Adjustment of Gyroscope Measurements: Adjust the gyroscope 

measurements, applying the Complementary Filter to each axis. 

g) Quaternion Integration Update: Update the quaternion using the angular 

velocity after Complementary Filtering. 

 

 

 
 

 
                                 

                                

                                

                                

  (3.10) 
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h) Quaternion Normalization: Normalize the quaternion. 

 

 
 

                       

   
  

      
    

  

      
    

  

      
    

  

      

  (3.11) 

 

i) Calculation of Euler Angles: Compute the Euler angles based on the updated 

quaternion. 

 

 
 

                                    
                                                      

                                                

  (3.12) 

 

Through this process, Complementary Filtering effectively combines 

information from the accelerometer and gyroscope, providing a relatively accurate 

attitude estimation.  

  

  

Figure 3.4 Results of comparative analysis 
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In the conducted research, two experimental setups were rigorously designed to 

contrast the performance of the tilt-compensated magnetometer-based yaw angle 

calculation method against the attitude estimation achieved through a complementary 

filter algorithm. The comparative analysis revealed that the complementary filter 

algorithm exhibited lower noise levels and a higher rate of synchronization in attitude 

computation. Notably, the yaw angle derived from the magnetometer reflects an 

absolute position, inherently preventing the initialization of the yaw value at zero. This 

characteristic imposes significant limitations on the closed-loop control systems of 

remotely operated vehicles, due to the inherent inability to reset or calibrate the yaw 

orientation at the start of an operation. 

In contrast, the complementary filter approach generates posture information 

relative to the position at startup, adjusting dynamically to changes in orientation. This 

adaptability ensures a more robust response to irregular alterations in the IMU's 

operational environment, delivering stable posture signals with significantly reduced 

noise. Furthermore, the complementary filter demonstrated superior recovery 

performance following disturbances, underscoring its efficacy for enhancing the 

precision and reliability of posture estimation in dynamic and unpredictable 

conditions. This analysis underscores the complementary filter's potential for 

improving the robustness and accuracy of attitude control systems, particularly in 

applications requiring precise navigation and orientation control under varying 

environmental conditions. 

 

3.2 Depth-Based Control 
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Depth gauges play a critical role in underwater robots by helping them 

maintain precise depth relative to the water surface. This section discusses how depth 

sensors work in tandem with control algorithms to regulate the robot's depth, enabling 

it to navigate efficiently and maintain consistent positioning in varying aquatic 

environments. 

A depth gauge typically works by measuring the water pressure exerted at a 

certain depth and translating this pressure into depth information. The deeper a robot 

goes, the higher the pressure, which the sensor can calculate using the relationship 

between pressure and depth. This data is vital for ensuring that the underwater robot 

can maintain its desired depth, especially when operating in complex environments 

like deep-sea exploration or shallow-water operations. 

MPC is a powerful control algorithm that calculates future control actions by 

solving an optimization problem at each time step. It predicts the future behavior of 

the robot's depth based on a dynamic model and applies corrective actions to 

minimize the error between the predicted and desired depth. MPC is especially 

advantageous in underwater environments, where external forces like currents or 

changes in water density can affect the robot’s depth and stability. 

3.2.1 Introduction to Depth Sensors 

In underwater robotics, precise depth measurement is critical for maintaining 

stability and control, especially in tasks such as navigation, exploration, and data 

collection. Depth sensors, also known as pressure sensors or depth gauges, play an 

essential role by providing real-time data on the robot's distance from the water 

surface or sea level. 
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Depth sensors typically work by measuring the water pressure exerted on the 

sensor and converting this data into a corresponding depth. The pressure increases 

with depth, and this pressure change is translated using the following formula [54]: 

          (3.13) 

where:    is the pressure at depth, 

    is the atmospheric pressure at sea level, 

   is the density of the water, 

   is the acceleration due to gravity, 

   is the depth below the water surface. 

This relationship between pressure and depth enables accurate measurements, 

which are crucial for underwater navigation and control. Modern depth sensors are 

highly sensitive and can detect depth variations within a few centimeters, making 

them ideal for maintaining stability in ROVs and AUVs. These sensors often have 

built-in temperature compensation mechanisms to ensure accuracy in varying water 

conditions, as water density can change with temperature and salinity. 

 

Figure 3.5 ISD4000 Piezo-Resistive Pressure Sensor for Depth Measurement 
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The ISD4000 sensor is equipped with a piezo-resistive pressure sensor that 

offers exceptional depth accuracy of ±0.01% FS, with an upgrade option to ±0.005% 

FS. This high level of accuracy ensures that even the slightest changes in depth are 

detected and responded to, which is crucial in underwater robotics where maintaining 

depth within tight tolerances is essential for tasks like pipeline surveys or asset 

deployment [55]. 

Depth Measurement Range: The sensor offers a range of depth measurement 

capabilities, from 10 bar to 600 bar, making it adaptable to various underwater 

conditions—from shallow waters to extreme depths of up to 6000 meters when 

housed in titanium. This flexibility enables the sensor to function in a wide range of 

applications, including real-time depth monitoring in both ROVs and AUVs. 

Data Precision: The ISD4000 provides a resolution of 0.001% FS, which 

facilitates the capture and processing of highly detailed measurements by the robot's 

control system. This level of precision ensures accurate depth measurements, even in 

rapidly changing conditions or when the robot is subject to underwater currents 

Temperature Compensation: The sensor is temperature-compensated, 

ensuring that its measurements remain accurate even as the water temperature 

fluctuates. This is particularly important in deep-sea environments where temperature 

gradients can affect the robot’s performance. The sensor’s temperature accuracy is 

±0.01°C, ensuring reliable operation across a calibrated temperature range of -5°C to 

35°C. 

The ISD4000’s ability to provide real-time depth data at rates of up to 100Hz, 

combined with its robust titanium housing and low power consumption, make it ideal 

for underwater robotics applications that require both durability and precision.  
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3.2.2 Depth Control with Model Predictive Control (MPC) 

Prediction Model: The MPC algorithm relies on a mathematical model of the 

robot’s dynamics to predict future states. For depth control, the model includes 

factors such as buoyancy, thrust, and drag forces. The robot’s depth is predicted over 

a finite time horizon using this model, taking into account the current state and 

control inputs. 

The system dynamics can be represented as: 

 

                  (3.14) 

where: 

   is the state vector at time step   (including the current depth and depth 

rate), 

   is the control input (e.g., thruster output), 

         represents the system dynamics, 

   is the process noise. 

Optimization Problem: MPC solves an optimization problem at each time step 

to determine the control actions that minimize a cost function. The cost function 

typically penalizes deviations from the desired depth and excessive control inputs, 

ensuring both stability and energy efficiency. 

The optimization problem can be written as: 

 
   
 
   

   

   

        target  
 
        target       

        (3.15) 

 

where: 

 target  is the desired depth, 
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  is a weighting matrix for the depth error, 

  is a weighting matrix for the control effort, 

  is the prediction horizon. 

The control input    is calculated to minimize this cost over the prediction 

horizon while satisfying constraints on control inputs and system states (e.g., thruster 

limitations, maximum depth). 

Receding Horizon: MPC operates in a receding horizon fashion, meaning that 

only the first control input from the optimized sequence is applied at each time step. 

After applying the control, the prediction is updated with the new state, and the 

optimization is repeated. 

Constraints: In underwater environments, depth control often involves 

constraints, such as maximum thrust output, minimum and maximum permissible 

depths, and velocity limits. MPC can handle these constraints explicitly, ensuring that 

the robot operates safely within its limits. 

The constraints can be incorporated as: 

                               (3.16) 

 

Advantages of MPC in Depth Control 

Predictive Capability: Unlike reactive controllers such as PID, Model 

Predictive Control (MPC) anticipates future states and adjusts control actions 

accordingly, which is particularly advantageous in dynamic and uncertain 

environments like underwater. 

Handling Constraints: MPC can handle input and state constraints, which are 

essential for depth control when considering physical limitations, such as thruster 

capacity and depth boundaries. 
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Optimal Control: By minimizing a cost function, MPC ensures that the robot 

operates efficiently, balancing depth precision with energy consumption. 

Example of MPC for Depth Control 

Consider an underwater robot equipped with a depth sensor and thrusters. The robot 

needs to maintain a specific depth while minimizing energy consumption. The 

system's dynamics are modeled, taking into account forces such as buoyancy and 

drag. At each time step, MPC predicts the future depth of the robot over a 10-second 

horizon and computes the optimal thrust to keep the robot within 0.1 meters of the 

desired depth. The controller adjusts the thrust in real time, accounting for constraints 

on thrust output and depth limits. 

The depth regulation problem can be expressed as: 

 

    
 
   

   

   

        setpoint  
 
      

   (3.17) 

where: 

     is the predicted depth at future time      

 setpoint  is the desired depth, 

  is a regularization parameter penalizing the control effort  . 

By solving the optimization problem, the underwater robot can maintain stable 

depth despite external disturbances such as underwater currents or changes in water 

density. The control inputs generated by MPC consider the robot’s hydrodynamic 

model, ensuring that it stays within the desired depth range while minimizing energy 

consumption and avoiding overcorrection. 

In the figure below, we can observe the robot’s depth stabilization process, 

where MPC successfully manages to maintain a constant depth under fluctuating 

environmental conditions. The smooth and gradual adjustments showcase the 
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controller’s ability to predict the robot’s future state and apply corrective actions in 

advance. The robot avoids oscillations or overshooting, providing a reliable and 

efficient control system. 

 

 

Figure 3.6 Biomimetic Underwater Robot for Depth Control Experiment.  

 

 

Figure 3.7 Depth Control Comparison: MPC vs PID. 
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In addition to the superior capabilities of MPC discussed earlier, the results 

from the depth control experiment (as shown in the chart comparing MPC and PID) 

further emphasize the advantages of MPC over PID control in underwater depth 

regulation. 

The PID controller (orange line) achieves the target depth of 5 meters more 

quickly, reaching it in about 9 seconds. However, the quick response comes at the 

cost of overshoot and oscillations, which cause instability. This behavior is 

problematic in underwater environments where maintaining precise control is critical, 

especially in avoiding obstacles or maintaining consistent altitude. 

On the other hand, the MPC controller (blue line) takes a slightly longer time 

to reach the target depth, approximately 10 seconds, but with a much smoother 

approach and no overshoot. The robot stabilizes immediately upon reaching the 

desired depth. This demonstrates the effectiveness of MPC in ensuring stability and 

precision, key aspects in environments where the underwater robot’s performance 

and safety are paramount. 
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Table 3.3: Depth Control Performance Comparison Between MPC and PID 

Controllers 

Time 

(s) 

MPC 

Depth (m) 

PID Depth 

(m) 
Observations 

0.5 0.21 0.83 
PID reacts faster initially, reaching a depth of 0.19 

m. 

2.0 1.03 2.62 
PID shows a faster depth gain, but overshoots target 

depth early on. 

5.0 2.5 4.26 
PID continues to increase depth rapidly, while MPC 

is slower but stable. 

7.5 3.75 4.86 
PID approaches target depth of 5 m, with signs of 

oscillations. 

10.0 5.02 4.94 
MPC reaches target depth of 5 m with minimal 

oscillation; PID fluctuates around 5 m. 

11.5 5.01 5.05 
Both algorithms stabilize near target, with MPC 

showing less overshoot. 

The data in this table highlights the fundamental differences in behavior 

between MPC and PID in terms of depth control. While the PID controller responds 

more quickly, it also exhibits overshoot and oscillations that can reduce stability, 

especially in dynamic underwater environments. In contrast, the MPC controller 

takes a slightly longer time to reach the target depth, but it does so with a smoother 

approach and without overshoot, resulting in improved stability. 

These observations align with the theoretical advantages of MPC discussed 

previously, including its ability to achieve precise control with minimal oscillations, 

enhanced robustness against disturbances, and greater overall stability in challenging 
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underwater conditions. This makes MPC a more suitable choice for applications that 

demand high levels of accuracy, stability, and efficiency. 

Advantages of MPC Over PID 

Stability and Accuracy: Unlike PID, which exhibits oscillations and 

overshoot due to its reactive nature, MPC ensures smoother, more controlled 

responses. It is particularly effective in dynamic and uncertain underwater conditions, 

where abrupt depth changes could lead to operational hazards. 

Predictive Control: The predictive capability of MPC enables it to anticipate 

the future behavior of the robot and adjust control actions preemptively. This 

capability is superior to the reactive approach of PID, making MPC more suitable for 

real-time depth regulation in dynamic underwater environments. 

Energy Efficiency: The absence of overshoot and smoother depth changes 

result in energy savings. With MPC, the robot's thrusters operate more efficiently, as 

they don’t have to correct large deviations caused by overshoot or oscillations. 

Robustness: MPC’s model-based predictions make it more robust to 

disturbances such as underwater currents, pressure changes, or varying water 

densities. In contrast, PID may struggle to adapt to these external forces without 

significant tuning adjustments. 

Thus, while PID control provides a quicker initial response, MPC offers a 

much more stable and reliable approach to depth control, especially in environments 

that demand precision and efficiency. 
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Conclusions to Chapter 3 

1. The conducted analysis of the Inertial Measurement Unit has confirmed that 

data processing quality depends on applied filtering techniques. There were studied 

and compared 2 filtering methods: Complementary Filters and Kalman Filters. 

2. The comparative analysis of 2 experimental setups revealed that the 

complementary filter algorithm exhibited lower noise levels and a higher 

synchronization rate in attitude computation. Notably, the yaw angle derived from the 

magnetometer reflects an absolute position, inherently preventing the initialization of 

the yaw value at zero. This characteristic imposes significant limitations on the 

closed-loop control systems of remotely operated vehicles, due to the inherent 

inability to reset or calibrate the yaw orientation at the start of an operation. 

3. In contrast, the complementary filter approach generates posture information 

relative to the position at startup, adjusting dynamically to changes in orientation. 

This adaptability ensures a more robust response to irregular alterations in the IMU's 

operational environment, delivering stable posture signals with significantly reduced 

noise. Furthermore, the complementary filter demonstrated superior recovery 

performance following disturbances, underscoring its efficacy in enhancing the 

precision and reliability of posture estimation in dynamic and unpredictable 

conditions.  

4. The comparison between MPC and PID controllers highlighted the superior 

performance of MPC in depth control. MPC effectively anticipated external 

disturbances, resulting in smoother and more accurate trajectory tracking, with 

minimal overshoot. In contrast, PID showed faster initial response but lacked 

robustness, leading to increased oscillations. These results demonstrate MPC's 
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effectiveness in achieving precise and stable depth control under dynamic underwater 

conditions.  
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Chapter 4 

Data-Driven Approaches and Optimization Methods for Amphibious 

Robot Applications 

 

In the current Chapter, we consider the stability of operation and control of 

depth of AUV as well as their enhancement due to work of contemporary function 

that’s sensors’ data fusion. 

 

4.1 Robot Structure and Motion Mechanisms 

4.1.1 Structural Design and Motion Capabilities of the Amphibious Robot 

Examples of dissimilar robots’ motions are shown below (Figure 4.1) 

 

 

Figure 4.1. Basic Structure of the Robot and Mode Transition  

 

The underwater robot featured in this study is designed with a quadrupedal 

structure that allows for dual operational modes: walking on the seabed and 

swimming in open water. The design of this amphibious robot is optimized for both 
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terrestrial and aquatic environments, making it highly adaptable and efficient for 

underwater exploration and various research applications [56]. 

Mechanical Structure 

As shown in Figure 4.1, the robot's construction consists of several key 

components that enable its seamless operation in both environments: 

Controller Unit: Mounted on top, the robot's controller manages all 

computational tasks, including sensor fusion, motion control, and communication. 

The controller interacts with the onboard sensors, such as cameras and IMUs, to 

provide real-time data to the control algorithms. 

Battery Pack: Ensuring the robot's operational longevity, the battery pack 

powers all electronic systems, including the propulsion units and sensors. 

Propeller Legs: The legs of the robot feature propellers at their tips, which 

provide thrust during swimming. These legs also serve as standard walking 

appendages when the robot operates on solid surfaces, allowing it to traverse 

underwater terrains. 

Buoyancy Modules: The robot is equipped with adjustable buoyancy modules 

that help maintain neutral buoyancy while underwater, ensuring smooth and stable 

motion at varying depths. 

Camera System: Located at the front, the camera captures real-time footage 

and supports vision-based navigation. 

Motion Mechanisms 

The robot is capable of walking and swimming, depending on the environment 

and mission requirements: 

Walking Mode: On the seabed, the robot operates in a quadrupedal walking 

gait similar to terrestrial robots. The propeller-equipped legs provide enough stability 
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and force to allow the robot to traverse uneven surfaces, making it suitable for 

underwater inspections of pipelines or seafloor exploration. 

Swimming Mode: When submerged in open water, the robot transitions to a 

swimming mode, where the propeller legs rotate to generate thrust, similar to how 

marine animals move. The combination of walking and swimming capabilities allows 

the robot to operate efficiently in dynamic underwater environments. 

By integrating these mechanical components with the motion capabilities, the 

robot can perform tasks that require transitioning between land-like underwater 

environments and fully submerged operations. In the next section, we will discuss 

how this mechanical framework supports the development of the data-driven 

hydrodynamic model. 

4.1.2 Leg Mechanism for Terrestrial Walking and Underwater Swimming 

The robot's leg mechanism is designed to enable both terrestrial walking and 

underwater swimming with a focus on simplicity and efficiency. As shown in Figure, 

the robot achieves this by relying on controlled movement of the thigh (upper leg) 

and shin (lower leg), which allows it to adapt to different terrains and environments. 

 

 

Figure 4.2. Amphibious Robot Transitioning Between Water and Land 
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Walking on Land 

On land, the robot uses a walking gait where the legs alternate between lifting 

and lowering. The thigh moves primarily in a forward-backward motion, which 

allows the robot to step and propel itself forward. The shin aids in extending or 

retracting the leg, adjusting the height of each step, and ensuring that the robot can 

maintain stability across uneven surfaces. This motion mimics the mechanics of 

traditional quadrupedal robots, but is adapted for amphibious functionality. 

Swimming Underwater 

When the robot transitions to underwater swimming, the leg mechanism adapts 

to function similarly to flippers or fins. The thigh and shin move to create a sweeping 

motion through the water, generating thrust. This motion allows the robot to propel 

itself through the water while maintaining control over its orientation. The precise 

adjustments in leg movement help the robot efficiently change direction and maintain 

stability, similar to how aquatic animals use their limbs for swimming. 

In both modes, the combination of thigh and shin movements is critical for the 

robot’s ability to navigate complex environments, whether walking on the seabed or 

swimming in open water. The flexibility of this leg mechanism makes the robot 

highly adaptable and capable of performing diverse tasks in various aquatic and 

terrestrial environments. 
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4.1.3 Hydrodynamic Experiments and Data Collection 

To validate the hydrodynamic performance and control strategies of the 

amphibious robot, a series of experiments were conducted using a 

3-degree-of-freedom (3-DOF) towing tank. This advanced platform enables precise 

measurement of the robot’s behavior under different aquatic conditions by allowing 

controlled movement along the X, Y, and Z axes. As illustrated in Figure 4.3, these 

tests provide detailed insights into the robot's interaction with water and help 

optimize its propulsion and control systems [57]. 

 

 

Figure 4.3 Intelligent Towing System for Underwater Robot 

 

The image above shows a 3-degree-of-freedom (3-DOF) towing tank, which is 

a critical tool used for hydrodynamic experiments, particularly for underwater 

robotics. The towing tank allows for precise control over the movement of the robot 

or object being tested in three axes: X, Y, and Z. This enables researchers to simulate 

real-world conditions such as lateral movement, vertical displacement, and forward 

motion, providing accurate data on the hydrodynamic forces acting on the robot. 
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Key Features and Functionality: 

Three Degrees of Freedom: The system can move in the X, Y, and Z axes, 

offering full control over the trajectory and movement of the tested object. This is 

essential for simulating complex underwater maneuvers and understanding how the 

robot interacts with fluid forces from different angles. 

Precision Control: The gantry-like structure, combined with precise actuators, 

allows for controlled movement of the testing apparatus over the water surface and 

within the water. This precision is crucial for conducting repeatable experiments and 

collecting reliable hydrodynamic data. 

High-Resolution Data Collection: The system is typically integrated with 

sensors and force measurement devices to capture the forces acting on the robot in 

real-time. This data helps refine the robot’s design and control algorithms, ensuring 

better performance in underwater environments. 

Versatility: The towing tank is designed to accommodate various types of 

robots or models, making it a versatile tool for both small-scale and full-scale 

hydrodynamic testing. 

This 3-DOF towing system plays a vital role in validating force models and 

motion predictions by allowing controlled testing in a simulated aquatic environment. 

By utilizing this setup, researchers can optimize the robot's design for maximum 

efficiency and stability in both surface and underwater conditions [57]. 
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Figure 4.4. Experimental Setup and Data Analysis for Hydrodynamic Testing 

of Amphibious Robot. 

 

Towing Tests Using 3-DOF Towing Tank  

The towing tests conducted in the 3-DOF towing tank are a cornerstone of the 

hydrodynamic analysis. The towing tank, shown in Figure 4.4 (a) and Figure 4.4 (b), 

provides precise control over the robot's movement in three dimensions, simulating 

real-world underwater environments. The towing tank’s capability to move along the 

X, Y, and Z axes enables us to replicate the different forces the robot encounters, 

such as drag and lift, while it moves in water. 

The towing tests, as shown in Figure 4.4 (c), measure the resistance 

experienced by the robot when moving along the Y-axis. This test is critical in 

assessing the robot's lateral movement and the drag forces it encounters, helping to 

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619



94 

 

fine-tune the robot’s hydrodynamic shape for more efficient movement through water. 

The precise data collected from these tests directly inform the robot's design 

improvements and control algorithm refinements. 

Thruster Test 

In conjunction with the towing experiments, the performance of the robot's 

thrusters was also evaluated under controlled fluid conditions, as shown in Figure 4.4 

(d). Each thruster was tested to assess its thrust efficiency, crucial for both surface 

and underwater propulsion. The data from these tests, displayed in Figures 4.4 (f) and 

4.4 (g), illustrate the response of the robot's legs to different control inputs, such as 

sine-wave motions and step commands. These experiments help optimize the 

propulsion system, ensuring that the robot generates sufficient thrust while 

minimizing energy consumption. 

The single thruster test data in Figure 4.4 (h) provides further detail by 

isolating the performance of individual components, enabling targeted adjustments to 

ensure the propulsion system operates at peak efficiency. 

Integration of the Scaled Model and Full-Sized Testing 

Figure 4.4 (e) shows the use of a scaled model for preliminary testing. This 

approach facilitates quick and cost-effective design iterations before moving to 

full-scale tests. The scaled model helps identify potential issues early, ensuring 

optimal performance of the full-sized robot when subjected to towing and thruster 

tests. 
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4.2 GPR-Based Hydrodynamic Modeling 

The GPR-based hydrodynamic model developed in this study relies on data 

collected from force sensors and kinematic observations during the robot’s 

underwater testing. The main objective is to predict hydrodynamic forces acting on 

the robot’s body in real-time. These predictions are crucial for adaptive control in 

varying underwater conditions, ensuring the robot operates efficiently while 

minimizing energy consumption. 

4.2.1 GPR Model Architecture Consideration 

GPR-based Model 

GPR is a non-parametric, probabilistic model used to learn the dynamics of a 

system by capturing the relationships between input and output data. GPR is 

particularly effective for modeling continuous-time changes in forces as a function of 

sensor inputs while providing uncertainty estimates [59]. The model defines a 

distribution over functions and uses training data to update this distribution. The core 

of GPR lies in predicting a continuous function based on a set of observed data points 

[60]. 

Given a dataset               
  where    represents the input (e.g., sensor 

data), and    represents the output (e.g., hydrodynamic force), GPR models the 

relationship between inputs and outputs as a multivariate Gaussian distribution [61]: 

 

                       (4.1) 

 

where      is the mean function (typically assumed to be zero), and         

is the covariance (kernel) function that defines the similarity between points   and 

  . 
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The covariance function         plays a crucial role in determining the 

behavior of the model. A common choice is the RBF) kernel: 

 

 
          

      
        

 

   
  (4.2) 

 

where   
  is the signal variance, and   is the length scale, which controls how 

quickly the function can vary. 

The conditional distribution gives the GPR prediction for a new test point   is 

given by the conditional distribution: 

 

                       
       (4.3) 

 

where the mean and variance of the prediction are: 

 

                        
       (4.4) 

                                  
             (4.5) 

 

Here,        is the covariance matrix of the training inputs,   
  is the noise 

variance, and        represents the covariance between the test point   and the 

training points [62]. 

The advantage of GPR is its ability to provide not only a mean prediction but 

also a measure of uncertainty for each prediction. This is critical in dynamic 

environments, such as underwater robotics, where sensor noise and environmental 

variability can significantly affect the accuracy of force predictions [63]. 
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In this study, we optimize the hyperparameters of the kernel function (e.g.,   
  

,   and   
 ) using a maximum likelihood estimation approach, and the model is 

trained on real-time sensor data collected during robot movements. GPR's ability to 

model the underlying uncertainties in fluid-structure interactions makes it highly 

suitable for robust predictions in varying underwater environments [64]. 

Model Architecture 

 

 

Figure 4.5 Data-Driven GPR Model for Predicting Hydrodynamic Forces. 

 

Figure 4.5 Left: The robot's motion under different conditions is represented in 

time steps             , capturing key kinematic data. 

Middle: The GPR model processes the kinematic information and maps it to a latent 

vector  , incorporating uncertainty estimates to account for variations in the 

environment and the robot's movements.Right: The prediction of the hydrodynamic 

force trajectory    is generated by the GPR model based on the initial condition   , 

providing a probabilistic force prediction across the time steps             . 
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The proposed model architecture aims to predict the hydrodynamic forces 

acting on a quadruped robot using GPR based on a sequence of observational data 

[65]. The key components of the model are GPR and the covariance (kernel) 

function. The steps involved in the model architecture are as follows: 

Input Data: The input consists of a sequence of kinematic observations 

          , each representing motion parameters sampled at uniform time intervals. 

These parameters include two joint angles and two linear velocities, providing a 

comprehensive description of the robot's movement. 

Covariance (Kernel) Function: The GPR model uses a kernel function to learn 

the relationship between the inputs and the hydrodynamic forces. The covariance 

function         defines the similarity between data points   and   , crucial for 

predicting forces. The most used kernel in this study is the RBF kernel, given by: 

 

 
          

      
        

 

   
  (4.6) 

 

where   
  is the signal variance and   is the length scale. This kernel allows 

the GPR model to capture both smooth and rapidly changing dynamics, which are 

critical in underwater environments. 

Prediction Framework: The GPR model predicts the forces      acting on the 

robot at any time  , based on the input sequence of observations. Given a test input 

  , the model provides a Gaussian distribution over possible values of the force, with 

mean       and variance       . 

Model Training and Hyperparameter Optimization: The GPR model's 

hyperparameters, including the signal variance   
 , length scale  , and noise variance 
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  , are optimized using MLE. The training data consists of real-time sensor 

measurements from the robot's movements in water, and the hyperparameter tuning 

ensures that the model accurately captures the underlying dynamics. 

Prediction: The output of the GPR model is a set of predicted force vectors 

             , where   is the prediction length, spanning various time intervals. 

The model primarily predicts forces in the   and   directions, as forces in the 

 -axis (due to gravity and buoyancy) are assumed to remain constant. 

 

The GPR-based architecture provides robust and adaptive force predictions by 

leveraging the uncertainty quantification inherent in Gaussian Processes. Unlike 

traditional machine learning models that offer point estimates, the GPR model offers 

a distribution of possible outcomes, making it well-suited for underwater 

environments where sensor noise and dynamic fluid conditions can introduce 

significant uncertainty. 

4.2.2 Model Training and Dataset 

The dataset for training the GPR model was collected through detailed towing 

tests and real-time force sensor measurements, as discussed in Section 4.1. The data 

includes various robot configurations, movements, and environmental conditions. 

Each data point consists of: 

Input: Robot's joint angles, velocities, and sensor readings. 

Output: Hydrodynamic force vectors in x, y, and z axes. 

The GPR model is trained using this dataset to minimize prediction error while 

accounting for uncertainty in fluid dynamics. By utilizing an optimized RBF kernel, 

the model ensures smooth and reliable predictions, even in dynamic or turbulent 

underwater conditions. 
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The model's hyperparameters (length scale, noise variance, etc.) were 

optimized using a MLE approach. During testing, the model demonstrated a high 

level of accuracy in predicting forces in real-time. 

Learning Objective 

The learning objective of the GPR model is to minimize the prediction error 

between the predicted force vectors and the ground truth measurements while 

accounting for uncertainty. The process involves the following steps: 

Dataset Preparation: 

The dataset consists of sequences of observation data along with corresponding 

force measurements. The data is divided into training, validation, and test sets. 

Formally, the dataset can be represented as: 

 

       
 
   

 
     

 
   

 
       

 
   

 
  
   

 
 (4.7) 

 

where   
 
 is the predicted force at time step   for trajectory  ,   

 
 is the 

corresponding input observation,   is the total number of time steps per trajectory, 

and   is the number of trajectories in the dataset. 

Loss Function: 

In GPR, the model outputs a mean prediction along with a variance estimate 

for the force vector at each time step. The loss function takes into account both the 

prediction error and the uncertainty estimate. The NLML is commonly used as the 

objective function to optimize GPR models, which maximizes the likelihood of the 

observed data given the predicted mean and covariance. 

The NLML loss function is formulated as: 
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        (4.8) 

 

where   represents the observed forces,    is the covariance matrix 

parameterized by   (which includes the signal variance   
 , length scale  , and 

noise variance   
 , and   is the number of data points. Minimizing this function 

allows the model to fit the data while properly accounting for uncertainty. 

Backpropagation and Gradient Calculation:  

Unlike traditional neural networks, GPR uses analytical gradients for 

hyperparameter optimization. The gradient of the negative log marginal likelihood 

concerning the hyperparameters   is computed to update the kernel's parameters: 

 

      

  
 
 

 
    

  
   
  

  
    

 

 
     

  
   
  

  (4,9) 

 

This gradient allows for backpropagation through the kernel's hyperparameters, 

ensuring that the model can adjust the signal variance, length scale, and noise 

variance to improve predictions. 

Optimization: 

Hyperparameter optimization is typically carried out using gradient-based 

optimization algorithms such as the Adam optimizer or L-BFGS. These methods 

update the hyperparameters of the covariance function by minimizing the NLML 

loss. During training, the model adjusts the kernel parameters iteratively to maximize 

the likelihood of the observed data while minimizing prediction uncertainty. 
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The overall objective of the GPR-based model is to minimize the prediction 

error as well as ensure that the uncertainty estimates are well-calibrated, which is 

particularly crucial in dynamic environments like underwater robotics. 

Experiments 

 

Figure 4.6 The amphibious robot's posture variations underwater result in 

different hydrodynamic coefficients  

 

Setup： 

To train and evaluate our GPR-based hydrodynamic force prediction model, 

we conducted a series of controlled towing experiments [66]. These experiments 

were designed to provide a rich dataset for training, validation, and testing, ensuring 

the accurate modeling of the robot’s interactions with the surrounding fluid. The key 

components of the experimental setup are described below: 

Pool Environment: 

All experiments were conducted in a controlled pool environment, ensuring 

repeatable and consistent hydrodynamic conditions. The water temperature and depth 

were maintained constant throughout the experiments to avoid external variability in 

fluid dynamics. 

Towing Mechanism: 
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A specialized towing mechanism was utilized, capable of towing the robot at 

different speeds and directions. The towing speeds varied from 0.2 m/s to 0.5 m/s, 

with increments of 0.1 m/s. The robot was towed in three main directions: along the 

x-axis, y-axis, and diagonally at 45 degrees (xy). These variations enabled the capture 

of diverse motion scenarios, which are essential for training the GPR model. 

Force Sensors:  

High-precision force sensors were installed on the robot to capture 

hydrodynamic forces acting on the robot in real-time. The sensors recorded force data 

along the x, y, and z axes. Since the GPR model is focused on predicting forces in the 

x and y directions (with z-axis forces assumed constant), this detailed sensor data 

provides a comprehensive training dataset. 

Robot Configuration: 

To simulate different locomotion scenarios, the quadruped robot’s limb 

configurations were varied by adjustment of the joint angles. The robot was tested 

under a range of movement patterns, providing sufficient input diversity for the GPR 

model to learn fluid-structure interactions effectively. 

The dataset derived from these experiments contains several kinematic 

observations (joint angles and velocities) paired with corresponding force 

measurements. This comprehensive dataset is critical for training the GPR model to 

predict hydrodynamic forces while quantifying the uncertainty in the predictions. 

Note: batch refers to the batch size during the training stage 

 

Table 4.1 Input and output formats of the Datasets 

Expr. Input Output 

Expr1 Condition x: [batch, 100, 4] and Initial:    [batch, 2] [batch, 100, 

2] 
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Expr2 Condition x: [batch, 50, 4] and Initial:     [batch, 2] [batch, 50, 2] 

Expr3 Condition x: [batch, 50, 4] and Initial:     [batch, 2] [batch, 50, 2] 

 

Dataset 

The dataset was collected during the towing experiments described. These 

experiments were specifically designed to measure the forces acting on the quadruped 

robot across 192 distinct towing speeds and joint configurations [67][68]. 

From Table , the dataset is augmented in the following ways: 

Expr1: This experiment extends the time series to 100-time steps, representing 

sequential data of the quadruped robot maintaining a constant attitude angle. The 

GPR model is tasked with predicting the forces in two axial directions (x and y) over 

these 100-time steps. The focus is on testing the GPR’s ability to model the 

hydrodynamic forces under static conditions. 

Expr2: This experiment highlights the comparative predictive capabilities of 

GPR models under variable conditions for online learning. The temporal length of 

each condition is reduced to 10-time steps, randomly selected from the dataset. 

Additionally, a condition variable is concatenated to the input data, varying across 

five distinct scenarios. This setup allows the GPR model to generalize across 

different environmental conditions, making it more versatile in predicting forces in 

dynamic contexts. 

Expr3: This experiment addresses the increased complexity of dynamic 

conditions. Random perturbations are introduced at each time step, with magnitudes 

equal to 10% of the standard deviation of the respective force values. Similar to 

Expr2, the trajectories are resampled across 192 distinct conditions to test how well 

the GPR model adapts to noisy and dynamically changing scenarios. This experiment 
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is key to understanding the robustness of GPR in environments with variable and 

unpredictable conditions. 

Model Prediction Performance 

In the following experiments, we evaluate the performance of different GPR 

models in predicting dynamic hydrodynamic forces on a quadruped robot. We 

compare the model’s predictions with the ground truth using RMSE and MAE. 

Several kernel configurations, including the RBF and Matern kernels, are tested, 

along with the addition of different noise levels and varying training data conditions 

[69]. 

Note: The suffix -S indicates static conditions in Expr1, -C denotes conditions 

that change over time in Expr2, and -N represents noisy and changing conditions in 

Expr3. The * symbol is used to highlight the best-performing models. 

 

Table 4.2 Performance on Different Conditions 

Models MAE-S RMSE-S MAE-C RMSE-C MAE-N RMSE-N 

GPR-RBF 9.8e-3 4.0e-3 4.1e-3 5.0e-3 5.3 6.8 

GPR-Mate

rn 

8.3e-3 3.9e-3 3.5e-3 2.8e-3 4.0 5.3 

GPR-RBF 

(Noisy) 

5.4e-3 6.2e-4 2.8e-3 1.5e-3 2.8 4.9 

GPR-Mate

rn (Noisy) 

3.7e-4* 5.8e-4* 2.4e-4* 5.1e-5* 2.0* 4.0* 

 

Analysis 

From Table 2, GPR models with different kernel choices perform well under 

various dynamic conditions. The Matern kernel generally outperforms the RBF 
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kernel, especially when the data includes variability and noise. This is likely due to 

the Matern kernel’s ability to model rougher functions and better capture the 

underlying complexities of the hydrodynamic forces. 

In scenarios with noisy conditions (as in Expr3), the GPR-Matern model 

demonstrates significantly better performance, with errors as low as 4.0, making it 

highly suitable for deployment in real-world underwater environments where sensor 

noise is prevalent. 

Additionally, GPR’s uncertainty quantification provides a distribution of 

possible outcomes, which proves advantageous in noisy environments. The 

GPR-Matern (Noisy) model providing the most accurate and robust predictions. 
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Figure 4.7 illustrates the model prediction performance under different 

conditions and time sequence lengths: 

(a) and (b) present the static force and conditions over time in Expr1. 

(c) and (d) illustrate the change in force and conditions over time in Expr2. 

(e) and (f) depict the noisy force dynamics and conditions over time in Expr3. 
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In (a), (c), and (e), the dotted lines represent the model prediction trajectories. 

 

These visualizations demonstrate the model's ability to accurately track the 

actual forces over time, even under varying and noisy conditions. The close 

alignment between the predicted forces (dotted lines) and the actual measurements 

confirms the effectiveness of the GPR-Matern model. 

4.2.3 Trajectory Tracking and Performance Assessing 

Building upon the hydrodynamic modeling presented in earlier sections and 

incorporating the thruster system, we designed an experiment to evaluate the 

underwater robot’s ability to perform precise trajectory tracking. Specifically, this 

experiment aimed to test the robot's ability to follow a pre-defined 8-shaped 

trajectory along the Z-axis (depth) and X-axis (horizontal motion). This type of 

maneuver is crucial for underwater applications, such as environmental surveying, 

obstacle avoidance, and efficient path planning [70][71]. 

 

Figure 4.8 Trajectory in the Shape of 8 on the X-Z Plane 
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IMU-Based Odometry and Numerical Integration 

The successful tracking of underwater trajectories relies heavily on precise 

localization and movement estimation. To achieve this, the onboard IMU mounted on 

the robot captured its dynamic movements. The IMU provided high-frequency 

measurements, including linear acceleration and angular velocity, which were 

employed to estimate the robot's position through numerical integration. 

Odometry estimation involved integrating the IMU's linear acceleration over 

time to compute velocity, followed by integrating velocity to determine displacement 

along the X and Z axes. Sensor fusion and bias compensation were used to improve 

the accuracy of the numerical integration, reducing the cumulative drift commonly 

associated with double integration of IMU data. 

This method ensured that even in complex underwater environments, with 

limited access to external positioning systems, the robot could depend on its internal 

sensors to approximate its position and follow the desired trajectory [72]. 

Trajectory Execution via Predictive Control 

For executing the 8-shaped trajectory, the thrusters were controlled using an 

MPC framework. MPC is particularly effective in underwater environments where 

external forces, such as water currents or turbulence, can affect stability. By 

incorporating the GPR-derived hydrodynamic models, the MPC controller could 

predict the forces and moments acting on the robot, adjust thruster output 

dynamically, and minimize the tracking error. 

The thruster commands were generated to ensure a smooth path, with real-time 

adjustments based on the deviation between the estimated position (using IMU-based 

odometry) and the desired trajectory. The MPC utilized a cost function that 
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prioritized maintaining the planned trajectory, minimizing energy consumption, and 

ensuring stability during rapid changes in direction. 

Integrated Sensors for Enhanced Control 

The IMU data was combined with input from depth gauges to provide a 

comprehensive estimate of the robot’s state. Depth sensors ensured that the Z-axis 

tracking maintained high accuracy, while the thrusters ensured precise movement in 

the X-axis. By combining multiple sensory inputs, the control system effectively 

minimized disturbances and stabilized the robot’s movement, even during transitions 

between different trajectory segments. 

Trajectory Tracking Results 

 

Figure 4.9 Comparison of Actual and Desired Trajectories for Different Speed 

Modes. 
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Figure 4.10 Velocity Profiles in X-Z Plane Compared to Desired Trajectories. 

 

Trajectory Comparison 

Figure 4.9 illustrates the comparison between the actual trajectory and the 

desired trajectory during underwater motion. Specifically, the target trajectory forms 

a figure-eight pattern in both the x-axis and z-axis. The solid blue line represents the 

desired trajectory (Baseline), while the colored line represents the actual path tracked 

by the underwater robot (Tracking Line). Each subplot corresponds to a different 

speed mode. The closeness of the two lines in all cases indicates the robot's ability to 

accurately follow the desired path, demonstrating effective trajectory tracking even 

under dynamic conditions. 

Velocity Comparison in x and z Directions 

Figure 4.10 presents the velocity profiles for both the x and z directions over 

time. On the left side, the velocity along the x-axis is compared against the desired 

velocity. On the right side, the z-axis velocities are shown in a similar manner. The 

solid lines indicate the desired velocities (v(t) baseline), while the dashed lines show 

the actual velocities (v(t) trajectory) recorded during the experiment. The figure 
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demonstrates the alignment between the actual and expected velocities, and each row 

corresponds to a different operating speed. 

Speed Mode Analysis and Performance Evaluation 

The results in Table 4.2 show an increase in tracking error with higher speeds, 

emphasizing that the control system achieves high precision at lower speeds, with an 

average error of 0.069 in Speed Mode 1. However, as speed increases, the error 

metrics reveal a decline in tracking precision, with Speed Mode 4 showing the 

highest errors (average of 0.216), indicating the system's increasing difficulty in 

maintaining tracking accuracy at elevated velocities. 

 

Table 4.3: Tracking Errors by Speed Mode 

Speed Mode Maximum Error Minimum Error Average Error 

Speed Mode 1 0.074 0.064 0.069 

Speed Mode 2 0.158 0.124 0.141 

Speed Mode 3 0.205 0.148 0.177 

Speed Mode 4 0.242 0.190 0.216 

 

Analysis of Factors Contributing to Increased Tracking Error at Higher 

Speeds 

The rise in tracking error at higher speeds is influenced by several factors: 

Amplification of Noise in Control Outputs: Higher velocities require rapid, 

high-magnitude thruster outputs to achieve desired adjustments. This results in 

amplified noise within control signals, which can destabilize the robot’s trajectory 

and increase deviation from the target path. 
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Computational Constraints of MPC: At higher speeds, the MPC must solve the 

optimization problem within shorter intervals, potentially straining its capacity to 

produce optimal solutions. In cases where the MPC cannot fully converge on a 

solution, the control output may lack precision, exacerbating trajectory deviations. 

Sensor Noise and Integration Drift: Rapid movements and vibrations at 

elevated speeds intensify sensor noise, increasing localization errors. The 

accumulated drift in estimated position, particularly at higher speeds, makes 

trajectory tracking more challenging. 

Increased Hydrodynamic Disturbances: Higher velocities result in intensified 

hydrodynamic forces, including drag and turbulence. Although MPC compensates for 

these forces, disturbances at higher speeds may exceed the model's predictive 

capabilities. 

Analysis and Key Observations 

Trajectory Accuracy: The tracking accuracy for the figure-eight trajectory 

reflects the control system’s ability to compensate for disturbances, achieving high 

accuracy despite slight deviations due to hydrodynamic disturbances and sensor 

noise. 

Velocity Alignment: The alignment between actual and desired velocities 

across speed modes demonstrates the efficiency of the control algorithm in 

maintaining consistent speeds, crucial for both navigation precision and energy 

efficiency. 

MPC Advantage: Leveraging MPC enabled the robot to anticipate and adjust 

for external disturbances in real time, ensuring effective depth control with minimal 

error. The integration of GPR-based hydrodynamic models empowered the robot to 

proactively adapt to changing underwater conditions. 
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Dynamic Response: The GPR-guided thruster propulsion system balanced 

hydrodynamic forces, particularly important during sharp turns in the 8-shaped 

trajectory, where dynamic forces presented the greatest challenge. 

Sensor Fusion for Robustness: Integrating IMU data with depth sensors 

enhanced localization robustness, crucial for accurate trajectory tracking in 

underwater conditions. 

Applications and Future Directions 

The trajectory tracking experiment demonstrates the robustness of the 

data-driven hydrodynamic models within the control framework, suggesting several 

promising applications: 

Autonomous Navigation: The robot’s ability to follow complex trajectories 

makes it suitable for autonomous underwater tasks, including inspections, mapping, 

and surveys. 

Optimized Propulsion: Feedback from tracking performance provides insights 

for further optimizing propulsion. Adjustments to control gains, improved sensor 

fusion, and advanced predictive models could refine the control strategies, enhancing 

efficiency. 

These findings establish a foundation for future developments in underwater 

robotics, especially in trajectory accuracy and energy efficiency improvements for 

dynamic aquatic environments. 
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4.3 Stability and Control During Amphibious Robot Transitions 

The land-sea transition is a critical phase for amphibious robots, requiring 

advanced locomotion mechanisms and control strategies to ensure stability and 

efficiency. As amphibious robots move from land to water, they encounter unique 

challenges that arise from the need to adapt their propulsion and control systems to 

drastically changing environments. This transition involves navigating a complex 

interplay of environmental factors, such as bottom currents, coastal waves, and 

bottom return currents, which significantly affect the robot's stability and 

maneuverability. The simultaneous operation of legs and propellers is pivotal for 

overcoming these challenges, enabling the robot to maintain balance and adapt to 

dynamic forces. 

 

 

Figure 4.11 Transition Phases of an Amphibious Robot: Land to Water 

Movement 
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4.3.1 Advantages of Amphibious Robots in Land-Sea Transitions 

Amphibious robots, leveraging the complementary functionality of legs and 

propellers, exhibit distinct advantages in overcoming challenges associated with 

land-sea transitions. These advantages enable robust performance in dynamic coastal 

environments, addressing key scenarios such as bottom currents, coastal waves, and 

rip currents. 

Overcoming Bottom Currents 

Bottom currents exert destabilizing horizontal forces, especially over uneven seabeds. 

Amphibious robots counter these challenges through hybrid locomotion and 

advanced control. Legs provide traction and stability on irregular surfaces, preventing 

slippage, while propellers effectively counteract lateral forces, ensuring precise 

trajectory control. 

IMUs and sensors integrated with MPC frameworks predict and adjust for 

current fluctuations, dynamically coordinating propulsion and leg movement. This 

synergy minimizes destabilization risks, enabling the robot to maintain trajectory 

accuracy under varying hydrodynamic pressures. 

Resilience Against Coastal Waves 

Coastal waves introduce oscillatory forces that can disrupt robot stability and 

positioning. The use of legs for anchoring and propellers for counteracting horizontal 

forces ensures consistent movement and vertical stability. 

Adaptive control strategies driven by IMUs and force sensors adjust the robot’s 

motion in response to wave dynamics, maintaining precision during operation. By 

accounting for wave-induced pressure variations, these systems ensure stability and 

trajectory fidelity even in irregular conditions. 
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Mitigating Rip Currents 

Rip currents pose significant challenges due to their multi-directional forces. To 

maintain stability, robots employ sensor fusion techniques combining inputs from 

IMUs and other sensors. This integration enables accurate evaluation of 

hydrodynamic forces and real-time motion adjustments. 

MPC frameworks anticipate and compensate for fluctuations, ensuring stability 

and precision in complex environments. Legs establish a stable foundation on shifting 

seabeds, while propellers counteract reverse currents, enabling seamless navigation 

through turbulent conditions. 

 

4.3.2 Limitations in Current Amphibious Robots and Challenges in 

Land-Sea Transitions 

Despite their advantages, amphibious robots face significant limitations, 

particularly in simulation platforms and multi-modal control algorithms. 

Limited Simulation Capabilities of Experimental Platforms 

Existing experimental platforms, such as towing tanks, fail to replicate the full 

complexity of land-to-water transitions. These platforms are unable to accurately 

simulate bottom currents, coastal waves, and rip currents, which play a critical role in 

destabilizing robots. 

Moreover, the transition phase, involving overlapping ground reaction forces 

and buoyancy, remains underexplored in these controlled environments. This lack of 

realistic testing conditions limits the validation of algorithms and locomotion 

mechanisms under dynamic, real-world scenarios. 

Limitations of Multi-Modal Transition Control Algorithms 

Current algorithms excel in distinct terrestrial or aquatic environments but struggle 
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during transitions. The inability to manage simultaneous changes in ground support 

and hydrodynamic forces results in instability and inefficiencies. 

MPC and similar approaches often lack real-time adaptability and precise 

synchronization between locomotion modes, leading to energy wastage and reduced 

operational endurance. The absence of energy-efficient algorithms further 

exacerbates these challenges, particularly during transitions involving strong currents 

or waves. 

 

4.3.3 Future Research Directions and Theoretical Optimization 

Approaches 

Addressing the identified limitations requires advancements in experimental 

platforms and multi-modal control systems, supported by theoretical innovations. 

Advanced Experimental Platforms 

To overcome current limitations, modular testing platforms incorporating wave 

generators, sediment tanks, and current simulators are proposed. These platforms can 

replicate real-world coastal dynamics, allowing researchers to validate algorithms and 

mechanisms under controlled yet realistic conditions. 

Hybrid simulation environments integrating land and water features will enable 

the study of transitions with realistic terrain and hydrodynamic interactions. 

Computational models combining CFD and FEA can complement physical testing, 

providing insights into forces and stability during transitions. 

Theoretical Advances in Multi-Modal Transition Control 

Hybrid control frameworks integrating legged locomotion and thruster-based 

propulsion can address dynamic force redistribution during transitions. Bio-inspired 
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locomotion patterns, modeled through neural networks, offer promising strategies for 

smooth coordination between modes. 

Reinforcement learning-based optimization algorithms can enhance energy 

efficiency by balancing power allocation during transitions. Integrating data from 

IMUs, sonar, and visual sensors into a unified control system enables real-time 

adaptability to changing environments. 

Scaling and Validation 

Scaled prototypes can accelerate iterative testing, while field trials in natural coastal 

environments validate the scalability of theoretical models. Computational studies of 

scaling complexities will identify challenges in large-scale deployment, bridging the 

gap between theoretical advancements and real-world applications. 

 

Conclusions to Chapter 4 

Chapter 4 presented a comprehensive exploration into the development, 

validation, and implementation of a data-driven hydrodynamic model for an 

amphibious robot’s underwater navigation. Key elements, including GPR-based 

hydrodynamic modeling, provided insights into refining underwater trajectory 

tracking accuracy and propulsion efficiency. The integration of advanced sensors, 

such as IMUs and force sensors, facilitated precise measurements and allowed for 

in-depth analysis of the robot's response to hydrodynamic forces under various 

conditions. 

Our experiments highlighted several critical findings: 

1.Data-Driven Hydrodynamic Modeling: Utilizing GPR models significantly 

enhanced the predictive accuracy of hydrodynamic forces experienced by the robot in 

water, especially in environments with complex flow dynamics. The data-driven 
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approach provided robust, adaptive models that improved control fidelity, enabling 

the robot to maintain stability and maneuverability. 

2.MPC for Enhanced Trajectory Control: The predictive capabilities of MPC, 

paired with GPR-derived hydrodynamic models, allowed for real-time adjustment to 

the control outputs, effectively compensating for underwater disturbances such as 

currents and turbulence. This proved especially beneficial for tracking intricate 

trajectories, such as the 8-shaped pattern, with minimal error, demonstrating MPC's 

advantage over traditional control algorithms like PID in dynamic underwater 

conditions. 

3.Performance Evaluation across Speed Modes: Analysis revealed that while 

trajectory tracking accuracy was high at lower speeds, tracking errors increased with 

higher speeds due to amplified noise, computational demands on the MPC, and 

intensified hydrodynamic disturbances. This insight underscores the importance of 

optimizing control strategies for high-speed operations, potentially by incorporating 

more advanced filtering techniques or adaptive algorithms. 

4.Enhanced Robustness through Sensor Fusion: Integrating IMU data with 

depth sensors enabled reliable odometry, reducing cumulative drift and providing 

precise localization for trajectory tracking. This robust sensor fusion framework, 

essential for navigation in complex aquatic environments, was critical in maintaining 

trajectory accuracy across variable underwater conditions. 

5.Challenges in Land-Sea Transitions: While the focus was predominantly on 

underwater hydrodynamics, a critical area of future development lies in addressing 

the challenges of land-sea transitions for amphibious robots. This transitional phase 

introduces unique stability challenges due to the interplay of bottom currents, coastal 

waves, and bottom return currents. These factors necessitate advanced locomotion 
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mechanisms and control strategies, leveraging the combined operation of legs and 

propellers to achieve seamless transitions between land and water environments. 

6.Future Directions: The land-sea transition presents an interdisciplinary 

research challenge, requiring further refinement in robot design, adaptive control 

systems, and advanced simulation tools. Insights from the current work provide a 

foundation for future investigations into ensuring stability during transitions, 

optimizing energy efficiency, and enhancing the overall versatility of amphibious 

robots for real-world applications.  
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Conclusions 

 

The evolution of R&D issues has provided significant advancements in the design of 

robots operating in multiple environments. One of the most challenging yet promising 

fields is the development of amphibious robots—robots that can transition seamlessly 

between surface and underwater environments. So, the current dissertation thesis can 

be considered as some scientific questions that should be overcome in the 

implementation process and expressed below in the conclusions. 

1. The hardware, software, and metrological provision of drones and their launch 

platforms were collectively and consistently developed and studied. This was 

based on established metrological and operational characteristics combined with 

control methods, leading to improved accuracy and reduced uncertainty in the 

obtained results. 

2. To provide real-time control for amphibious robots, the combination of Nvidia 

Jetson, Pixhawk, ROS, and advanced sensor fusion techniques ensured that 

these robots could operate efficiently, sometimes meeting the diverse demands 

of aquatic robotics. The proposed integrated approach develops autonomous, 

adaptable, and resilient robotic systems capable of addressing complex 

challenges in water environments. 

3. The efficient operation of underwater robots is based on a developed test 

platform ensuring dynamic performance measurements for repeatable samples 

and experiments and improving the accuracy, stability, and uniformity of 

measurements by incorporating advanced control systems and modern methods, 

for example, Inertial Measurement Units (IMU) and GNS-Methods.The 

considered platform adapts to the degradation of thruster performance through 
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adaptive sliding controllers showcasing its superiority over existing methods. 

The studied proposed test platform paradigm offers a promising approach for 

underwater dynamics measurement providing more accurate and reliable 

measurements in various applications for advancing underwater research and 

technology. Dynamic adaptation (within a sliding mode) based on control 

obtained by the direct measurements of the output signals of a first-order 

low-pass filter containing the discontinuous control with the specially adapted 

magnitude value in the input. 

4. In real-time control and navigation systems for underwater robots, filtering 

techniques play a crucial role in ensuring accurate and stable orientation 

estimates from sensor data. This study explored two primary filtering 

approaches—Complementary Filtering and Kalman Filtering—focusing on 

their application to IMU data processing. Comparative analysis revealed that the 

complementary filter algorithm exhibited lower noise levels and higher 

synchronization rates in attitude computation. The complementary filter 

generates posture information relative to the startup position and dynamically 

adjusts to changes in orientation. This adaptability ensures robust responses to 

irregular alterations in the IMU's operational environment, providing stable 

posture signals with significantly reduced noise. Additionally, the 

complementary filter demonstrated superior recovery performance following 

disturbances, highlighting its efficacy in enhancing precision and reliability in 

dynamic and unpredictable conditions. 

5. MPC has proven highly effective for depth control in underwater robots. By 

leveraging real-time sensor data and predictive modeling, MPC anticipates 

system behavior and environmental changes, enabling precise adjustments to 
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maintain target depth. Its capability to predict disturbances and dynamically 

update control inputs ensures stability even under varying hydrodynamic forces, 

such as currents or turbulence. Moreover, MPC's flexibility allows for the 

integration of multiple constraints, optimizing both energy efficiency and 

response speed. This makes it an indispensable approach for achieving reliable 

depth regulation in complex underwater environments. 

6. The second application of novel machine learning methodology in the 

considered work is to predict water levels, relying on data collected from force 

sensors and kinematic observations during the robot’s underwater testing. GPR 

(Ground Penetrating Radar) is a non-parametric, probabilistic model used to 

learn the dynamics of a system by capturing the relationships between input and 

output data. GPR is particularly effective for modeling continuous-time changes 

in forces as a function of sensor inputs while providing uncertainty estimates. 

The model defines a distribution over functions and uses training data to update 

this distribution. The core of GPR lies in predicting a continuous function based 

on a set of observed data points. In scenarios with noisy conditions, the 

GPR-Matern model demonstrates significantly better performance, with errors 

as low as 4.0, making it highly suitable for deployment in real-world underwater 

environments where sensor noise is prevalent. 

7. Experimental verification of the current provisions of paragraphs 1-6, which in 

particular related to the filtration results and dynamics of the environmental 

impact confirmed the correctness of the involvement of several novel machine 

learning methods which enhance complex implementation of hardware, 

software, and metrological support at the design stage of drones 
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8. Future Challenges and Transition Dynamics: While significant progress has 

been achieved in underwater trajectory tracking and control, the transition 

between land and water environments presents unique challenges. Addressing 

the stability of amphibious robots during land-sea transitions is critical for future 

research. This includes counteracting the effects of bottom currents, coastal 

waves, and bottom return currents. Such transitions require the simultaneous and 

coordinated operation of legs and thrusters, alongside the development of 

advanced adaptive control strategies. Overcoming these challenges will 

significantly enhance the robot's versatility, enabling it to operate seamlessly 

across diverse environmental conditions. 
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APPENDIXES 

Demo 

 

Paper 

 

Code 

1.Robot underlying control configuration 

1. #!/usr/bin/env python3 

2.  

3. ####################rosrun中防止引用自定义类 无法找到#################### 

4. import sys 

5. import os 

6. # 确保当前脚本目录在 sys.path 中 

7. script_dir = os.path.dirname(__file__) 

8. if script_dir not in sys.path: 

9.     sys.path.append(script_dir) 

10.  

11.  

12. import os 

13. import threading 

14. import time 

15. from ctypes import * 

16. import ctypes 

17. from threading import Thread 

18. import csv 
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19. import binascii 

20. import datetime 

21. import rospy 

22. from std_msgs.msg import UInt8  # 用于接收 ID 

23. from motion_control.msg import MotorCommandMsg 

24. from motion_control.msg import PropellerCommandMsg  

25. from std_msgs.msg import String 

26. from check_ethernet import NetworkInterfaceChecker   

27.  

28.  

29. VCI_USBCAN2 = 4 

30. STATUS_OK = 1 

31. CAN_POS = 0     # 0: CAN1    1: CAN2 

32. # 0 表示左旋， 1表示右旋 

33. vis = [0, 0, 1, 1, 1, 1, 1, 1] 

34. ID = [0x0360, 0x0361, 0x035F, 0x0364, 0x0313, 0x0314, 0x303, 0x304] 

35.  

36.  

37. class VCI_INIT_CONFIG(Structure): 

38.     _fields_ = [("AccCode", c_uint), 

39.                 ("AccMask", c_uint), 

40.                 ("Reserved", c_uint), 

41.                 ("Filter", c_ubyte), 

42.                 ("Timing0", c_ubyte), 

43.                 ("Timing1", c_ubyte), 

44.                 ("Mode", c_ubyte)] 

45.  

46.  

47. class VCI_CAN_OBJ(Structure): 

48.     _fields_ = [("ID", c_uint), 

49.                 ("TimeStamp", c_uint), 

50.                 ("TimeFlag", c_ubyte), 

51.                 ("SendType", c_ubyte), 

52.                 ("RemoteFlag", c_ubyte), 

53.                 ("ExternFlag", c_ubyte), 

54.                 ("DataLen", c_ubyte), 

55.                 ("Data", c_ubyte * 8), 

56.                 ("Reserved", c_ubyte * 3)] 
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57.  

58.  

59.  

60. # Construct the path to the shared library 

61. lib_path = os.path.join(script_dir, '..', 'lib', 'arm_libcontrolcan.so'

) 

62.  

63. # Load the shared library 

64. canDLL = cdll.LoadLibrary(lib_path) 

65.  

66. # CanDLLName = 'devel/lib/libcontrolcan.so'  # 把 DLL放到对应的目录下 

67. # lib_path = os.getcwd() + "\\function\\libs\\ControlCAN.dll" 

68. # # canDLL = windll.LoadLibrary('../libs/ControlCAN.dll') 

69. # canDLL = ctypes.cdll.LoadLibrary(CanDLLName) 

70.  

71. ret = canDLL.VCI_OpenDevice(VCI_USBCAN2, 0, 0) 

72. if ret == STATUS_OK: 

73.     print('调用 VCI_OpenDevice成功\r\n') 

74. else: 

75.     print('调用 VCI_OpenDevice出错\r\n') 

76.  

77. # 初始 0通道 

78. vci_initconfig = VCI_INIT_CONFIG(0x80000000, 0xFFFFFFFF, 0, 0, 0x00, 0x

1C, 0)  # 波特率 500k，正常模式 

79. ret = canDLL.VCI_InitCAN(VCI_USBCAN2, 0, 0, byref(vci_initconfig)) 

80. if ret == STATUS_OK: 

81.     print('调用 VCI_InitCAN1成功\r\n') 

82. else: 

83.     print('调用 VCI_InitCAN1出错\r\n') 

84.  

85. ret = canDLL.VCI_StartCAN(VCI_USBCAN2, 0, 0) 

86. if ret == STATUS_OK: 

87.     print('调用 VCI_StartCAN1成功\r\n') 

88. else: 

89.     print('调用 VCI_StartCAN1出错\r\n') 

90.  

91. # 初始 1通道 

92. ret = canDLL.VCI_InitCAN(VCI_USBCAN2, 0, 1, byref(vci_initconfig)) 
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93. if ret == STATUS_OK: 

94.     print('调用 VCI_InitCAN2 成功\r\n') 

95. else: 

96.     print('调用 VCI_InitCAN2 出错\r\n') 

97.  

98. ret = canDLL.VCI_StartCAN(VCI_USBCAN2, 0, 1) 

99. if ret == STATUS_OK: 

100.     print('调用 VCI_StartCAN2 成功\r\n') 

101. else: 

102.     print('调用 VCI_StartCAN2 出错\r\n') 

103.  

104. # 接收结构体数组类 

105. class VCI_CAN_OBJ_ARRAY(Structure): 

106.     _fields_ = [('SIZE', ctypes.c_uint16), ('STRUCT_ARRAY', ctypes.P

OINTER(VCI_CAN_OBJ))] 

107.  

108.     def __init__(self, num_of_structs): 

109.         self.STRUCT_ARRAY = ctypes.cast((VCI_CAN_OBJ * num_of_struct

s)(), ctypes.POINTER(VCI_CAN_OBJ))  # 结构体数组 

110.         self.SIZE = num_of_structs  # 结构体长度 

111.         self.ADDR = self.STRUCT_ARRAY[0]  # 结构体数组地址  byref()转 c

地址 

112.  

113.  

114. def getRequest(form): 

115.     ubyte_array = c_ubyte * 8 

116.     if form == 11:      # 查故障 

117.         return ubyte_array(0x45, 0x46, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00) 

118.     elif form == 12:    # 查速度 

119.         return ubyte_array(0x51, 0x56, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00) 

120.     elif form == 13:    # 查电流 

121.         return ubyte_array(0x51, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00) 

122.     elif form == 14:    # 查温度 

123.         return ubyte_array(0x51, 0x54, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00) 
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124.  

125.  

126. # 获取速度的命令数据 

127. def getVelocityM(v): 

128.     ubyte_array = c_ubyte * 8 

129.     if v >= 0: 

130.         return ubyte_array(0x54, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00,

 v & 0xFF) 

131.     else: 

132.         return ubyte_array(0x54, 0x43, 0x00, 0x00, 0xFF, 0xFF, 0xFF,

 v & 0xFF) 

133.  

134. def getDataM(pid, v): 

135.     if (pid >= 0) and (pid <= 7): 

136.         if vis[pid] == 0:   # 左旋 

137.             return getVelocityM(-v) 

138.         else:               # 右旋 

139.             return getVelocityM(v) 

140.  

141. def getDataP(pid, v): 

142.     ubyte_array = c_ubyte * 8 

143.     if (pid >= 0) and (pid <= 7): 

144.         if vis[pid] == 0:   # 左旋 

145.             return ubyte_array(0x56, 0x43, 0x00, 0x00, 0x00, 0x00, (

-v >> 8) & 0xFF, -v & 0xFF) 

146.         else:               # 右旋 

147.             return ubyte_array(0x56, 0x43, 0x00, 0x00, 0x00, 0x00, (

v >> 8) & 0xFF, v & 0xFF) 

148.  

149.  

150. # 查询信息：故障查询、速度查询、电流查询、温度查询 

151. def getForm(form): 

152.     if (form >= 11) and (form <= 14): 

153.         return getRequest(form) 

154.  

155.  

156. def PrintCommand(vci_can_obj, output=1): 

157.     # 打印每个字段的 16进制值 
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158.     if output: 

159.         print("ID:", hex(vci_can_obj.ID)) 

160.         print("TimeStamp:", hex(vci_can_obj.TimeStamp)) 

161.         print("TimeFlag:", hex(vci_can_obj.TimeFlag)) 

162.         print("SendType:", hex(vci_can_obj.SendType)) 

163.         print("RemoteFlag:", hex(vci_can_obj.RemoteFlag)) 

164.         print("ExternFlag:", hex(vci_can_obj.ExternFlag)) 

165.         print("DataLen:", hex(vci_can_obj.DataLen)) 

166.     # 将列表转换为 bytes 对象 

167.     Data_bytes = bytes(vci_can_obj.Data) 

168.     # 使用 binascii.hexlify 将字节转换为 16进制字符串 

169.     Data_hex = binascii.hexlify(Data_bytes).decode('utf-8') 

170.     print("DATA", Data_hex) 

171.     print("Reserved:", list(vci_can_obj.Reserved)) 

172.     return hex(vci_can_obj.ID), Data_hex 

173.  

174.  

175. # 通道 1发送数据，通道 2接收数据：pid表示哪个螺旋桨（1-7），form表示哪种信

息查询：故障查询、速度查询、电流查询、温度查询（11-14） 

176. def sendForm(pid, form): 

177.     a = getForm(form) 

178.     ubyte_3array = c_ubyte * 3 

179.     b = ubyte_3array(0, 0, 0) 

180.     # 向 pid螺旋桨发送速度为 v的命令 

181.     vci_can_obj = VCI_CAN_OBJ(ID[pid], 0, 0, 1, 0, 0, 8, a, b)  # 单

次发送 

182.  

183.     res = canDLL.VCI_Transmit(VCI_USBCAN2, 0, CAN_POS, byref(vci_can

_obj), 1) 

184.     time.sleep(0.1) 

185.     if res == STATUS_OK: 

186.         print('CAN1通道发送成功\r\n') 

187.     else: 

188.         print('CAN1通道发送失败\r\n') 

189.     time.sleep(1) 

190.     return read_last_csv_data() 

191.  

192.  
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193. def read_last_csv_data(filename='Actuatordata.csv'): 

194.     last_id = None 

195.     last_data = None 

196.     # 打开 CSV 文件用于读取 

197.     with open(filename, 'r', newline='') as csvfile: 

198.         csvreader = csv.reader(csvfile) 

199.         # 遍历 CSV 文件中的每一行 

200.         for row in csvreader: 

201.             # 假设第一列是 ID，其余列是 Data 

202.             last_id = row[1]  # 保存 ID 

203.             last_data = row[2:]  # 保存除了 ID 之外的所有数据 

204.     return last_id, last_data 

205.  

206.  

207. # 将传入螺旋桨 pid对应的螺旋桨停止 

208. def StopPropeller(pids): 

209.     for i in pids: 

210.         handle_command(i, 0) 

211.         handle_command(i, 0) 

212.     # closeCanDLL() 

213.  

214.  

215. # 关闭通道 

216. def closeCanDLL(): 

217.     canDLL.VCI_CloseDevice(VCI_USBCAN2, 0) 

218.  

219.  

220. def motor_command_callback(data): 

221.     handle_command(data, 'motor') 

222.  

223. def propeller_command_callback(data): 

224.     handle_command(data, 'propeller') 

225.  

226. def handle_command(data, device_type): 

227.     pid = data.ID 

228.     v = data.command  # 假设 order消息中包含速度命令 

229.     if device_type == 'motor': 

230.         # 处理电机命令 
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231.         a = getDataM(pid, v) 

232.     elif device_type == 'propeller': 

233.         a = getDataP(pid, v) 

234.     else: 

235.         rospy.logerr("Unknown device type") 

236.         return False 

237.     ubyte_3array = c_ubyte * 3 

238.     b = ubyte_3array(0, 0, 0) 

239.     # 向 pid螺旋桨发送速度为 v的命令 

240.     if device_type == 'propeller': 

241.         vci_can_obj = VCI_CAN_OBJ(ID[pid], 0, 0, 1, 0, 0, 8, a, b)  

# 单次发送 

242.     if device_type == 'motor': 

243.         vci_can_obj = VCI_CAN_OBJ(ID[pid] , 0, 0, 1, 0, 0, 8, a, b) 

 # 单次发送 

244.         # time.sleep(0.1) 

245.         # vci_can_obj = VCI_CAN_OBJ(0x0300 | 4, 0, 0, 1, 0, 0, 8, a,

 b)  # 单次发送 

246.     PrintCommand(vci_can_obj) 

247.     res = canDLL.VCI_Transmit(VCI_USBCAN2, 0, CAN_POS, byref(vci_can

_obj), 1) 

248.     time.sleep(0.1) 

249.     if res == STATUS_OK: 

250.         print('CAN1通道发送成功\r\n') 

251.     else: 

252.         print('CAN1通道发送失败\r\n') 

253.         return False 

254.     return True 

255.  

256. def actuation_node(): 

257.     # 初始化 ROS节点 

258.     rospy.init_node('actuation_node', anonymous=True) 

259.  

260.     # 创建 Publisher对象，用于向电机和螺旋桨发送命令 

261.     # 这里使用两个 Publisher，实际使用时根据需要创建 

262.     # motor_pub = rospy.Publisher('motor_commands', MotorCommandMsg,

 queue_size=10) 
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263.     # propeller_pub = rospy.Publisher('propeller_commands', Propelle

rCommandMsg, queue_size=10) 

264.  

265.     # 订阅电机命令主题 

266.     rospy.Subscriber('motor_commands', MotorCommandMsg, motor_comman

d_callback) 

267.     # 订阅螺旋桨命令主题 

268.     rospy.Subscriber('propeller_commands', PropellerCommandMsg, prop

eller_command_callback) 

269.  

270.     # 保持节点运行 

271.     rospy.spin() 

272.  

273.  

274. def receiveData(): 

275.     global stop_receiving 

276.     open('Actuatordata.csv', 'a').close() 

277.     while not rospy.is_shutdown(): 

278.         time.sleep(0.03) 

279.         rx_vci_can_obj = VCI_CAN_OBJ_ARRAY(2500)  # 结构体数组 

280.         res = canDLL.VCI_Receive(VCI_USBCAN2, 0, CAN_POS, byref(rx_v

ci_can_obj.ADDR), 2500, 0) 

281.         if res > 0:  # 接收到一帧数据 

282.             with open('Actuatordata.csv', 'a', newline='') as csvfil

e: 

283.                 csvwrite = csv.writer(csvfile) 

284.                 print('接收成功\r\n') 

285.  

286.                 # 将数据写入 CSV 文件 

287.                 current_time = datetime.datetime.now().strftime('%Y-

%m-%d %H:%M:%S') 

288.                 ID, can_msg = PrintCommand(rx_vci_can_obj.ADDR) 

289.                 csvwrite.writerow([current_time, ID, can_msg]) 

290.                 # 发布 CAN 消息数据 

291.                 pub = rospy.Publisher('can_messages', String, queue_

size=10) 

292.                 msg = String() 

293.                 msg.data = str(can_msg) 
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294.                 pub.publish(msg) 

295.             # 检查错误条件并发布错误消息 

296.             error_pub = rospy.Publisher('can_error_messages', String

, queue_size=10) 

297.             error_msg = String() 

298.             if can_msg[-4:] == 'EEEE': 

299.                 error_msg.data = f"Error: Propeller blocked for ID {

ID}" 

300.                 error_pub.publish(error_msg) 

301.             elif can_msg[-4:] == '0000': 

302.                 error_msg.data = f"Error: Actuator stopped for ID {I

D}" 

303.                 error_pub.publish(error_msg) 

304.  

305.  

306. def stop_all_propellers(): 

307.     for pid in range(len(ID)): 

308.         handle_command(MotorCommandMsg(ID=pid, command=0), 'propelle

r') 

309.         handle_command(MotorCommandMsg(ID=pid, command=0), 'motor') 

310.  

311.  

312. if __name__ == '__main__': 

313.     # 初始化 NetworkInterfaceChecker 

314.     checker = NetworkInterfaceChecker('192.168.50.10') 

315.     checker.set_callback(stop_all_propellers)  # 设置触发保护功能的回

调函数 

316.     checker_thread = threading.Thread(target=checker.check_interface

_communication) 

317.     checker_thread.start()  # 启动线程 

318.  

319.     # 创建一个线程来运行 receiveData函数 

320.     thread = threading.Thread(target=receiveData) 

321.     thread.start()  # 启动线程 

322.  

323.     try: 

324.         actuation_node() 

325.     except rospy.ROSInterruptException: 
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326.         pass 

327.     finally: 

328.         checker.stop()  # 停止网络检查线程 

2. Robot sensor data reading 

1. #!/usr/bin/env python 

2.  

3. import rospy 

4. import serial 

5. import struct 

6. import csv 

7. import time 

8. import threading 

9. from sensor_fish.msg import DVLData 

10. from queue import Queue 

11.  

12. # 串口配置 

13. port = '/dev/ttyUSB0' 

14. baudrate = 460800 

15.  

16. # 打开串口 

17. ser = serial.Serial(port, baudrate, timeout=1) 

18.  

19. # CSV文件配置 

20. csv_file = 'DVL_data.csv' 

21. csv_columns = [ 

22.     'Frame Count', 'Week', 'Week Seconds', 'Heading', 'Pitch', 'Roll', 

23.     'East Velocity', 'North Velocity', 'Up Velocity', 'Latitude', 'Long

itude', 

24.     'Altitude', 'X Angular Velocity', 'Y Angular Velocity', 'Z Angular 

Velocity', 

25.     'X Acceleration', 'Y Acceleration', 'Z Acceleration', 'Primary Sate

llite Count', 

26.     'Secondary Satellite Count', 'Navigation Status', 'GNSS Status', 'F

ault Status', 

27.     'DVL Height', 'DVL Velocity' 

28. ] 

29.  
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30. # 写入 CSV文件头 

31. with open(csv_file, 'w', newline='') as csvfile: 

32.     writer = csv.DictWriter(csvfile, fieldnames=csv_columns) 

33.     writer.writeheader() 

34.  

35. shutdown_event = threading.Event() 

36. data_queue = Queue() 

37.  

38. def parse_data(data): 

39.     if len(data) < 94: 

40.         print(f"Data length is too short: {len(data)}") 

41.         return None 

42.      

43.     parsed_data = {} 

44.     parsed_data['Frame Count'], = struct.unpack('<H', data[6:8]) 

45.     parsed_data['Week'], = struct.unpack('<H', data[8:10]) 

46.     parsed_data['Week Seconds'], = struct.unpack('<d', data[10:18]) 

47.     parsed_data['Heading'], = struct.unpack('<i', data[18:22]) 

48.     parsed_data['Pitch'], = struct.unpack('<i', data[22:26]) 

49.     parsed_data['Roll'], = struct.unpack('<i', data[26:30]) 

50.     parsed_data['East Velocity'], = struct.unpack('<i', data[30:34]) 

51.     parsed_data['North Velocity'], = struct.unpack('<i', data[34:38]) 

52.     parsed_data['Up Velocity'], = struct.unpack('<i', data[38:42]) 

53.     parsed_data['Latitude'], = struct.unpack('<i', data[42:46]) 

54.     parsed_data['Longitude'], = struct.unpack('<i', data[46:50]) 

55.     parsed_data['Altitude'], = struct.unpack('<i', data[50:54]) 

56.     parsed_data['X Angular Velocity'], = struct.unpack('<i', data[54:58

]) 

57.     parsed_data['Y Angular Velocity'], = struct.unpack('<i', data[58:62

]) 

58.     parsed_data['Z Angular Velocity'], = struct.unpack('<i', data[62:66

]) 

59.     parsed_data['X Acceleration'], = struct.unpack('<i', data[66:70]) 

60.     parsed_data['Y Acceleration'], = struct.unpack('<i', data[70:74]) 

61.     parsed_data['Z Acceleration'], = struct.unpack('<i', data[74:78]) 

62.     parsed_data['Primary Satellite Count'], = struct.unpack('<B', data[

78:79]) 
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63.     parsed_data['Secondary Satellite Count'], = struct.unpack('<B', dat

a[79:80]) 

64.     parsed_data['Navigation Status'], = struct.unpack('<B', data[80:81]

) 

65.     parsed_data['GNSS Status'], = struct.unpack('<H', data[81:83]) 

66.     parsed_data['Fault Status'], = struct.unpack('<H', data[83:85]) 

67.     parsed_data['DVL Height'], = struct.unpack('<f', data[85:89]) 

68.     parsed_data['DVL Velocity'], = struct.unpack('<f', data[89:93]) 

69.  

70.     # 转换数据格式 

71.     parsed_data['Heading'] *= 0.0001 

72.     parsed_data['Pitch'] *= 0.0001 

73.     parsed_data['Roll'] *= 0.0001 

74.     parsed_data['East Velocity'] *= 0.0001 

75.     parsed_data['North Velocity'] *= 0.0001 

76.     parsed_data['Up Velocity'] *= 0.0001 

77.     parsed_data['Latitude'] *= 0.0000001 

78.     parsed_data['Longitude'] *= 0.0000001 

79.     parsed_data['Altitude'] *= 0.0001 

80.     parsed_data['X Angular Velocity'] *= 0.000001 

81.     parsed_data['Y Angular Velocity'] *= 0.000001 

82.     parsed_data['Z Angular Velocity'] *= 0.000001 

83.     parsed_data['X Acceleration'] *= 0.000001 

84.     parsed_data['Y Acceleration'] *= 0.000001 

85.     parsed_data['Z Acceleration'] *= 0.000001 

86.  

87.     return parsed_data 

88.  

89. # 找到同步头 

90. def find_sync(): 

91.     while not rospy.is_shutdown() and not shutdown_event.is_set(): 

92.         byte = ser.read(1) 

93.         if byte == b'\x55': 

94.             next_byte = ser.read(1) 

95.             if next_byte == b'\xAA': 

96.                 # 已找到同步头 

97.                 return 

98.  
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99. def publish_data(parsed_data): 

100.     dvl_data = DVLData() 

101.     dvl_data.heading = parsed_data['Heading'] 

102.     dvl_data.pitch = parsed_data['Pitch'] 

103.     dvl_data.roll = parsed_data['Roll'] 

104.     dvl_data.dvl_height = parsed_data['DVL Height'] 

105.     dvl_data.dvl_velocity = parsed_data['DVL Velocity'] 

106.     dvl_data.stat_byte = parsed_data['Navigation Status'] 

107.     dvl_data.latitude = parsed_data['Latitude'] 

108.     dvl_data.longitude = parsed_data['Longitude'] 

109.     dvl_data.altitude = parsed_data['Altitude'] 

110.     dvl_pub.publish(dvl_data) 

111.  

112. def csv_writer_thread(queue): 

113.     with open(csv_file, 'a', newline='') as csvfile: 

114.         writer = csv.DictWriter(csvfile, fieldnames=csv_columns) 

115.         while not rospy.is_shutdown() and not shutdown_event.is_set

(): 

116.             if not queue.empty(): 

117.                 data = queue.get() 

118.                 writer.writerow(data) 

119.         rospy.sleep(0.1) 

120.  

121. def serial_reader(): 

122.     while not rospy.is_shutdown() and not shutdown_event.is_set(): 

123.         find_sync() 

124.         data = ser.read(92) 

125.         data = b'\x55\xAA' + data 

126.         if len(data) == 94: 

127.             parsed_data = parse_data(data) 

128.             if parsed_data: 

129.                 data_queue.put(parsed_data) 

130.                 publish_data(parsed_data) 

131.                 rospy.loginfo(f"Data published: {parsed_data}") 

132.             else: 

133.                 rospy.logwarn("Parsed data is None.") 

134.         else: 
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135.             rospy.logwarn(f"Read data length mismatch: {len(data)}"

) 

136.         rospy.sleep(0.01) 

137.  

138. def shutdown_hook(): 

139.     rospy.loginfo("关闭中...") 

140.     shutdown_event.set() 

141.  

142. def main(): 

143.     rospy.init_node('dvl_publisher') 

144.     global dvl_pub 

145.     dvl_pub = rospy.Publisher('dvl/data', DVLData, queue_size=10) 

146.     rospy.on_shutdown(shutdown_hook) 

147.  

148.     csv_thread = threading.Thread(target=csv_writer_thread, args=(d

ata_queue,)) 

149.     serial_thread = threading.Thread(target=serial_reader) 

150.  

151.     csv_thread.start() 

152.     serial_thread.start() 

153.  

154.     csv_thread.join() 

155.     serial_thread.join() 

156.  

157. if __name__ == '__main__': 

158.     main() 

159.  

 

1. import serial 

2. import time 

3. import string 

4. import pandas as pd 

5. from datetime import datetime 

6. import threading 

7. import rospy 

8. from sensor_fish.msg import Warmdepth  # 导入自定义消息类型 

9.  

10. result = "" 
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11. df = pd.DataFrame(columns=["Time", "Type", "Height", "Temp", "Depth", "

Pressure"]) 

12. data_queue = []  # 用于存储每秒的同步数据 

13. Com485_Sensor = None 

14. stop_threads = False  # 停止标志 

15.  

16. def load_params(): 

17.     global Com485_Sensor 

18.     serial_port = '/dev/ttyUSB1'  # 根据你的设置调整 

19.     baud_rate = 9600  # 根据你的设置调整 

20.     Com485_Sensor = serial.Serial(serial_port, baud_rate, timeout=1) 

21.  

22. def Get485_Info_Altitude_Sensor(data): 

23.     global result  

24.     global df 

25.     global data_queue 

26.     if data[0] == "$ISADS":  # 高度传感器: 温度、高度状态 

27.         height = float(data[1]) 

28.         temp = float(data[3]) 

29.         result = "{}, {}".format(height, temp) 

30.         current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") 

31.         df.loc[len(df)] = [current_time, "Altitude", height, temp, None

, None] 

32.         data_queue.append({"time": current_time, "height": height, "tem

p": temp}) 

33.         print('height status :  %s' % result) 

34.  

35. def Get485_Info__Depth_Temperature_Sensor(data): 

36.     global result  

37.     global df 

38.     global data_queue 

39.     if data[0] == "$ISDPT":  # 深度和温度传感器 

40.         depth = float(data[1]) 

41.         pressure = float(data[3]) 

42.         temp = float(data[5]) 

43.         result = "{}, {}, {}".format(depth, pressure, temp) 

44.         current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") 
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45.         df.loc[len(df)] = [current_time, "Depth", None, temp, depth, pr

essure] 

46.         data_queue.append({"time": current_time, "depth": depth, "press

ure": pressure}) 

47.         print('temperature and depth status :  %s' % result) 

48.  

49. def Get_All_Data_from_485(OriginalData): 

50.     global result  

51.     try: 

52.         temp = str(OriginalData, encoding="ISO-8859-1") 

53.         if any(char not in string.printable for char in temp):  # 过滤

掉不可打印字符 

54.             return 

55.         data = temp.split(',') 

56.         if data[0] == "$ISADS":  # 高度传感器: 温度、高度状态 

57.             Get485_Info_Altitude_Sensor(data) 

58.         if data[0] == "$ISDPT":  # 深度和温度传感器 

59.             Get485_Info__Depth_Temperature_Sensor(data) 

60.     except Exception as e:  # 处理异常，通常由多个设备的电磁干扰引起 

61.         print(e) 

62.  

63. def Send_Request_and_Read_Response(request): 

64.     global stop_threads 

65.     while not rospy.is_shutdown() and not stop_threads: 

66.         Com485_Sensor.write(request.encode()) 

67.         time.sleep(0.001)  # 根据传感器响应时间调整睡眠时间 

68.         Original_Data = Com485_Sensor.readline() 

69.         if len(Original_Data) > 0 and Original_Data[0] == 36:  # 36是

'$'的 ASCII码 

70.             Get_All_Data_from_485(Original_Data) 

71.  

72. def Save_Data_To_CSV(): 

73.     global df 

74.     global stop_threads 

75.     while not rospy.is_shutdown() and not stop_threads: 

76.         try: 

77.             df.to_csv("data_log.csv", index=False) 

78.         except Exception as e: 
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79.             print("Error while saving data to CSV:", e) 

80.         finally: 

81.             time.sleep(1)   

82.  

83. def Process_And_Send_Data(pub): 

84.     global data_queue 

85.     global stop_threads 

86.     rate = rospy.Rate(5)  

87.     while not rospy.is_shutdown() and not stop_threads: 

88.         if data_queue: 

89.             synchronized_data = {} 

90.             for data in data_queue: 

91.                 if "height" in data and "depth" in data: 

92.                     synchronized_data = data 

93.                     break 

94.                 elif "height" in data: 

95.                     synchronized_data.update({"height": data["height"],

 "temp": data["temp"]}) 

96.                 elif "depth" in data: 

97.                     synchronized_data.update({"depth": data["depth"], "

pressure": data["pressure"]}) 

98.              

99.             if synchronized_data: 

100.                 sensor_data_msg = Warmdepth() 

101.                 sensor_data_msg.time = synchronized_data.get("time",

 "") 

102.                 sensor_data_msg.height = synchronized_data.get("heig

ht", 0.0) 

103.                 sensor_data_msg.temp = synchronized_data.get("temp",

 0.0) 

104.                 sensor_data_msg.depth = synchronized_data.get("depth

", 0.0) 

105.                 sensor_data_msg.pressure = synchronized_data.get("pr

essure", 0.0) 

106.                 rospy.loginfo(sensor_data_msg) 

107.                 pub.publish(sensor_data_msg) 

108.                 data_queue = []  # 清空队列 

109.              

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619



155 

 

110.         rate.sleep() 

111.  

112. def main(): 

113.     global stop_threads 

114.     load_params() 

115.     rospy.init_node('sensor_data_publisher', anonymous=True) 

116.     pub = rospy.Publisher('sensor_data', Warmdepth, queue_size=10) 

117.      

118.     save_thread = threading.Thread(target=Save_Data_To_CSV) 

119.     save_thread.daemon = True  # 守护线程 

120.     save_thread.start() 

121.  

122.     process_thread = threading.Thread(target=Process_And_Send_Data, 

args=(pub,)) 

123.     process_thread.daemon = True  # 守护线程 

124.     process_thread.start() 

125.      

126.     start_time = time.time() 

127.     data_count = 0 

128.     try: 

129.         while not rospy.is_shutdown(): 

130.             # 请求高度传感器数据 

131.             Send_Request_and_Read_Response("$ISADS\n")   

132.             # 请求深度和温度传感器数据 

133.             Send_Request_and_Read_Response("$ISDPT\n")   

134.             # 每秒计算并打印数据传输频率 

135.             data_count += 1 

136.             elapsed_time = time.time() - start_time 

137.             if elapsed_time >= 1: 

138.                 print(f"Data transfer frequency: {data_count} messag

es per second") 

139.                 data_count = 0 

140.                 start_time = time.time() 

141.     except rospy.ROSInterruptException: 

142.         stop_threads = True 

143.  

144. if __name__ == '__main__': 

145.     main() 
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3. Robot depth and height control 

1. #!/usr/bin/env python3 

2.  

3. import rospy 

4. from sensor_fish.msg import Warmdepth as HeightMsg  # 高度传感器消息类型 

5. from manta.msg import Warmdepth as DepthMsg        # 深度传感器消息类型 

6. from manta.msg import CommandMsg                   # 控制命令消息类型 

7. import time 

8. import signal 

9. import sys 

10.  

11. class HeightController: 

12.     def __init__(self, target_height=10.0): 

13.         self.target_height = target_height 

14.         self.current_height = 0.0 

15.         self.triggered = False  # 触发定深控制的标志 

16.          

17.         # 订阅高度传感器数据 

18.         self.height_sub = rospy.Subscriber('altitude_sensor_data', Heig

htMsg, self.height_callback) 

19.          

20.         # 注册信号处理函数 

21.         signal.signal(signal.SIGINT, self.shutdown) 

22.      

23.     def height_callback(self, msg): 

24.         self.current_height = msg.height 

25.         rospy.loginfo(f"Received Height Data: {self.current_height} met

ers") 

26.          

27.         # 如果当前高度达到了目标高度，并且还没有触发定深控制 

28.         if self.current_height >= self.target_height and not self.trigg

ered: 

29.             rospy.loginfo("Target height reached, triggering depth cont

rol.") 

30.             self.trigger_depth_control() 

31.             self.triggered = True 

32.      

33.     def trigger_depth_control(self): 
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34.         # 初始化并启动深度控制器 

35.         depth_controller = DepthController(target_depth=2.0, kp=1.0, ki

=0.01, kd=0.1, duration=10.0) 

36.         depth_controller.start() 

37.  

38.     def shutdown(self, signum, frame): 

39.         rospy.loginfo("Shutdown signal received.") 

40.         sys.exit(0) 

41.  

42. class DepthController: 

43.     def __init__(self, target_depth=2.0, kp=1.0, ki=0.01, kd=0.1, durat

ion=10.0): 

44.         self.kp = kp 

45.         self.ki = ki 

46.         self.kd = kd 

47.         self.target_depth = target_depth 

48.         self.current_depth = 0.0 

49.         self.previous_error = 0.0 

50.         self.integral_error = 0.0 

51.         self.previous_time = rospy.get_time() 

52.         self.start_time = rospy.get_time() 

53.         self.duration = duration 

54.          

55.         # 计数变量 

56.         self.depth_count = 0 

57.         self.control_count = 0 

58.         self.last_print_time = rospy.get_time() 

59.  

60.         # 订阅深度传感器数据 

61.         self.depth_sub = rospy.Subscriber('depth_sensor_data', DepthMsg

, self.depth_callback) 

62.         # 发布控制信号 

63.         self.control_pub = rospy.Publisher('propeller_commands', Comman

dMsg, queue_size=10) 

64.  

65.     def depth_callback(self, msg): 

66.         self.current_depth = msg.depth 

67.         self.depth_count += 1 
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68.         rospy.loginfo(f"Received Depth Data: {self.current_depth} meter

s") 

69.         self.control_step() 

70.  

71.     def control_step(self): 

72.         current_time = rospy.get_time() 

73.  

74.         # 检查是否超过了设定的时间 

75.         if current_time - self.start_time > self.duration: 

76.             rospy.loginfo("Depth control duration has ended. Stopping a

ll propellers.") 

77.             self.stop_all_propellers() 

78.             rospy.signal_shutdown("Depth control finished") 

79.             return 

80.  

81.         # 计算误差 

82.         error = self.target_depth - self.current_depth 

83.         delta_time = current_time - self.previous_time 

84.  

85.         # 计算 PID控制输出 

86.         self.integral_error += error * delta_time 

87.         p_term = self.kp * error 

88.         i_term = self.ki * self.integral_error 

89.         d_term = self.kd * (error - self.previous_error) / delta_time i

f delta_time > 0 else 0.0 

90.         control_signal = p_term + i_term + d_term 

91.  

92.         # 将控制信号限制在 300到 500之间 

93.         control_signal = max(min(int(control_signal), 500), 300) 

94.  

95.         # 发布控制信号 

96.         for propeller_id in range(4): 

97.             command_msg = CommandMsg() 

98.             command_msg.ID = propeller_id 

99.             command_msg.command = control_signal 

100.             self.control_pub.publish(command_msg) 

101.             self.control_count += 1 

102.  
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103.         # 更新前一误差和时间 

104.         self.previous_error = error 

105.         self.previous_time = current_time 

106.  

107.         # 打印频率信息 

108.         if current_time - self.last_print_time >= 1.0: 

109.             rospy.loginfo(f"Depth Read Frequency: {self.depth_count}

 Hz, Control Publish Frequency: {self.control_count} Hz") 

110.             self.depth_count = 0 

111.             self.control_count = 0 

112.             self.last_print_time = current_time 

113.  

114.     def stop_all_propellers(self): 

115.         # 停止所有推进器 

116.         for _ in range(2): 

117.             for propeller_id in range(4): 

118.                 command_msg = CommandMsg() 

119.                 command_msg.ID = propeller_id 

120.                 command_msg.command = 0 

121.                 self.control_pub.publish(command_msg) 

122.                 rospy.loginfo(f"Stopped Propeller {propeller_id}") 

123.             rospy.sleep(0.3) 

124.  

125.     def start(self): 

126.         rospy.spin() 

127.  

128. def main(): 

129.     rospy.init_node('height_and_depth_control_node', anonymous=True) 

130.      

131.     # 启动高度控制器 

132.     height_controller = HeightController(target_height=10.0) 

133.  

134.     # 保持节点运行 

135.     rospy.spin() 

136.  

137. if __name__ == '__main__': 

138.     main() 
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1. #!/usr/bin/env python3 

2.  

3. import rospy 

4. import cvxpy as cp 

5. from sensor_fish.msg import Warmdepth as HeightMsg  # 高度传感器消息类型 

6. from manta.msg import Warmdepth as DepthMsg        # 深度传感器消息类型 

7. from manta.msg import CommandMsg                   # 控制命令消息类型 

8. import signal 

9. import sys 

10.  

11. class HeightController: 

12.     def __init__(self, target_height=10.0): 

13.         self.target_height = target_height 

14.         self.current_height = 0.0 

15.         self.triggered = False  # 触发定深控制的标志 

16.  

17.         # 订阅高度传感器数据 

18.         self.height_sub = rospy.Subscriber('altitude_sensor_data', Heig

htMsg, self.height_callback) 

19.          

20.         # 注册信号处理函数 

21.         signal.signal(signal.SIGINT, self.shutdown) 

22.      

23.     def height_callback(self, msg): 

24.         self.current_height = msg.height 

25.         rospy.loginfo(f"Received Height Data: {self.current_height} met

ers") 

26.          

27.         # 如果当前高度达到了目标高度，并且还没有触发定深控制 

28.         if self.current_height >= self.target_height and not self.trigg

ered: 

29.             rospy.loginfo("Target height reached, triggering depth cont

rol.") 

30.             self.trigger_depth_control() 

31.             self.triggered = True 

32.      

33.     def trigger_depth_control(self): 

34.         # 初始化并启动深度控制器（MPC） 
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35.         depth_controller = DepthControllerMPC(target_depth=2.0, horizon

=10, dt=0.1) 

36.         depth_controller.start() 

37.  

38.     def shutdown(self, signum, frame): 

39.         rospy.loginfo("Shutdown signal received.") 

40.         sys.exit(0) 

41.  

42. class DepthControllerMPC: 

43.     def __init__(self, target_depth=2.0, horizon=10, dt=0.1): 

44.         self.target_depth = target_depth 

45.         self.current_depth = 0.0 

46.         self.horizon = horizon      # 预测时间步数 

47.         self.dt = dt                # 采样时间 

48.         self.u_max = 500            # 控制信号上限 

49.         self.u_min = 300            # 控制信号下限 

50.  

51.         # 创建控制变量 

52.         self.u = cp.Variable(self.horizon)   # 控制信号向量 

53.         self.x = cp.Variable(self.horizon+1) # 深度状态向量 

54.  

55.         # 定义 MPC 优化问题 

56.         self.objective = cp.Minimize(cp.sum_squares(self.x[1:] - self.t

arget_depth) + 0.1 * cp.sum_squares(self.u)) 

57.         self.constraints = [self.x[0] == self.current_depth] 

58.         for t in range(self.horizon): 

59.             self.constraints += [self.x[t+1] == self.x[t] + self.u[t] *

 self.dt]  # 简单模型：x_next = x + u*dt 

60.             self.constraints += [self.u_min <= self.u[t], self.u[t] <= 

self.u_max] 

61.          

62.         self.problem = cp.Problem(self.objective, self.constraints) 

63.          

64.         # 订阅深度传感器数据 

65.         self.depth_sub = rospy.Subscriber('depth_sensor_data', DepthMsg

, self.depth_callback) 

66.         # 发布控制信号 
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67.         self.control_pub = rospy.Publisher('propeller_commands', Comman

dMsg, queue_size=10) 

68.  

69.     def depth_callback(self, msg): 

70.         self.current_depth = msg.depth 

71.         rospy.loginfo(f"Received Depth Data: {self.current_depth} meter

s") 

72.         self.control_step() 

73.  

74.     def control_step(self): 

75.         # 更新初始状态 

76.         self.constraints[0].rhs = self.current_depth 

77.  

78.         # 解决优化问题 

79.         try: 

80.             self.problem.solve() 

81.             control_signal = int(self.u[0].value)  # 获取第一个时间步的控

制信号 

82.             control_signal = max(min(control_signal, self.u_max), self.

u_min)  # 限制控制信号范围 

83.             self.publish_control(control_signal) 

84.         except Exception as e: 

85.             rospy.logwarn(f"MPC solve failed: {e}") 

86.             self.stop_all_propellers() 

87.  

88.     def publish_control(self, control_signal): 

89.         # 发布控制信号到所有推进器 

90.         for propeller_id in range(4): 

91.             command_msg = CommandMsg() 

92.             command_msg.ID = propeller_id 

93.             command_msg.command = control_signal 

94.             self.control_pub.publish(command_msg) 

95.             rospy.loginfo(f"Published control signal: {control_signal} 

to Propeller {propeller_id}") 

96.  

97.     def stop_all_propellers(self): 

98.         # 停止所有推进器 

99.         for propeller_id in range(4): 
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100.             command_msg = CommandMsg() 

101.             command_msg.ID = propeller_id 

102.             command_msg.command = 0 

103.             self.control_pub.publish(command_msg) 

104.             rospy.loginfo(f"Stopped Propeller {propeller_id}") 

105.  

106.     def start(self): 

107.         rospy.spin() 

108.  

109. def main(): 

110.     rospy.init_node('height_and_depth_control_node', anonymous=True) 

111.      

112.     # 启动高度控制器 

113.     height_controller = HeightController(target_height=10.0) 

114.  

115.     # 保持节点运行 

116.     rospy.spin() 

117.  

118. if __name__ == '__main__': 

119.     main() 
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