
1

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

LVIV POLYTECHNIC NATIONAL UNIVERSITY

 Qualifying scientific work

on the rights of the manuscript

ZENG XINYU

UDC 681.5

THESIS OF DISSERTATION

On theme

HARDWARE-SOFTWARE AND METROLOGICAL SUPPORT OF

DRONES

152 – Metrology and Information - Measuring Equipment

15 - Automation and instrumentation

Applying for the Doctor of Philosophy degree

The dissertation contains the research results. The ideas, results and texts of other

authors are linked to the corresponding reference.

________________ Zeng Xinyu

Scientific supervisor: Yatsyshyn S.P., Doctor of Technical Sciences, Professor

Lviv, Ukraine - 2025

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

2

ABSTRACT

Xinyu Zeng, Hardware-Software and Metrological Support of Drones. – Qualifying

scientific work on manuscript rights. Dissertation for the degree of Doctor of

Philosophy in specialty 152 "Metrology and Information-Measuring Techniques" -

Lviv Polytechnic National University, Ministry of Education and Science of Ukraine,

Lviv, 2025.

This dissertation focuses on the research, development, and implementation of

advanced soft and hardware systems used in drones, with a particular emphasis on

metrological support for their performance optimization. A significant part of the

dissertation is devoted to ensuring the accuracy and reliability of measurements in

drone operations through advanced calibration techniques and testing platforms, due

to the drone’s ability to perform autonomously with a high degree of precision in

various environments.

Chapter 1: Starting with Amphibious Design

The first chapter introduces the design and development of a drone system capable of

amphibious operations, taking inspiration from water striders. The chapter explores

the integration of hardware such as Nvidia Jetson for real-time control and ROS for

system modularity and software integration. The aim is to ensure smooth transitions

between water-surface and underwater operations, with a particular focus on the

metrological challenges involved in designing a system that operates in two

dissimilar physical environments. Additionally, this chapter discusses the technical

and environmental factors that influence the accuracy of measurements and their

significance in the design process.

Chapter 2: Building a Test Platform for Hydrodynamic Performance

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

3

The second chapter focuses on the development of a test platform to measure the

hydrodynamic performance of the drone in real-world water conditions. Key

parameters such as thrust, energy consumption, and response speed are analyzed to

optimize the propulsion system's performance. The chapter discusses the metrological

provision required to ensure accurate measurements, considering factors like sensor

calibration, environmental impacts, and the repeatability of measurements. By

evaluating the drone’s performance in controlled conditions, this chapter provides

insights into the relationship between energy usage and propulsion efficiency, laying

the groundwork for further refinement.

Chapter 3: Enhancing Stability through Filtering Algorithms

The third chapter addresses the control challenges posed by the drone’s underwater

environment, with a focus on optimizing its stability and posture through advanced

filtering algorithms. The integration of Complementary and Kalman Filters helps

improve the drone’s attitude control, allowing it to maintain stability and recover

quickly from disturbances. This chapter emphasizes the importance of real-time data

processing in enhancing the drone’s performance, particularly in dynamic

environments, where precise control is critical. The filtering techniques discussed

here provide metrological provision by minimizing error and improving the reliability

of sensor data.

Chapter 4: Data-Driven Hydrodynamic Modeling

The fourth chapter presents a data-driven hydrodynamic model, developed using

real-time data from force sensors installed on the drone. This model allows the drone

to adapt to various underwater conditions by predicting hydrodynamic forces and

adjusting its behavior accordingly. The application of machine learning techniques,

such as linear regression, helps optimize the drone’s movements and enhances its

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

4

operational efficiency. This chapter demonstrates how metrological support is vital in

validating the accuracy of the data collected and ensuring that the model reflects

real-world conditions accurately. The results of this chapter show significant

improvements in the drone’s performance, particularly in terms of accuracy and

energy efficiency.

 Keywords: drone, hardware, software, metrological support, control, uncertainty,

error, sensor calibration, hydrodynamic modeling and simulation, filtering

algorithms, underwater robotics, performance assessing.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

5

ARTICLES PUBLISHED WHILE PERFORMING THE CURRENT

PHD WORK

1. X. Zeng, Olha Lysa, "Response Time in Inertial Measurement Unit Control

Algorithms", Measuring Equipment and Metrology, Volume 85, Number 2, pp.

5-8, 2024.

https://doi.org/10.23939/istcmtm2024.02.005

2. X. Zeng, S. Yatsyshyn, "Test Platform Paradigm for Underwater Dynamics

Measurements", Measuring Equipment and Metrology, Volume 85, Number 1,

pp. 29-34, 2024.

https://doi.org/10.23939/istcmtm2024.01.029

3. S. Yatsyshyn, X. Zeng, "Design of the Water Strider-like Robot", Measuring

Equipment and Metrology, Volume 84, Number 3, pp. 39-42, 2023.

https://doi.org/10.23939/istcmtm2023.03.039

4. Z. Wang, Y. Yan, X. Zeng, R. Li, W. Cui, Y. Liang, D. Fan, Joint

multi-objective optimization based on multitask and multi-fidelity Gaussian

processes for flapping foil, Ocean Engineering, Volume 294, 15 February 2024,

116862. https://doi.org/10.1016/j.oceaneng.2024.116862.

5. Q. Liu, H. Chen, P. Guo, G. Su, W. Li, X. Zeng, D. Fan, W. Cui, Unified

scheme design and control optimization of flapping wing for next-generation

manta ray robot, Ocean Engineering, Volume 309, Part 2, 1 October 2024,

118487. https://doi.org/10.1016/j.oceaneng.2024.118487.

6. S. Yatsyshyn, X. Zeng , Adaptive modeling of underwater robot fluid dynamics

based on force measurement device, Measuring Equipment and Metrology,

Volume 85, Number 4, pp. 7-13, 2024.

https://doi.org/10.23939/istcmtm2024.04.007

7. S. Yatsyshyn, A. Cherkas, X. Zeng, Hardware and software of water strider

robot, International Scientific and Practical Conference IVT-2022, Lviv,

Ukraine, 09-10 November 2022, pp. 146–147.

8. X. Zeng, S. Yatsyshyn, Test platform paradigm for underwater object’s

measurements, VI International Scientific and Practical Conference "Quality

Management in Education and Industry: Experience, Problems, and

Perspectives", Lviv, Ukraine, 16–17 November 2023, pp. 157–158.

9. S. Yatsyshyn, X. Zeng, Metrological risks at design stage for

multidisciplinary-based objects, 60th Ilmenau Scientific Colloquium

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.23939/istcmtm2024.02.005
https://doi.org/10.23939/istcmtm2024.01.029
https://doi.org/10.23939/istcmtm2023.03.039
https://doi.org/10.1016/j.oceaneng.2024.116862
https://doi.org/10.1016/j.oceaneng.2024.118487
https://doi.org/10.23939/istcmtm2024.04.007

6

"Engineering for a Changing World", Technische Universität Ilmenau,

September 04–08, 2023, pp. 58677-1–58677-7.

10. X. Zeng, S. Yatsyshyn, The exactness of ultrasound sensors of robotics, II

International Scientific and Practical Conference "Information and

Measurement Technologies IVT-2024", Lviv, Ukraine, 13–14 November 2024,

pp. 139–140.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

7

CONTENT

List of conventional designations .. 9

Introduction ... 11

General characteristics of work ... 13

Chapter 1 Design of an Amphibious Robot for Surface and Underwater Operations 19

1.1 Conceptualization and Design of a Generalized Amphibious Robot with

Metrological Assurance ... 20

1.2 Hardware System: Nvidia Jetson and Control Architecture 25

1.3 Integration of ROS for Efficient Communication ... 31

1.4 Integration of Hardware and Software for Real-Time Control in Amphibious

Robots .. 35

Chapter 2 Building a Test Platform for Hydrodynamic Performance 41

2.1 Propulsion Testing: Precision Hydrodynamic Measurement and Calibration .. 42

2.2 Exploring Alternative Underwater Propulsion Systems: The Approach to

Hydrodynamic Optimization ... 53

Chapter 3 Enhancing Stability and Depth Control through Sensors Fusion 64

3.1 IMU-Based Attitude Control ... 64

3.2 Depth-Based Control ... 74

Chapter 4 Data-Driven Approaches and Optimization Methods for Amphibious

Robot Applications .. 87

4.1 Robot Structure and Motion Mechanisms... 87

4.2 GPR-Based Hydrodynamic Modeling .. 95

4.3 Stability and Control During Amphibious Robot Transitions 115

Conclusions ... 122

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

8

References ... 126

Appendixes .. 137

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

9

LIST OF CONVENTIONAL DESIGNATIONS

 IMU – Inertial Measurement Unit

 R&D – research and development

 GPS – Global Positioning System

 ROS – Robot Operating System

 UAV - Unmanned Aerial Vehicle

 UWV - Unmanned Water Vehicle

 DC – Direct Current

 IMU - Inertial Measurement Unit

 PZT – Lead Zirconate Titanate (used in actuators and sensors)

 PWM – Pulse Width Modulation

 GPIO – General-Purpose Input/Output

 I2C – Inter-Integrated Circuit

 SPI – Serial Peripheral Interface

 UART – Universal Asynchronous Receiver-Transmitter

DMI – Digitalize Miniaturize Inteligentized

 USB – Universal Serial Bus

 DVL – Doppler Velocity Log

 LIDAR – Light Detection and Ranging

 DDS – Data Distribution Service

 QoS – Quality of Service

 GPU – Graphics Processing Unit

 TTL – Transistor-Transistor Logic

 RS485 – Recommended Standard 485 (used for serial communication)

 MPC – Model Predictive Control

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

10

PID – Proportional-Integral-Derivative

 AUV – Autonomous Underwater Vehicle

 ROV – Remotely Operated Vehicle

 MEMS – Micro-Electro-Mechanical Systems

 FS – Full Scale

 St – Strouhal Number

 Re – Reynolds Number

 RBF – Radial Basis Function

 MLE – maximum likelihood estimation

NLML– negative log marginal likelihood

RMSE – Root Mean Squared Error

MAE – Mean Absolute Error

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

11

INTRODUCTION

The formation of the scientific work "Hardware-Software and Metrological

Support of Drones" immediately refers its topic to a number of the most difficult

R&Ds of a scientific and technical product - drones, especially of marine

applications. Similar topics were preceded by centuries of intense work in this field.

The previously obtained research results made a significant contribution to the

development of the first two generations of underwater robots while the current one

differs in the use of flexible materials with large deformations instead of traditional

metal structures and buoyancy materials. The production processes of underwater

vehicles have been innovatively changed thanks to the application of 3D printing

technologies, which have replaced the conventional methods of welding and forging.

In addition, traditional control systems have been replaced by artificial intelligence,

and standard sensors have been replaced by nanosensors.

Returning to metrology, let's recall the classic’s Lord Kelvin [1] back in the

19th century, acting as the Chief-engineer of the intercontinental communication

project with the help of electric cables, faced the problem of measuring the electrical

resistance of the insulation of a submerged cable. As a result, he invented a device

that we use today. Namely, the light beam or mirror galvanometer “lengthens” the

needle of the tool with a light beam, increasing the sensitivity of the measurement.

Similar things can work in modern drones, where the a priori limited size and

weight device is equipped with the sensors and actuators necessary for operation and

metrological verification and provision. For example, in [2], it was found that when a

24-bit ACD was used during design development, and a 16-bit ACD during its

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

12

operation, additional component errors occurred, caused by the industrial replacement

of the ACD.

When moving, for example, the arm of a robot - from p. A to p.B - a number of

spatial characteristics due to stability over time become important. In total, these

concepts in the case of mechanical integrity of the structure are to be described by the

term "metrological reliability". In the case of drones, its manifestations are

repeatability and reproducibility of characteristics, their drift, etc. At the same time,

when moving, the drone must be controlled by fairly sophisticated control programs,

which include, for example, MPC control software.

The "water" specifics of the design of the drone, which corresponds to the

direction and the task of the dissertation, are characterized by significant

mass-volume limitations, which are transferred to hardware and software-technical

ones. Therefore, it is in this order that they are considered further in this work: first,

the design of the tool, then the software and technical solutions aimed at obtaining

reliable metrological results in the water environment and, finally, the repeatability

and reproducibility of the characteristics for a small number of samples or repetitions

when using the same drone, which is achieved due to metrological support.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

13

GENERAL CHARACTERISTICS OF WORK

Justification of the topic of research. For the further development of marine

technologies, for example, for the extraction of metals, it is necessary to develop new

technologies that were not available yesterday. The example of water drones is quite

clear, as the war in the Black Sea in 2022-2024 highlighted this. In our case, the

setting of the topic was carried out and executed in parallel. The trinity of the topic:

hardware, software, and metrological support act as the cornerstones of the

foundation of the dissertation. Each of them and in every aspect contributes to the

implementation of the mentioned research, relying on sub-technologies that form the

rapid rise of Industry 4.0. Among those involved in use we note the information

flows in difficult environmental conditions, the involvement of methods and means

of processing information, its management, the development of special methods of

metrological support, increasing the accuracy of measurements and reducing the

uncertainty of the implementation of drone’s functions.

Unmanned controlled vehicles, in this case - water ones, are rapidly developing,

using technologies and smart devices in water conditions to ensure, for example, to

receive and transmit information through underwater communication.

Connection of dissertation work with plans, topics, and scientific programs. The

dissertation work is aligned with the fixed scientific direction of the Department of

Information and Measurement Technologies - theoretical and applied foundations of

metrology and measurements in information technologies (information and

measurement, cyber-physical, robotic, and other systems); product and software

quality testing.

The purpose and tasks of the research.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

14

The main goal of this research is the development and implementation of a

comprehensive system of metrology support for UAVs and UWVs which integrates

both software and hardware components. This system improves the accuracy of

measurements related to movement parameters such as altitude, speed, depth, and

positioning, ensuring the reliable operation of drones in both dissimilar environments.

To achieve this goal, it is necessary to perform the following tasks:

 To analyze existing designs of unmanned robotic vehicles (drones) for

movement in the air, on water, and under it, as well as to determine

recommendations for metrological support of certain types of drones

 To study current control systems for drone launch and movement; to

investigate the metrological basis of accuracy, reproducibility, and other

characteristics, especially for systems of underwater drones: control,

navigation, communication, etc.

 To study the characteristics and develop methods ensuring the calibration of

sensors used in drones, including accelerometers, gyroscopes, GPS systems,

altimeters, and depth sensors.

 To investigate digital and special methods of improving the accuracy of

information production by drones in the underwater environment, including

through the implementation of digital filtering methods.

 To propose a methodology for the real-time metrological support of hardware

and software elements of underwater drones.

Object of research

The thesis focus is metrological support for drones, with an emphasis on hardware

and software systems that measure and control key parameters such as positioning,

speed, and depth in various industries, including logistics, surveillance, and an

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

15

underwater research.

The subject of the study is the characteristics and calibration methods of sensors and

control systems integrated into drones. The research also covers the development of

software tools for real-time monitoring, diagnostics, and calibration of drones in both

aerial and underwater environments. Particular attention is paid to improving

metrological repeatability and accuracy, as well as high precision, such as marine and

underwater surveys.

Research methods

The study combines both theoretical and practical approaches to metrological

support, in particular:

 Analysis of existing standards and measurement methods for drones, focusing

on sensor calibration and accuracy of control systems for both aerial and

underwater applications.

 Experimental calibration of hardware components such as GPS modules,

inertial measurement units (IMUs), altimeters, and depth sensors.

 Development of software algorithms to improve the accuracy of real-time

measurements and error adjustment calibration for drones.

 Using modeling tools to simulate drone trajectory and underwater dynamics

and analyze the impact of metrological errors on their performance.

 To effectively manage and interpret sensor data, issue the employed Gaussian

Process Regression (GPR) by modeling the underlying uncertainty in

fluid-structure interactions, which allows for more precise predictions in

complex and varying environments.

 The probabilistic nature of GPR enables quadruped robots to handle noisy data

and provide robust, uncertainty-aware decision-making strategies. That seems

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

16

to be the advanced metrology equipment and calibration systems from the

world's leading scientists and focuses on improving the accuracy of drone

measurements, ensuring reliable operation in surveillance and underwater

environments.

Scientific novelty.

The following scientific results were obtained in the dissertation work:

1. The method for testing the dynamic characteristics of amphibious robots has

been enhanced. It utilizes an integrated approach to trajectory drift control, enabling

the robots to adapt effectively to variable and complex underwater conditions.

2. The methods for filtering signals from inertial measurement devices have

been optimized through the integration of advanced hardware and software solutions.

3. A predictive model has been developed using machine learning techniques

to analyze the influence of hydrodynamic forces and immersion depth. This model

enhances the maneuverability and stability of movement in amphibious robots.

Application of research results. The research spans various disciplines,

including ocean engineering, robotics, mechanics, materials science, energy, control

systems, computer science, and sensor technology. A key achievement was the

successful sea trial of the 2,000m Sigu I bionic underwater vehicle in 2023 in Hainan,

China.

The research also led to an advanced platform for parallel underwater data

collection. This platform has been optimized for improved communication protocols

and solving synchronization problems in multi-system environments. It is capable of

recording an average of 5,760 sets of hydrodynamic data per day and integrates with

automated experimental equipment to collect and analyze parameters in real-time.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

17

In addition, the research has played a key role in the development of a

dual-environment quadruped robot that uses IMU sensors and data fusion to provide

a seamless transition between terrestrial and underwater environments. By increasing

the frequency of sensing algorithms and integrating data from the hydrodynamic

testing platform, accurate hydrodynamic modeling was created to optimize the robot's

motion underwater.

In addition, the robotic buoy developed during the study was funded under the

R&D initiative in Zhejiang Province in 2023. It has become an important tool in

identifying key factors affecting the state of aquatic ecosystems and in measures to

restore them.

The obtained results were used in the educational process by the department

"Information and measurement technologies" of the National University "Lviv

Polytechnic" for the training of specialists in the specialty 152 "Metrology and

Information - Measuring Equipment " and in the specialty 175 "Information –

Measuring Technologies", including masters in teaching the discipline "Robotics,

systems and complexes", and graduate students in teaching the discipline "Aalytical

and numerical research methods".

Personal contribution of the acquirer. Algorithms for maintaining the

balance of the robot were personally developed and implemented by the acquirer.

After which they were applied by a leading robotics company in China. These

algorithms have ensured the stability and accuracy of the movements of robots used

in various fields of industry and research activities. In addition, the acquirer

optimized control systems and integration of sensor data to increase the efficiency of

robots in difficult operating conditions, which contributed to the acceleration of the

process of developing new robotic solutions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

18

Approbation of the results. The scientific propositions and research results

presented in the work were reported and discussed at Ukrainian and international

scientific-practical and scientific-technical conferences: 1
st
 and 2

nd
 International

Scientific Conference "Information and Measurement Technologies", 22/10/2022 and

13/11/2024; Lviv, Ukraine, and 60th International Scientific Colloquium, Sept.

04-07, 2023, Ilmenau, Germany.

Structure and scope of work.

The composition of the dissertation includes: a list of notations, an introduction, 4

main sections with conclusions to them, general conclusions, a list of references and

appendixes. The total volume of the work is 163 pages, of which 136 pages are the

main text, containing 35 figures and 8 tables. The references include 72 items.

Publications. Based on the results of the dissertation research, 10 scientific

works were published, of which 4 articles were published in specialized publications

of Ukraine, 2 articles was published in international publications (Scopus), as well as

4 theses in collections of international scientific conferences.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

19

Chapter 1

Design of an Amphibious Robot for Surface and Underwater Operations

The evolution of robotics has brought about significant advancements in the

design of robots that can operate in multiple environments. One of the most

challenging yet promising fields is the development of amphibious robots—robots

that can transition seamlessly between surface and underwater environments [3].

These robots are increasingly important in fields such as environmental monitoring,

search and rescue, and underwater exploration, where mobility and adaptability are

critical to success.

This chapter introduces the conceptualization, design, and development of a

generalized amphibious robot, highlighting both the hardware and software systems

required for its operation. The chapter begins by exploring the fundamental design

principles for creating a robot capable of both surface and underwater locomotion,

focusing on the robot’s mechanical structure, propulsion systems, and buoyancy

control mechanisms. The integration of cutting-edge hardware—such as the Nvidia

Jetson platform—and advanced software systems—particularly the ROS (Robot

Operating System) framework—are examined in detail, showcasing how these

technologies enable real-time control and adaptability in dynamic aquatic

environments.

Additionally, the chapter addresses the importance of metrological assurance in

the robot’s design. Ensuring the accuracy and reliability of the robot’s sensors,

actuators, and control systems is essential for maintaining performance across a

variety of conditions. Calibration techniques, sensor fusion, and environmental

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

20

compensation methods are discussed to ensure that the robot can operate effectively

with minimal errors or performance deviations.

Through this combination of hardware design, software integration, and

metrological validation, this chapter sets the foundation for further exploration and

optimization of the robot’s capabilities, which will be covered in subsequent chapters.

The development process, described in this chapter, is aimed at creating a versatile

and reliable robotic platform that can meet the diverse demands of both surface and

underwater operations.

1.1 Conceptualization and Design of a Generalized Amphibious Robot

with Metrological Assurance

Here I consider the Robots of different design compositions with dissimilar

Hardware and Software as well as different metrological provisions.

1.1.1 Water Strider Robot: Surface Locomotion and Limitations

The development of amphibious robots stems from the aspiration to replicate

natural systems that demonstrate efficient locomotion in aquatic environments. One

early design approach center on water strider robots, modeled after the Gerridae

insect, known for its ability to glide across water surfaces using long, hydrophobic

legs that harness surface tension [4]. These robots are lightweight, energy-efficient,

and adept at navigating calm waters, laying the groundwork for further exploration

into surface locomotion technologies for environmental monitoring and exploration.

A notable study, Design of the Water Strider-like Robot, investigates the

integration of smart sensors and lightweight materials to enable these robots to glide

smoothly over water without submerging . The design emphasizes creating a

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

21

low-energy, low-noise system tailored for surface-level environmental monitoring.

The research highlights the application of hydrophobic and microporous materials to

enhance buoyancy, ensuring that these robots can float and traverse water surfaces

efficiently [5][6].

The surface locomotion of water strider robots is accomplished by exploiting

surface tension, a natural phenomenon that enables the insect to remain afloat without

breaching the water’s surface [7]. Through precise engineering, the robot emulates

this behavior by distributing its weight across elongated legs coated with hydrophobic

materials, which repel water and reduce drag [8][9]. This design ensures buoyancy

while promoting smooth movement across calm waters. Furthermore, the robot's

construction minimizes disturbances to the water surface, enabling silent operation,

which is particularly advantageous for ecological monitoring and wildlife observation

in sensitive aquatic habitats [10][11][12].

Table 1.1 Worldwide universities’ design of water striders; major characteristics.

Time

Institution

Movement

Form

Ability to carry

sensors

Drive

method

Quality

(g)

Linearspeed

(mm/s)

2003 MIT Sliding No Elastic

band

0.35 180

2010 Carnegie

Mellon

University

Sliding

No

DC Motor 21.75 71.5

2011 Minzu

University of

China

Sliding

Yes

DC Motor

6

200

2015
Harvard

University
Jumping No

Memory

Alloy
0.068 —

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

22

Figure 1.1 Worldwide universities’ design of water striders; major

characteristics.

The propulsion system of the water strider robot typically relies on lightweight

actuators that generate the necessary thrust to move the robot forward. These

actuators are powered by low-energy sources, ensuring that the robot can operate for

extended periods without requiring significant power. This makes the design

2016
Zhejiang

University
Sliding Yes

Steering

gear
439 90

2017 Shanghai Jiao

Tong

University

Sliding

No

PZT

Driver

0.165

151

2017
Kogakuin

University

Sliding

No

DC motor

4.39

59.2

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

23

particularly attractive for tasks that involve long-term deployments in remote

locations, where frequent recharging or maintenance would be impractical.

Despite its advantages, however, the water strider robot faces significant

limitations when operating in dynamic aquatic environments [13][14]. The robot's

reliance on surface tension and its lightweight design restrict its ability to navigate

through turbulent waters, strong currents, or wind disturbances. Furthermore, the

robot's performance is significantly hampered in scenarios where submersion is

required, as its design is specifically optimized for surface locomotion. These

limitations highlight the need for more versatile amphibious systems capable of

functioning efficiently both on the surface and underwater, where more complex

missions, such as underwater exploration or search and rescue, where stability and

precise control become difficult, demand greater adaptability.

1.1.2 Amphibious Robots: Expanding Capability with Surface-Underwater

Transition

While water strider robots are optimized for surface locomotion, their inherent

limitations in dynamic and submerged environments have led to the development of

more versatile amphibious robots. These robots are designed to perform effectively in

both surface and underwater conditions, overcoming the constraints posed by their

surface-only counterparts. Amphibious robots can handle a variety of aquatic

environments, transitioning seamlessly from surface operations to submerged tasks,

making them more adaptable for complex applications such as ocean exploration,

search and rescue, and environmental monitoring.

Amphibious robots integrate a range of features that enable functionality in

both terrestrial and aquatic environments, beginning with adjustable buoyancy

systems that regulate depth in water. These systems are crucial for underwater

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

24

navigation, providing the robot with capabilities to hover, dive, or maintain buoyancy

as required by the task. Unlike water strider robots, which are restricted to surface

locomotion, amphibious robots can dynamically modify their buoyancy to

accommodate operational demands, making them significantly more versatile for

multi-environment missions.

The propulsion system in amphibious robots is also more advanced, integrating

submersible motors and directional thrusters to achieve efficient movement

underwater. These robots are typically designed with waterproof actuators that can

withstand the increased pressure of deeper waters, enabling them to navigate through

both calm and turbulent environments. Furthermore, these propulsion systems are

optimized for both surface and underwater efficiency, ensuring that the robot can

conserve energy while maximizing its range of movement.

From a metrological assurance perspective, amphibious robots offer significant

improvements over surface-only designs. The ability to transition between surface

and submerged states requires precise measurement systems that can function

accurately in a variety of environmental conditions. Pressure sensors, for example,

must be capable of adjusting to rapid changes in water depth, providing real-time

feedback on the robot’s position and ensuring accurate control. These sensors are

calibrated to maintain their precision over extended periods of operation, even when

subjected to the varying pressures of underwater exploration.

In addition, IMUs integrated into amphibious robots are calibrated for both

surface and underwater dynamics, ensuring the robot maintains stability and

orientation across diverse environments. Sensor fusion techniques further enhance the

reliability of these measurements by integrating data from multiple sensors, including

IMUs, pressure sensors, and depth sensors. This method enables the robot to

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

25

continuously update its internal model of the surroundings, facilitating real-time

adjustments to its movement and control systems.

Buoyancy control also plays a key role in metrological assurance, as the robot

must precisely manage its buoyancy to maintain stable depth during underwater

missions. Accurate buoyancy sensors and control algorithms ensure that the robot can

adjust its buoyancy in response to environmental changes, maintaining its operational

integrity in both shallow and deep waters. This level of precision is particularly

important in tasks that require fine-tuned depth control, such as underwater

inspection or sampling missions.

In conclusion, amphibious robots represent a significant advancement in

aquatic robotics, offering the flexibility and adaptability needed to operate in both

surface and underwater environments. The integration of advanced sensor systems

and metrological assurance techniques ensures that these robots can provide reliable

and accurate performance across a wide range of tasks. By overcoming the

limitations of surface-only designs like water strider robots, amphibious robots pave

the way for more comprehensive and versatile solutions in aquatic robotics.

1.2 Hardware System: Nvidia Jetson and Control Architecture

The success of modern amphibious robots is not solely dependent on

mechanical design; it also requires robust, real-time processing capabilities that can

handle complex tasks such as sensor fusion, navigation, and image processing. For

this reason, the Nvidia Jetson platform has emerged as an ideal hardware system for

amphibious robots, offering high-performance processing power in a compact,

energy-efficient form factor [15]. The Nvidia Jetson platform's advanced capabilities

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

26

enable real-time decision-making, deep learning inference, and the control of

sophisticated algorithms necessary for autonomous operations in dynamic and

unpredictable environments.

In addition to its computational strengths, metrological assurance plays a

crucial role in ensuring the accuracy and reliability of the data processed by the

Jetson platform. Amphibious robots must rely on a variety of sensors, such as IMUs,

pressure sensors, and depth sensors, all of which require careful calibration and

validation to provide accurate measurements. The Jetson platform supports the

integration of these sensors and facilitates real-time sensor fusion, where data from

multiple sources is combined to create a more precise understanding of the robot's

environment [16].

The integration of metrological assurance techniques, such as periodic

recalibration and environmental compensation, ensures that the robot can maintain

the precision and reliability of its operations. This level of accuracy is especially

important in applications like environmental monitoring or underwater inspections,

where reliable data collection is critical for decision-making.

1.2.1 Nvidia Jetson: The Heart of Amphibious Robotics

The Nvidia Jetson platform features a GPU, which is essential for processing

large volumes of data in real time. Amphibious robots often rely on data from

multiple sensors, such as IMUs, pressure sensors, depth sensors, and cameras, all of

which must be processed concurrently to make informed decisions regarding the

robot's environment and movement. The parallel processing capability of the Nvidia

GPU enables these calculations to be performed with minimal latency, ensuring that

the robot can dynamically respond to changes in its surroundings [17].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

27

Key features of the Nvidia Jetson platform that enhance its suitability for

amphibious robots include:

Real-time sensor data processing: The Nvidia Jetson processes sensor data

from multiple sources, integrating inputs from depth sensors, pressure sensors, and

cameras to create a comprehensive view of the robot's environment.

Edge AI and deep learning: The platform is capable of running complex AI

models directly on the robot, enabling real-time object detection, path planning, and

adaptive behavior without needing to rely on remote servers or cloud processing. This

is especially useful in underwater environments, where communication with the

surface is often limited.

Energy efficiency: Nvidia Jetson boards are designed to perform

high-computational tasks while consuming minimal power, an essential requirement

for robots operating in remote or underwater environments for extended periods.

Compact size: The compact nature of the Jetson platform makes it ideal for

integration into amphibious robots, which often have space constraints due to the

need for buoyancy control systems and propulsion mechanisms.

Figure 1.2 Nvidia Jetson Orin Nano Development Board.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

28

1.2.2 Hardware Integration and Control: Nvidia Jetson and Sensor

Interfacing

In amphibious robotic systems, hardware integration is fundamental to

achieving seamless operation across diverse environments. The Nvidia Jetson

platform serves as the core of the control architecture, providing both the

computational power for real-time decision-making and the flexibility required for

integrating a wide range of sensors and actuators. To support essential functions such

as navigation, depth control, and sensor fusion, the Nvidia Jetson platform

incorporates multiple I/O interfaces and pinouts that facilitate communication with

peripheral devices, including sensors, motors, and external controllers [18].

Table 1.2: Jetson Orin Nano Interface, Purpose, and Example Sensors/Devices.

Interface Purpose Example Sensors/Devices

GPIO
General input/output for basic sensors like limit

switches, temperature, or proximity sensors

Temperature sensors,

proximity switches

I2C

Communication with IMUs, depth sensors,

providing timing-based communication for

precision

BNO055 IMU, depth sensors

SPI
High-speed communication with pressure

transducers and other precision sensors

Pressure transducers,

temperature probes

UART
Communication with external microcontrollers or

GPS modules for navigation

UBlox GPS module, serial

communication devices

USB

Connection to external devices like cameras,

LIDAR, for image processing and real-time

feedback

USB cameras, LIDAR sensors

PWM
Motor control for DC and servo motors for

propulsion, buoyancy adjustments, and stabilization
DC motors, servo motors

Jetson’s I/O Capabilities and Sensor Integration

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

29

The Nvidia Jetson platform provides several interfaces that are crucial for

connecting the various sensors required for the operation of an amphibious robot. The

Jetson Xavier NX, for example, features an extensive set of GPIO (General-Purpose

Input/Output) pins, along with I2C, SPI, UART, and USB interfaces, enabling

seamless integration with a wide range of sensors and actuators.

Key hardware interfaces and their associated sensor functions include:

GPIO Pins: These general-purpose pins can be configured for input or output,

facilitating basic communication with sensors like limit switches, temperature sensors,

or proximity sensors. GPIO pins can also trigger specific actions, such as controlling

relays or managing external power sources.

I2C (Inter-Integrated Circuit): This protocol connects IMUs, depth sensors,

and other peripherals requiring precise timing. For instance, integrating a BNO055

IMU sensor on an I2C bus enables the robot to measure its orientation, providing

critical feedback for maintaining stability in both surface and underwater

environments.

SPI (Serial Peripheral Interface): This protocol supports high-speed

communication with sensors like pressure transducers and temperature probes.

Leveraging SPI for pressure sensors ensures quick and accurate data transmission,

essential for real-time depth control during underwater missions.

UART (Universal Asynchronous Receiver-Transmitter): This interface is

frequently employed for communication with external microcontrollers or GPS

modules. For example, a UBlox GPS module can be linked via UART to deliver

positional data during surface-level operations. Although GPS signals are unavailable

underwater, the UART interface remains crucial for surface operations and hybrid

navigation solutions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

30

USB Ports: The Jetson platform’s USB ports facilitate the connection of

external devices like cameras and LIDAR sensors. Cameras connected via USB are

essential for image processing tasks, including object detection and obstacle

avoidance. USB connectivity is particularly beneficial for real-time visual feedback

and executing AI-driven image recognition algorithms.

Sensor Integration and Metrological Considerations

The Nvidia Jetson platform’s ability to interface with a variety of sensors

through its hardware pinouts directly enhances its suitability for amphibious robots.

Sensors such as pressure transducers, IMUs, and cameras provide critical data needed

for the robot to navigate and maintain operational efficiency in dynamic

environments. However, the precision and reliability of these sensors depend on

metrological assurance—the practice of ensuring that sensors are calibrated and

validated for accurate measurement.

Pressure Sensors: These sensors, often connected via SPI, must be calibrated to

measure depth accurately. Changes in water pressure can significantly affect the

sensor’s readings, making it essential to calibrate these sensors at regular intervals,

especially in deep-sea missions.

IMU: Connected via I2C, provide orientation data but are susceptible to sensor

drift over time. Periodic calibration is essential to maintain accurate orientation,

particularly in underwater environments where GPS signals are unavailable. The

Nvidia Jetson’s processing capabilities enable sensor fusion of IMU data with other

sensors, such as gyroscopes and magnetometers, enhancing the reliability of

positional tracking..

Actuation and Control

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

31

In addition to sensor integration, the Nvidia Jetson platform supports motor

control for propulsion systems through its PWM outputs. These outputs can drive DC

motors or servo motors that control the robot’s movement on the surface and

underwater. The PWM outputs provide precise control over motor speed and

direction, enabling the robot to adjust propulsion based on real-time sensor feedback.

For amphibious robots, the Jetson’s GPIO and PWM pins also serve to control

actuators that adjust buoyancy and stabilization mechanisms. These control signals,

processed in real time, enable the robot to dynamically modify its position in the

water, facilitating effective navigation through varying currents and depths.

1.3 Integration of ROS for Efficient Communication

The ROS is an essential component in the control architecture of amphibious

robots, providing a flexible and scalable framework for integrating various hardware

and software components. ROS serves as the communication backbone that manages

the flow of data between sensors, actuators, and the robot’s control systems, enabling

real-time decision-making and adaptability in both surface and underwater

environments.

By leveraging ROS, developers can build modular and efficient robotic

systems that facilitate easy integration of additional sensors, enhanced functionality,

and future scalability. In amphibious robots, ROS manages sensor data fusion,

navigation control, motion planning, and state estimation—all of which are crucial

for ensuring autonomous operation in dynamic environments.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

32

1.3.1 Modular Architecture and Scalability

Figure 1.3 Overview of ROS Communication Framework.

One of the key strengths of ROS lies in its modular architecture, which enables

individual subsystems to be developed and operated independently as ROS nodes.

Each node is responsible for a specific function, such as sensor data processing,

motion control, or communication with actuators. These nodes communicate with

each other through a publish-subscribe model, which is a core feature of ROS.

The modular structure of ROS is well-represented by Node A, B, and C, as

shown in the Figure. Each node handles a specific function such as action servers and

service clients, with nodes communicating via topics and messages. This

publish-subscribe model enables various parts of the system to function

independently yet cohesively.

In the context of an amphibious robot, for example:

Node A could be responsible for managing feedback from an IMU sensor and

publishing data about the robot's orientation.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

33

Node B could handle depth sensor readings and provide real-time depth

control.

Node C might be responsible for controlling propulsion and buoyancy based on

the sensor data from Nodes A and B.

This modular approach ensures that individual components can be updated or

replaced without affecting the entire system. It also simplifies the process of

integrating new sensors or actuators as the robot evolves to meet specific mission

requirements. The scalability of ROS is particularly important for amphibious robots

that may need to operate in increasingly complex environments with additional

sensors and enhanced control algorithms.

1.3.2 Real-Time Sensor Data Fusion

Amphibious robots rely heavily on sensor data for navigation, obstacle

avoidance, and maintaining stability in aquatic environments. These sensors include

IMUs, depth sensors, cameras, pressure transducers, and GPS modules (for surface

operations). However, the accuracy and reliability of each sensor can vary depending

on environmental factors. For instance, GPS signals may be lost underwater, or

pressure sensors may drift at greater depths.

ROS facilitates sensor fusion, a process in which data from multiple sensors is

combined to improve the accuracy and robustness of the robot’s situational

awareness. For example:

Data from an IMU can be fused with depth measurements from a pressure

sensor to provide more reliable state estimation, particularly in environments where

GPS signals are unavailable.

Camera data can be combined with LIDAR for obstacle detection and terrain

mapping, providing a more comprehensive understanding of the surroundings.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

34

By fusing sensor data in real time, ROS helps to compensate for individual

sensor limitations, ensuring that the robot can navigate and operate effectively in both

surface and underwater environments.

1.3.3 Communication Between Surface and Submerged Systems

Figure 1.4 ROS Architecture and Middleware Layer.

The Figure delves deeper into ROS’s middleware architecture, showcasing its

flexibility in working across different communication layers. The rclcpp, rclpy, and

rcljava APIs provide the necessary tools to implement ROS communication for C++,

Python, and Java. These API layers facilitate interaction between the hardware

(sensors, actuators) and software (control algorithms) of amphibious robots, ensuring

real-time decision-making across various operating conditions.

One key aspect involves employing Cyclone DDS, Fast DDS, or Connext DDS

as communication backbones for Pub/Sub messaging with QoS. This is crucial for

maintaining communication between the robot’s surface and submerged systems,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

35

particularly during transitions between Wi-Fi communication on the surface and

acoustic communication underwater.

The rclcpp (C++ API) or rclpy (Python API) facilitates the implementation of

sensor data collection and fusion processes. The ROS-to-DDS bridge enables this

data to be shared across different ROS nodes, ensuring real-time sensor feedback is

available to all components responsible for controlling the robot's operations.

The Node Lifecycle management, as shown in the second diagram, is

particularly important in amphibious robots for managing tasks like power

management, sensor calibration, and depth control, which are vital for operations that

involve both surface-level tasks and deep-sea navigation.

1.4 Integration of Hardware and Software for Real-Time Control in

Amphibious Robots

In previous sections, we discussed the design principles, metrological

assurance, and the central role of the Nvidia Jetson platform and ROS in amphibious

robots. In this section, we expand on the practical integration of these systems,

focusing on how the hardware and software work in unison to provide real-time

control for surface and underwater operations. This includes detailing the key

components, interfaces, and control architectures, as shown in Figures 1 and 2. The

diagrams illustrate the interconnections between various sensors, actuators,

communication systems, and control platforms, highlighting the crucial role of both

the Jetson Orin Nano and Pixhawk platforms in enabling efficient and adaptable

robotic operations.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

36

1.4.1 Jetson Orin Nano as the Central Processing Unit

Figure 1.5 Hardware connection diagram.

Figure 1.6 Software protocol diagram.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

37

The Jetson Orin Nano, as shown in Figure 1.5, acts as the central computing

unit in the amphibious robot, interfacing with the topside computer and controlling

the robot’s motion based on sensor data inputs. The Orin Nano is connected to critical

sensors such as the IMU, pressure sensors (Bar30 and Bar100), and Water Linked

Underwater DVL. These sensors provide real-time feedback on the robot’s

orientation, depth, and underwater velocity. This data is then processed by the Jetson

Orin Nano using the ROS framework, which enables efficient sensor fusion and

decision-making.

Through its USB interfaces, the Jetson Orin Nano connects to peripherals such

as USB cameras and microphones, providing essential data for surface-level and

underwater object detection. This data enables the robot to dynamically adjust its

movements and perform complex tasks such as navigation, obstacle avoidance, and

real-time video streaming. The integration of GStreamer with ROS facilitates the

transmission of video and audio streams to the topside computer for further analysis

and monitoring.

The application of PWM signals for thruster control and TTL to RS485

communication for the joint servo ensures precise and adaptive movements of the

robot both on the water surface and underwater. The Jetson’s processing capabilities,

combined with its I/O flexibility, enable the robot to manage complex tasks

efficiently while conserving energy, which is crucial for extended missions in remote

or underwater environments.

1.4.2 Pixhawk as the Core Control Module for Underwater Operations

As depicted in Figures 1 and 2, the Pixhawk (ArduSub) serves as the core

control module for underwater operations, managing the communication between

various sensors and actuators. It interfaces with sensors such as the Bar100 and Bar30

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

38

pressure sensors, leak sensor, and depth sensor, providing vital data on the robot's

environment. The I2C bus splitter enables the Pixhawk to handle multiple sensors

concurrently, ensuring reliable data acquisition without communication bottlenecks.

Pixhawk communicates with the Jetson Orin Nano via ROS topics,

transmitting real-time motion control data and receiving sensor feedback to adjust the

robot’s propulsion and stabilization systems. Additionally, it manages the T200

thruster, servo control board, and joint servo through PWM and RS485 signals. This

hardware integration enables the robot to smoothly transition between surface

locomotion and underwater operations, providing enhanced control over buoyancy

and movement.

1.4.3 Topside Computer and Closed-Loop Control

The topside computer plays a crucial role in monitoring and controlling the

robot’s operations, as depicted in both diagrams. Connected via UDP (ports :3000

and :3001), the topside computer receives sensor data streams from the Jetson Orin

Nano, enabling real-time data visualization and analysis. A closed-loop control

algorithm ensures that sensor feedback is promptly processed to adjust the robot's

trajectory, propulsion, and buoyancy.

The joystick interface provides manual control when needed, enabling an

operator to intervene and guide the robot, particularly during delicate operations such

as underwater inspection or surface monitoring. Through ROS, the topside computer

sends motion control commands to the Jetson Orin Nano, ensuring that the robot can

respond to environmental changes in real time, even when operating at a distance or

under challenging conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

39

1.4.4 Communication and Sensor Fusion

One of the most crucial aspects of an amphibious robot is its ability to

seamlessly integrate data from multiple sensors to make informed decisions. In this

system, ROS topics facilitate communication between the Jetson Orin Nano and the

Pixhawk, as well as between the robot and the topside computer. This modular

architecture ensures that sensor data can be shared in real time across the various

subsystems.

As depicted in both figures, the integration of sensors such as IMUs, depth

sensors, pressure sensors, and cameras enables continuous updates on the robot’s

surroundings. These sensors work together to provide a comprehensive view of the

environment, with each sensor compensating for the limitations of the others. For

instance, the IMU provides orientation data, while the pressure sensors supply depth

information. The Jetson Orin Nano's GPU processes this data using real-time sensor

fusion techniques, ensuring that the robot can navigate smoothly through both surface

and underwater environments.

This architecture also supports the transition between surface and submerged

operations, with the communication system automatically adjusting between

RF-based protocols (for surface-level operations) and underwater communication

methods (such as acoustic modems). ROS ensures that communication between the

topside computer, the Jetson Orin Nano, and the Pixhawk remains uninterrupted,

even when switching between different environments.

1.4.5 Real-Time Autonomous Operation

Finally, the integration of all these systems enables the amphibious robot to

operate autonomously in real time. The Nvidia Jetson's edge AI capabilities empower

the robot to process complex tasks such as path planning and obstacle avoidance

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

40

without relying on remote servers. By running AI models directly on the robot, it can

make decisions in real time, adjusting its trajectory based on sensor feedback and

environmental conditions.

With ROS as the backbone of the communication system, the robot can

autonomously perform missions such as underwater exploration, search and rescue,

and environmental monitoring. The ability to run deep learning models for object

detection and dynamic control further enhances the robot’s versatility, enabling it to

adapt to changing environments without human intervention.

Conclusions to Chapter 1

The current chapter considers possible cases of all types of security in the

design, manufacture and operation of drones. However, the novelty of setting and

solving goals for underwater types of drones highlighted the pioneering spirit of

solving such problems. The process begins with planning and design, followed by

integrating appropriate sensors and conducting diagnostic checks, and concludes with

providing metrological support during assembly.

Therefore, we have illustrated how the hardware and software systems

discussed in the following sections come together to provide real-time control for

amphibious robots. The combination of Nvidia Jetson, Pixhawk, ROS, and advanced

sensor fusion techniques ensures that these robots can operate efficiently in both

surface and underwater environments, meeting the diverse demands of modern

aquatic robotics. This integrated approach sets the foundation for the further

development of autonomous, adaptable, and resilient robotic systems capable of

addressing complex challenges in aquatic environments.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

41

Chapter 2

Building a Test Platform for Hydrodynamic Performance

The successful development and deployment of amphibious robots rely heavily

on understanding and optimizing their hydrodynamic performance. Building an

underwater test platform is crucial for evaluating and refining these robots’

capabilities, particularly when operating in complex aquatic environments. Unlike

surface environments, where variables such as air resistance and surface tension

dominate, underwater environments are governed by fluid dynamics, which introduce

significant challenges such as drag, buoyancy, thrust generation, and pressure effects

at various depths.

Establishing a controlled and well-equipped underwater testing platform

enables researchers to systematically study these factors under real-world conditions,

ensuring that the robot performs efficiently across a variety of submerged scenarios.

Such a platform is instrumental in assessing the robot's propulsion efficiency,

stability, and energy consumption, as well as its ability to respond to different water

flow rates, pressure gradients, and depth-related variables. By collecting detailed

hydrodynamic data in a simulated underwater environment, engineers can fine-tune

the robot's design to enhance its performance in real-world applications such as ocean

exploration, search and rescue operations, and environmental monitoring.

In underwater robotics, precise hydrodynamic testing is essential for refining

not only the mechanical design but also the control algorithms responsible for

navigation and maneuverability. These systems must work in harmony to ensure that

the robot can maintain stable and efficient movement despite the unpredictable and

often hostile nature of underwater environments. Therefore, a robust underwater test

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

42

platform serves as the foundation for achieving the metrological accuracy needed to

optimize robotic performance, making it an indispensable tool in the development of

advanced aquatic robots.

In this chapter, we will explore the design, implementation, and key metrics of

an underwater test platform, focusing on the sensor integration, data collection

techniques, and hydrodynamic parameters critical to evaluating an amphibious robot's

performance. By establishing a comprehensive testing environment, this platform will

provide the necessary infrastructure for continuous iteration and improvement of the

robot’s capabilities.

2.1 Propulsion Testing: Precision Hydrodynamic Measurement and

Calibration

2.1.1 Importance of Force Measurement in Hydrodynamics

In underwater robotics, precise measurement of hydrodynamic forces is crucial

for assessing the performance of propulsion systems, such as thrusters.

Understanding forces like thrust, drag, and torque is essential for optimizing the

propulsion system to improve energy efficiency, stability, and movement accuracy in

submerged environments [19]. To address these needs, a single-device test platform

is developed to isolate and evaluate an individual propulsion system under controlled

underwater conditions [20][21].

As highlighted in the study "Design of the Water Strider-like Robot" (uploaded

document), the testing of propulsion systems often encounters non-linearities,

including torque-induced oscillations and instabilities, particularly when dealing with

dynamic thrusters. This test platform is designed to mitigate these issues by focusing

on a single propulsion system at a time, enabling researchers to gather high-resolution

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

43

data on the thrust-to-power ratio, motor efficiency, and dynamic response of the

propeller under various operational conditions.

General Description of a Thruster

A propeller is a device that generates thrust for underwater vehicles (Figure

2.1). It typically consists of a rotating screw-like blade that pushes water backward to

produce propulsion. The direction of thrust can be adjusted by reversing the

propeller's rotation. The performance of a propeller is crucial for controlling and

maneuvering underwater vehicles and can be characterized by various parameters,

including thrust, propeller speed, and output flow velocity. The thrust generated by a

propeller is directly proportional to the square of its speed, while the output flow

velocity depends on thrust, speed, and propeller efficiency [22].

To accurately describe the dynamic characteristics of a propeller, researchers

have developed a physical system model based on force and torque feedback to

represent the propeller's thrust. This model employs the propeller's angular velocity

as the dynamic state variable and controls the propeller's motion through input torque.

In this experiment, propellers manufactured by ROVMAKER were selected, and

output current was controlled using PWM to regulate the propeller's output torque,

thereby generating thrust underwater.

In PWM control, the pulse width range is 1000-2000 microseconds, with 1500

corresponding to the motor's midpoint. In other words, when PWM outputs 1500

microseconds, the motor remains stationary. As the control signal increases linearly

from 1500 to 2000 microseconds, the motor rotates forward, and the speed linearly

increases. Conversely, during the decreasing process from 1500 to 1000

microseconds, the motor reverses, increasing its speed [23].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

44

Figure 2.1. Using propellers manufactured by ROVMAKER, voltage supply

range: 3s-6s, maximum passing current 15A, waterproof to a depth of 300 meters

under water surface

Lumped Parameter Model Development

A standard thruster configuration, illustrated in Figure 1, comprises a stationary

shroud and a propeller propelled by a torque-generating mechanism (T) operating at

angular velocity (ω). The thruster's shroud possesses a cross-sectional area (A) and

encloses a volume (V). The surrounding fluid has a density (ρ) and a volumetric flow

rate passing through the thruster (Q) [24].

The model development is simplified by the following assumptions (Figure

2.2):

1. Negligible kinetic energy of the external fluid environment.

2. Negligible friction losses in the motor and propeller blades.

3. Incompressibility of the ambient fluid.

4. Maintaining parallel flow direction at the inlet and outlet of the thruster,

disregarding rotational flow effects [25].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

45

A state function of the volumetric flowrate Q can express the kinetic co-energy

 of the fluid in the thruster:

(2.1)

Defining a generalized momentum as：

 (2.2)

The above relation is that of inertia (momentum related by a static constitutive law to

the flow in bond-graph

nomenclature with the effort variable and flow variable .

 has units of momentum/area and is referred to as the pressure momentum.

Since the energy relations are linear, the

Co-energy and energy have equal magnitudes, and the kinetic energy can be

expressed as a state function of the pressure momentum .

 (2.3)

The pressure momentum relation that follows from a power balance is as

follows:

 (2.4)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

46

The power input from the thruster propeller is represented by , the outgoing

kinetic energy per volume is represented by , and the time rate of change of the

pressure momentum is shown by .

It is possible to represent the departing kinetic energy per volume as

 (2.5)

Where the is the thruster's fluid momentum per volume.

The convected linear momentum, which is equal to the thrust created, connects

the thruster and surrounding fluid:

 Thrust .(3) (2.6)

The thruster/propeller characteristics and angular velocity can be linked to

the volumetric flowrate, provided that the propeller does not cavitate. Slip refers to

the discrepancy between a propeller's theoretical and actual advance per revolution. It

is commonly stated as a ratio as follows:

 (2.7)

where , also known as the pitch, is the axial distance the propeller blades

move for every unit of revolution (1 rad),

The equation above indicates that () can be expressed as:

 (2.8)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

47

Where is referred to as the propeller efficiency.

From (1)-(4), the following thruster dynamic state and output equations are

formed:

 (2.9)

 Thrust . (2.10)

The propeller angular velocity R can serve as the thruster dynamic state

variable in the thruster's dynamic state and output equations, assuming that the

propeller efficiency (), pitch (), and duct area () are constants.

 (2.11)

 Thrust . (2.12)

Keep in mind that, as was previously stated, the steady state thrust force is

proportionate to the input torque.

Figure 2.2. Major Elements of the Model

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

48

Thruster validation (response rate, thruster thrust, torque produced, phase lag

fit)

The model was validated using a thruster mounted in a rack in an

aluminum-type table that instrumented the device to measure the output force and

torque. As shown in the Figure 2.3, the thrust was measured by a six-component

force transducer using a D6045A sensor from DMI (Digitalize Miniaturize

Inteligentized), Inc. in a matrix decoupling technique in order to decompose the

output signal of the six-axis force transducer into its force and torque components in

different directions and complete the recording [26]. A series of static tests were

carried out to confirm the previously proposed model and to determine specific

parameter values a, 0, and Ct. Based on the available measurement data, it was

possible to confirm that these parameters were reasonable for the physical parameters

of propeller efficiency and volume involved [27].

Figure 2.3. Direct coupling relationship between thrusters and sensors

Thruster Test

The thruster was tested in several dynamic thrust measurement experiments.

These tests included a series of current-commanded step input signals covering a

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

49

broad range of input levels, as well as a long-period sinusoidal waveform input signal

[28].

Measured variables include motor input current, voltage, and current

instructions as well as motor speed and net thrust. These measurements are all

dynamic and are all collected at a sample rate of 50 Hz [29][30].

Long Period Triangular Wave Inputs

We decided to output long-period sine wave signals for the measurement of

thrust generation before and after in order to produce robust output results. The

results are displayed in Figure an as a function of motor speed over a 60-second

period for the thrust produced in the X-axis and the torque produced in the Y-axis.

The inputs for current and voltage with varying speeds are shown in Figure 2.4. The

speed versus force generated for the steady state instance is shown in Figure 2.5 This

number is consistent with the idea that predicted thrust is inversely proportional to

propeller speed. Due of the strong link between and current inputs, the current/thrust

behavior is best described by the square law relationship.

Figure 2.4. The rotational speed changes in a sinusoidal waveform and outputs the

corresponding current and voltage input signals.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

50

Figure 2.5 The thrust generated by the thruster in the direction of the sensor's X-axis

and the moment generated by the Y

Step Input Effects of Amplitude.

In this experiment, step signals of varying amplitudes were put up to regulate

the motor's current and, consequently, its speed. The influence of rotational speed

from 0 to the force corresponding to the steady state reached after the step control

signal was recorded using eight different sets of current inputs with the same time

step setting. It was established that the thruster's force output's steady state value

depends on its current value.

Figure 2.6 Different rotational speeds corresponding to the force generated

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

51

Figure 2.7 Linear relationship with rotational speed exhibited by the mean

values of the 8 force groups under Gaussian regression

Figure 2.8 Linear relationship with rotational speed exhibited by the mean

values of 8 Lets of moments under Gaussian regression

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

52

In 2.1, we focused on the isolated testing of single propulsion units to obtain

accurate data on thrust, torque, and energy efficiency. However, as the complexity of

the robot's movements and interactions with its aquatic environment increases, the

need for a more comprehensive, data-driven approach becomes essential. A single

propulsion system provides limited insights, and real-world performance requires the

integration of multiple systems operating simultaneously.

The key to enhancing the efficiency and accuracy of hydrodynamic

measurements lies in a multi-device platform that facilitates parallel data collection

from different components of the robot. This data-driven methodology enables the

simultaneous capture of a broad spectrum of movement profiles, reducing the risks of

data singularity and measurement biases. By exploring various motion configurations

concurrently, the system can rapidly identify the most effective combinations for

achieving optimal propulsion, stability, and energy efficiency.

Moreover, this multi-device test platform emphasizes the importance of

metrological assurance by automating the collection of multiple datasets in real-time.

The parallel nature of this setup not only increases the speed of data collection but

also improves the accuracy of measurements by minimizing human intervention and

errors, providing more reliable and repeatable results. By collecting a wide array of

data points under different operating conditions, this platform enables more robust

statistical analysis and reduces the likelihood of overfitting to a specific set of motion

parameters.

In the next section (2.2), we explore the integration of foil kinematics into this

multi-device setup. By utilizing this parallel data-driven approach, we can evaluate

different kinematic configurations and propulsion strategies, optimizing the robot's

performance while ensuring that metrological standards are upheld. This method

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

53

enhances not only the speed of data collection but also the precision and diversity of

the dataset, facilitating more effective performance tuning and error minimization

across various aquatic environments.

2.2 Exploring Alternative Underwater Propulsion Systems: The Approach to

Hydrodynamic Optimization

2.2.1 Foil Kinematics in Underwater Robotics

In the following section of this chapter, we explore the foil kinematics of

underwater robots, a critical factor that influences the hydrodynamic performance and

overall efficiency of the propulsion system. Foils, or flapping fins, are increasingly

employed in underwater robotics to replicate the propulsion mechanisms of aquatic

animals such as fish and manta rays [31]. These biomimetic systems rely on a

combination of oscillatory motion and foil flexibility to generate thrust, minimize

drag, and enhance maneuverability [32].

The study of foil kinematics is essential for understanding how different

movement patterns, amplitudes, and frequencies of the fins contribute to propulsion.

Specifically, the goal is to optimize the hydrodynamic parameters to ensure that the

robot can achieve maximum efficiency and stability while operating in complex

aquatic environments. We explore the kinematic equations, principles, and analytical

methods that guide the development of efficient foil-based propulsion systems [33].

Kinematic Parameters of Foil Motion

The flapping motion of a foil can be described using kinematic parameters such

as frequency, amplitude, pitch angle, and phase difference between pitch and heave

movements [34]. These parameters dictate how the foil interacts with the surrounding

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

54

fluid to generate lift and thrust forces. The basic equation describing the sinusoidal

motion of a flapping foil is [35]:

 (2.13)

Where:

 represents the instantaneous angle of the foil at time ttt,

 is the maximum pitch angle,

 is the flapping frequency (measured in Hz),

 is the phase angle between pitch and heave motions.

In underwater robots, the pitch angle and heave amplitude are carefully

adjusted to ensure that the foil produces the necessary thrust while minimizing drag.

The phase difference between the two motions is a critical parameter, as it directly

influences the generation of forward thrust and the efficiency of the system. Typically,

a phase difference of around 90 degrees has been shown to optimize thrust production

in foil-based propulsion systems [36][37].

Foil Kinematics and Hydrodynamic Forces

To understand the forces acting on a flapping foil, the Strouhal number (),

Reynolds number (), and reduced frequency () are critical dimensionless

parameters that provide insights into the flow behavior around the foil and its

interaction with the water.

Strouhal number (): This number governs the oscillatory motion and is

defined as:

 (2.14)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

55

Where:

 is the flapping frequency,

 is the amplitude of the heave motion,

 is the forward velocity of the robot.

Research suggests that maintaining a Strouhal number between 0.2 and 0.4 is

optimal for achieving efficient thrust in biomimetic systems, as this range maximizes

the propulsive efficiency while minimizing energy consumption.

Reynolds number (): The Reynolds number is a measure of the ratio of

inertial forces to viscous forces and is calculated as:

 (2.15)

Where:

 is the fluid density,

 is the foil velocity,

 is the chord length of the foil,

 is the dynamic viscosity of the fluid.

The Reynolds number helps determine whether the flow around the foil is

laminar or turbulent, which in turn affects the hydrodynamic forces acting on the foil.

Reduced frequency (): This parameter indicates how efficiently the foil

generates thrust through oscillations and is given by:

 (2.16)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

56

A higher reduced frequency typically corresponds to better thrust generation,

though it also increases the drag experienced by the foil. The optimization of is

critical in designing foil-based propulsion systems for underwater robots [38][39].

2.2.2 Foil Kinematics: Optimizing Biomimetic Propulsion for

Hydrodynamic Efficiency

In underwater robotics, foil kinematics plays a crucial role in determining the

hydrodynamic efficiency of the robot's propulsion system. Flapping foils, which

mimic the motion of aquatic animals, rely on the interplay between pitch and roll

motions to generate thrust and maneuverability. The following section provides an

analysis of the kinematics behind these movements, introducing key equations that

describe the position and orientation of the foil in three-dimensional space [40].

The kinematic behavior of the foil is detailed in Figure 2.9 of the referenced

study, where the foil undergoes both pitch and roll motions. The motion is broken

down into two stages: first, observing the roll motion from the XoZ plane, and then

analyzing the pitch motion from the YoZ plane [41].

Roll Motion Analysis

In the first stage, the roll motion is observed in the XoZ plane, where the

position of the foil can be described by the following kinematic equations:

 (2.17)

Where:

 is the distance between the axis of the roll motion and the chord of the

flapping wing,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

57

 is the span of the flapping wing,

 is the rolling angle as a function of time.

This analysis captures the basic rolling motion of the foil, which helps generate

forward thrust and directional control in the water.

Pitch Motion Analysis

The second step involves observing the pitch motion from the YoZ plane. The

kinematic equations for the foil in this plane are:

 (2.18)

Where:

 represents the chord length of the foil,

 is the pitch angle as a function of time.

The pitch motion controls the angle of attack of the foil, directly affecting the

thrust generated by the flapping motion. By adjusting the pitch angle, the foil can

produce either forward thrust or lift, depending on the robot's required movement.

Combined Roll and Pitch Motion

The final stage of the analysis combines both the roll and pitch motions to

describe the complete movement of the foil in the three-dimensional coordinate

system. The combined equations for the x, y, and z coordinates of the foil are as

follows:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

58

 (2.19)

Figure 2.9 The kinematics of the flapping wing are analyzed as below: (a) A

top view of the flapping wing configuration. (b) Roll movement observed in the XoY

plane. (c) Pitch movement taking place in the XoZ plane. (d) A combined motion

illustrated within a three-dimensional coordinate system.

The figure presents the kinematic analysis of the flapping wing. (a) shows a top

view of the wing. (b) demonstrates the roll motion in the XoY plane. (c) displays the

pitch motion in the XoZ plane. (d) combines the movements within a

three-dimensional coordinate system.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

59

Figure 2.10 The trajectory of the flapping wing is depicted below: (a) The

position of the two servo motors. (b) The trajectory traced by the end tip of the

flapping wing in motion.

The figure illustrates the flapping wing's trajectory. (a) highlights the positions

of the two servo motors. (b) shows the path of the wing's end tip.

These equations describe the trajectory of the foil’s tip in three-dimensional

space as it undergoes a combination of rolling and pitching. The foil’s tip trajectory is

important for determining the robot’s maneuverability and hydrodynamic

performance, as it influences the distribution of thrust forces and the overall

efficiency of the propulsion system.

Kinematic Validation and Optimization

To validate these kinematic equations, experiments are often conducted using

high-precision sensors to track the actual motion of the foil and compare it to the

theoretical predictions. By measuring key variables such as thrust, lift, and torque,

researchers can optimize the foil’s motion to achieve maximum hydrodynamic

efficiency. Adjusting the rolling angle) and the pitch angle () facilitates

fine-tuning of the propulsion system to suit different operating conditions, such as

high-speed travel or precise maneuvering.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

60

The combined roll and pitch motions form the basis for optimizing the

performance of underwater robots, enabling efficient propulsion with minimal energy

consumption. By refining the kinematic parameters based on experimental data, the

robot can achieve improved stability, reduced drag, and enhanced thrust generation.

Impact on Hydrodynamic Performance

The kinematic parameters described above play a significant role in

determining the hydrodynamic performance of underwater robots. Through careful

manipulation of these parameters, it is possible to achieve a balance between thrust,

energy efficiency, and maneuverability. For example, increasing the heave amplitude

() can generate higher thrust, but it may also result in increased drag, which would

negatively impact the robot's energy efficiency.

Moreover, the frequency of oscillation () directly influences the robot's ability

to accelerate and maneuver. A higher frequency typically leads to more dynamic

movements, enabling the robot to respond quickly to changes in the environment.

However, this also increases the robot's energy consumption, requiring a balance

between frequency and amplitude to achieve optimal performance.

Experimental Validation of Foil Kinematics

To validate the theoretical kinematics of the foil motion, experimental setups

often involve testing the foil under controlled conditions in a submersion tank.

During these tests, high-precision force sensors measure thrust and drag forces, while

motion capture systems track the foil's movements. This data helps refine the

kinematic models and ensure that the robot's foil-based propulsion system meets the

desired performance criteria.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

61

2.2.3 Parallel Testing Platform for Hydrodynamic Performance

The experimental platform, as shown in the Figure 2.11, demonstrates eight

synchronized 2-degree-of-freedom (DOF) foil systems operating simultaneously

within a water tank. These foil units enable the simulation of complex hydrodynamic

scenarios and facilitate parallel data acquisition from multiple sensors, improving

both the efficiency and accuracy of experimental measurements.

Figure 2.11 Modular Synchronized Foil Testing Platform with Movable

Gantry.

Synchronized Motion and Control

Each foil unit features two degrees of freedom: pitch (rotation) and heave

(vertical motion), effectively simulating aquatic locomotion patterns. Synchronized

operation across all foil units ensures consistent fluid conditions within the tank,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

62

supporting meaningful comparisons and reliable hydrodynamic analysis.

Additionally, the movable gantry system allows controlled, steady-speed movement

to replicate realistic aquatic environments, mimicking conditions such as uniform

water flow around the foils.

Data Acquisition and Real-Time Monitoring

The foil units are equipped with strain gauge-based force sensors that record thrust,

torque, and other hydrodynamic forces during operation. These sensors are connected

via a communication network, enabling synchronized data acquisition across all units,

reducing latency-induced errors and improving data consistency. This synchronized

approach enhances the accuracy and reproducibility of experimental results,

contributing to more precise hydrodynamic analysis.

Applications and Optimization

The multi-unit setup allows researchers to study various fluid interaction scenarios,

optimize propulsion parameters, and test a range of movement frequencies and

amplitudes. These experiments are crucial for refining hydrodynamic models and

advancing underwater robot design. By conducting parallel tests, the platform

facilitates rapid data collection across different conditions, providing a

comprehensive set of datasets critical for evaluating and improving robot

performance in diverse aquatic environments.

Modular Design and Expandability

A key feature of this platform is its modular, detachable design. Each foil unit can be

disassembled and replaced with different foil shapes and configurations, enabling a

variety of experimental setups. This modularity allows researchers to explore

different hydrodynamic behaviors by employing alternative foil geometries,

enhancing the platform's versatility to meet evolving research demands.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

63

Integration with Control Algorithms

The data collected from these synchronized tests plays a crucial role in the

development of predictive control algorithms such as MPC and the training of

GPR-based hydrodynamic models, as outlined in Chapter 4. The rich, diverse

datasets generated by this platform enable robust model development, improving the

performance of control strategies for underwater robots operating in dynamic

environments.

Conclusions of Chapter 2

1. In the current chapter there was developed a test platform paradigm for

underwater dynamics measurement that overcomes the limitations of current

techniques and can improve the accuracy, stability, and uniformity of

measurements by incorporating advanced control systems and compensation

techniques.

2. The considered platform adapts to uncertainties and degradation of thruster

performance through the use of adaptive sliding controllers which is

demonstrated through experimental validation, showcasing its superiority over

existing methods.

3. The studied proposed test platform paradigm offers a promising approach for

underwater dynamics measurement providing more accurate and reliable

measurements in various applications for advancing underwater research and

technology. Dynamic adaptation or the adaptation within a sliding mode (on a

sliding surface), based on so-called equivalent control obtained by the direct

measurements of the output signals of a first-order low-pass filter containing in

the input the discontinuous control with the specially adapted magnitude value.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

64

Chapter 3

Enhancing Stability and Depth Control through Sensors Fusion

Underwater robots require precise and reliable feedback from multiple sensors

to ensure stability, maintain orientation, and regulate depth in dynamic and

unpredictable aquatic environments. Two primary sensor systems are used to achieve

these objectives: IMUs for attitude control and depth sensors/altimeters for accurate

depth regulation [42]. This chapter explores the integration of these sensors,

highlighting how they work together to enhance the robot’s ability to maintain stable

movement and consistent depth, which is crucial for both autonomous and remotely

operated underwater missions [43].

3.1 IMU-Based Attitude Control

3.1.1 Working Principles of IMU

An IMU integrates multiple sensors—typically an accelerometer, a gyroscope,

and sometimes a magnetometer—to provide detailed feedback about an object’s

motion, orientation, and rotation. In underwater robotics, these sensors are critical for

maintaining stability, accurate orientation, and control. Let’s explore the principles of

these sensors using the figures provided.

1. Accelerometers

An accelerometer measures the rate of change in velocity along a specific axis.

MEMS accelerometers detect linear acceleration through a proof mass suspended by

springs. When the sensor experiences acceleration along its sensitivity axis, the mass

deflects, and the amount of deflection is proportional to the applied force (Figure

3.1(a)). This is how the accelerometer measures the acceleration of an object in

motion [44].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

65

Figure 3.1 Illustration of Accelerometer Operation in Horizontal and Vertical

Orientations.

Sensitivity to Gravity: When the sensitivity axis of the accelerometer aligns

with the Earth’s gravitational field, the sensor also detects pseudo-acceleration caused

by gravity. This pseudo-acceleration doesn’t correspond to actual movement but

rather the constant force of gravity (Figure 3.1 (b)). In this case, the accelerometer

will register an acceleration of -1 g along the vertical axis, even though there’s no

real displacement. Understanding this principle is important when distinguishing

between true motion and gravitational effects [45][46].

2. Gyroscopes

A gyroscope measures the angular velocity or the rate of rotation around an

axis. MEMS gyroscopes operate based on the Coriolis effect, which refers to the

inertial force experienced by a mass in motion within a rotating frame [47]. In a

MEMS gyroscope, a mass oscillates along one axis (e.g., the x-axis), and when an

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

66

angular velocity is applied about another axis (e.g., the z-axis), the Coriolis force

causes a deflection along the third axis (y-axis), as shown in Figure a.

Figure 3.2 Gyroscope Operation Models – (a) Single Mass Configuration and

(b) Tuning Fork Configuration (need sign web)

The Coriolis force plays a central role in the functioning of MEMS gyroscopes.

The position of a mass in the body frame is described as:

 (3.1)

The inertial velocity of the mass is derived by considering both the velocity

due to rotation and the tangential velocity:

 (3.2)

Further, the inertial acceleration of the mass in the body frame is derived as the

combination of the derivative of the velocity and the tangential acceleration:

 (3.3)

The key term here is the Coriolis force that influences the motion along the

perpendicular axis. From Newton's Second Law of Motion, the force acting in the

sensing direction (y-axis) is given by:

(3.4)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

67

This explains how the gyroscope detects angular velocity based on the

displacement of the oscillating mass in response to rotational motion. For practical

applications, if the mass starts from rest along the -axis, the resulting force due to

the Coriolis effect simplifies to:

 (3.5)

This force leads to a significant displacement, which is proportional to the

applied angular velocity . MEMS gyroscopes often employ a tuning fork

configuration, where two masses oscillate in opposite directions to cancel out the

effects of linear acceleration and ensure accurate angular rate measurements.

Tuning Fork Configuration: Many MEMS gyroscopes employ a tuning fork

configuration, where two masses oscillate in opposite directions (Figure 3.2(b)). This

design cancels out the effects of linear acceleration or vibration, which could

otherwise interfere with the gyroscope’s measurements. The Coriolis forces on the

two masses act in opposite directions, and the resulting change in capacitance is

directly proportional to the angular velocity, providing more robust measurements in

dynamic environments.

3. Magnetometers

A magnetometer measures the strength and direction of magnetic fields, often

employing magneto resistive sensors that change resistance in response to nearby

magnetic fields. MEMS magnetometers typically measure the Earth's magnetic field,

enabling the robot to maintain accurate orientation relative to magnetic north. As

illustrated in Figure 3.3(a), the Earth's magnetic field resembles a dipole with north

and south magnetic poles.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

68

Figure 3.3 Magnetic Field Representation(a) Standard dipole magnet

demonstrating magnetic field lines. (b) Earth's magnetic field modeled as a dipole,

highlighting the magnetic poles and spin axis.

Magnetic Inclination and Declination: The direction of Earth’s magnetic field

varies depending on location. The magnetic inclination is the angle between the field

lines and a horizontal plane, while magnetic declination accounts for the difference

between true north and magnetic north (Figure b). In underwater robotics, this data is

vital for maintaining proper orientation, especially when compensating for gyroscope

drift over time. However, magnetometers are susceptible to magnetic interference,

especially in industrial or underwater environments with metallic structures or other

magnetic sources [48].

3.1.2 IMU Data Filtering and Sensor Fusion for Attitude Control

In real-time control and navigation systems for underwater robots, filtering

techniques are crucial for ensuring the accuracy and stability of orientation estimates

derived from sensor data. This section discusses two primary filtering

approaches—Complementary Filtering and Kalman Filtering—focusing on their role

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

69

in IMU data processing, with particular emphasis on applications in underwater

robotics [49].

Comparison between Kalman filter and complementary filter

Kalman Filtering is an optimum estimating approach that combines state

estimations with observational data [50]. The Kalman Filter's strengths include its

ability to handle system noise and uncertainty while providing generally accurate

posture estimate [51]. However, its implementation is relatively difficult,

incorporating concepts such as state space models and covariance matrices, and it

requires a large amount of processing resources. This complexity may make it less

appropriate for usage in resource-constrained embedded devices [52].

Table3.1 Comparison between Kalman Filtering and Complementary Filtering.

Comparison Aspect Kalman

Filtering

Complementary

Filtering

Complexity High Low

Computational Overhead Substantial Minimal

Implementation Difficulty Complex Straightforward

Adaptability to Dynamic

Environments

Moderately

Good

Limited

Attitude Estimation Accuracy High Moderate

Resource Consumption Considerable Low

Suitability for High-Dynamic

Movements

Excellent Limited

Real-Time Performance Relatively Slow Relatively Fast

Multi-Sensor Fusion Applicable Applicable

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

70

On the other hand, Complementary Filtering provides a simple and effective

way for estimating pose. It accomplishes this by combining data from accelerometers

and gyroscopes, reducing drift in pose estimation [53]. Complementary Filtering has

several advantages, including its simplicity of implementation and minimal

computational load, making it ideal for applications requiring excellent real-time

performance. However, it may struggle in dynamic situations or during quick motions

due to accumulated mistakes, potentially resulting in unstable pose estimates.

Table 3.2 Implementation and Derivation of Complementary Filtering

Comparison Aspect Accelerometer Gyroscope

Sensitivity to High-Frequency

Vibrational Noise

Sensitive Insensitive

Low-Frequency Attitude Drift Stable Drifts

Resistance to High-Frequency

Interference

Weaker Stronger

Resistance to Low-Frequency

Interference

Stronger Weaker

Complementary Filtering is a commonly applied approach for attitude

estimation that relies on data fusion from two sensors: the accelerometer and the

gyroscope. The strength of this strategy lies in leveraging the advantages of both

sensors to enhance the accuracy and reliability of attitude estimation.

Processing Accelerometer Data:

The accelerometer detects the deviation angle between the acceleration and

gravitational acceleration vectors to determine the object's tilt. However,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

71

accelerometers detect gravity-induced acceleration, which can interfere with actual tilt

measurements. As a result, the accelerometer signal must be adjusted to account for

gravitational acceleration. Typically, a low-pass filter is employed to reduce

high-frequency noise created by mechanical vibrations. After filtering, the data better

captures the object's tilt.

Processing Gyroscope Data:

The gyroscope is designed to measure an object's angular velocity, or speed of

rotation. While gyroscopes are sensitive and precise in detecting rotational

movements, their measurements can become inaccurate with time, causing drift in

attitude calculation. To reduce drift, the gyroscope's angular velocity data is paired

with the accelerometer's tilt information. This fusion is based on the complementarity

concept, in which the outputs of both sensors are combined using a weighted average,

thereby complementing each other's strengths.

Derivation of the Complementary Filter Formula:

For the gyroscope measurements , , , and the error terms , , ,

along with their integral components , , , the derivation of the

Complementary Filter can be expressed as follows:

 (3.6)

The alpha (α) value typically ranges between 0.98 and 0.99, adjustable based on

the specific scenario and hardware characteristics.

 represents the proportional gain, which adjusts the influence of the error

term on the gyroscope measurements.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

72

The error terms , , represent the cross-product of the estimated

direction of gravity and the accelerometer measurements.

The integral components , , are the integrals of the error

terms.

Overall Implementation Process:

a) Input Conversion: Convert angular velocity to radians per second.

 (3.7)

b) Normalization of Accelerometer Measurements:

 (3.8)

 Compute and norm

e) Integration of Error Terms: Integrate the error terms.

 (3.9)

f) Adjustment of Gyroscope Measurements: Adjust the gyroscope

measurements, applying the Complementary Filter to each axis.

g) Quaternion Integration Update: Update the quaternion using the angular

velocity after Complementary Filtering.

 (3.10)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

73

h) Quaternion Normalization: Normalize the quaternion.

 (3.11)

i) Calculation of Euler Angles: Compute the Euler angles based on the updated

quaternion.

 (3.12)

Through this process, Complementary Filtering effectively combines

information from the accelerometer and gyroscope, providing a relatively accurate

attitude estimation.

Figure 3.4 Results of comparative analysis

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

74

In the conducted research, two experimental setups were rigorously designed to

contrast the performance of the tilt-compensated magnetometer-based yaw angle

calculation method against the attitude estimation achieved through a complementary

filter algorithm. The comparative analysis revealed that the complementary filter

algorithm exhibited lower noise levels and a higher rate of synchronization in attitude

computation. Notably, the yaw angle derived from the magnetometer reflects an

absolute position, inherently preventing the initialization of the yaw value at zero. This

characteristic imposes significant limitations on the closed-loop control systems of

remotely operated vehicles, due to the inherent inability to reset or calibrate the yaw

orientation at the start of an operation.

In contrast, the complementary filter approach generates posture information

relative to the position at startup, adjusting dynamically to changes in orientation. This

adaptability ensures a more robust response to irregular alterations in the IMU's

operational environment, delivering stable posture signals with significantly reduced

noise. Furthermore, the complementary filter demonstrated superior recovery

performance following disturbances, underscoring its efficacy for enhancing the

precision and reliability of posture estimation in dynamic and unpredictable

conditions. This analysis underscores the complementary filter's potential for

improving the robustness and accuracy of attitude control systems, particularly in

applications requiring precise navigation and orientation control under varying

environmental conditions.

3.2 Depth-Based Control

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

75

Depth gauges play a critical role in underwater robots by helping them

maintain precise depth relative to the water surface. This section discusses how depth

sensors work in tandem with control algorithms to regulate the robot's depth, enabling

it to navigate efficiently and maintain consistent positioning in varying aquatic

environments.

A depth gauge typically works by measuring the water pressure exerted at a

certain depth and translating this pressure into depth information. The deeper a robot

goes, the higher the pressure, which the sensor can calculate using the relationship

between pressure and depth. This data is vital for ensuring that the underwater robot

can maintain its desired depth, especially when operating in complex environments

like deep-sea exploration or shallow-water operations.

MPC is a powerful control algorithm that calculates future control actions by

solving an optimization problem at each time step. It predicts the future behavior of

the robot's depth based on a dynamic model and applies corrective actions to

minimize the error between the predicted and desired depth. MPC is especially

advantageous in underwater environments, where external forces like currents or

changes in water density can affect the robot’s depth and stability.

3.2.1 Introduction to Depth Sensors

In underwater robotics, precise depth measurement is critical for maintaining

stability and control, especially in tasks such as navigation, exploration, and data

collection. Depth sensors, also known as pressure sensors or depth gauges, play an

essential role by providing real-time data on the robot's distance from the water

surface or sea level.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

76

Depth sensors typically work by measuring the water pressure exerted on the

sensor and converting this data into a corresponding depth. The pressure increases

with depth, and this pressure change is translated using the following formula [54]:

 (3.13)

where: is the pressure at depth,

 is the atmospheric pressure at sea level,

 is the density of the water,

 is the acceleration due to gravity,

 is the depth below the water surface.

This relationship between pressure and depth enables accurate measurements,

which are crucial for underwater navigation and control. Modern depth sensors are

highly sensitive and can detect depth variations within a few centimeters, making

them ideal for maintaining stability in ROVs and AUVs. These sensors often have

built-in temperature compensation mechanisms to ensure accuracy in varying water

conditions, as water density can change with temperature and salinity.

Figure 3.5 ISD4000 Piezo-Resistive Pressure Sensor for Depth Measurement

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

77

The ISD4000 sensor is equipped with a piezo-resistive pressure sensor that

offers exceptional depth accuracy of ±0.01% FS, with an upgrade option to ±0.005%

FS. This high level of accuracy ensures that even the slightest changes in depth are

detected and responded to, which is crucial in underwater robotics where maintaining

depth within tight tolerances is essential for tasks like pipeline surveys or asset

deployment [55].

Depth Measurement Range: The sensor offers a range of depth measurement

capabilities, from 10 bar to 600 bar, making it adaptable to various underwater

conditions—from shallow waters to extreme depths of up to 6000 meters when

housed in titanium. This flexibility enables the sensor to function in a wide range of

applications, including real-time depth monitoring in both ROVs and AUVs.

Data Precision: The ISD4000 provides a resolution of 0.001% FS, which

facilitates the capture and processing of highly detailed measurements by the robot's

control system. This level of precision ensures accurate depth measurements, even in

rapidly changing conditions or when the robot is subject to underwater currents

Temperature Compensation: The sensor is temperature-compensated,

ensuring that its measurements remain accurate even as the water temperature

fluctuates. This is particularly important in deep-sea environments where temperature

gradients can affect the robot’s performance. The sensor’s temperature accuracy is

±0.01°C, ensuring reliable operation across a calibrated temperature range of -5°C to

35°C.

The ISD4000’s ability to provide real-time depth data at rates of up to 100Hz,

combined with its robust titanium housing and low power consumption, make it ideal

for underwater robotics applications that require both durability and precision.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

78

3.2.2 Depth Control with Model Predictive Control (MPC)

Prediction Model: The MPC algorithm relies on a mathematical model of the

robot’s dynamics to predict future states. For depth control, the model includes

factors such as buoyancy, thrust, and drag forces. The robot’s depth is predicted over

a finite time horizon using this model, taking into account the current state and

control inputs.

The system dynamics can be represented as:

 (3.14)

where:

 is the state vector at time step (including the current depth and depth

rate),

 is the control input (e.g., thruster output),

 represents the system dynamics,

 is the process noise.

Optimization Problem: MPC solves an optimization problem at each time step

to determine the control actions that minimize a cost function. The cost function

typically penalizes deviations from the desired depth and excessive control inputs,

ensuring both stability and energy efficiency.

The optimization problem can be written as:

 target

 target

 (3.15)

where:

 target is the desired depth,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

79

 is a weighting matrix for the depth error,

 is a weighting matrix for the control effort,

 is the prediction horizon.

The control input is calculated to minimize this cost over the prediction

horizon while satisfying constraints on control inputs and system states (e.g., thruster

limitations, maximum depth).

Receding Horizon: MPC operates in a receding horizon fashion, meaning that

only the first control input from the optimized sequence is applied at each time step.

After applying the control, the prediction is updated with the new state, and the

optimization is repeated.

Constraints: In underwater environments, depth control often involves

constraints, such as maximum thrust output, minimum and maximum permissible

depths, and velocity limits. MPC can handle these constraints explicitly, ensuring that

the robot operates safely within its limits.

The constraints can be incorporated as:

 (3.16)

Advantages of MPC in Depth Control

Predictive Capability: Unlike reactive controllers such as PID, Model

Predictive Control (MPC) anticipates future states and adjusts control actions

accordingly, which is particularly advantageous in dynamic and uncertain

environments like underwater.

Handling Constraints: MPC can handle input and state constraints, which are

essential for depth control when considering physical limitations, such as thruster

capacity and depth boundaries.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

80

Optimal Control: By minimizing a cost function, MPC ensures that the robot

operates efficiently, balancing depth precision with energy consumption.

Example of MPC for Depth Control

Consider an underwater robot equipped with a depth sensor and thrusters. The robot

needs to maintain a specific depth while minimizing energy consumption. The

system's dynamics are modeled, taking into account forces such as buoyancy and

drag. At each time step, MPC predicts the future depth of the robot over a 10-second

horizon and computes the optimal thrust to keep the robot within 0.1 meters of the

desired depth. The controller adjusts the thrust in real time, accounting for constraints

on thrust output and depth limits.

The depth regulation problem can be expressed as:

 setpoint

 (3.17)

where:

 is the predicted depth at future time

 setpoint is the desired depth,

 is a regularization parameter penalizing the control effort .

By solving the optimization problem, the underwater robot can maintain stable

depth despite external disturbances such as underwater currents or changes in water

density. The control inputs generated by MPC consider the robot’s hydrodynamic

model, ensuring that it stays within the desired depth range while minimizing energy

consumption and avoiding overcorrection.

In the figure below, we can observe the robot’s depth stabilization process,

where MPC successfully manages to maintain a constant depth under fluctuating

environmental conditions. The smooth and gradual adjustments showcase the

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

81

controller’s ability to predict the robot’s future state and apply corrective actions in

advance. The robot avoids oscillations or overshooting, providing a reliable and

efficient control system.

Figure 3.6 Biomimetic Underwater Robot for Depth Control Experiment.

Figure 3.7 Depth Control Comparison: MPC vs PID.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

82

In addition to the superior capabilities of MPC discussed earlier, the results

from the depth control experiment (as shown in the chart comparing MPC and PID)

further emphasize the advantages of MPC over PID control in underwater depth

regulation.

The PID controller (orange line) achieves the target depth of 5 meters more

quickly, reaching it in about 9 seconds. However, the quick response comes at the

cost of overshoot and oscillations, which cause instability. This behavior is

problematic in underwater environments where maintaining precise control is critical,

especially in avoiding obstacles or maintaining consistent altitude.

On the other hand, the MPC controller (blue line) takes a slightly longer time

to reach the target depth, approximately 10 seconds, but with a much smoother

approach and no overshoot. The robot stabilizes immediately upon reaching the

desired depth. This demonstrates the effectiveness of MPC in ensuring stability and

precision, key aspects in environments where the underwater robot’s performance

and safety are paramount.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

83

Table 3.3: Depth Control Performance Comparison Between MPC and PID

Controllers

Time

(s)

MPC

Depth (m)

PID Depth

(m)
Observations

0.5 0.21 0.83
PID reacts faster initially, reaching a depth of 0.19

m.

2.0 1.03 2.62
PID shows a faster depth gain, but overshoots target

depth early on.

5.0 2.5 4.26
PID continues to increase depth rapidly, while MPC

is slower but stable.

7.5 3.75 4.86
PID approaches target depth of 5 m, with signs of

oscillations.

10.0 5.02 4.94
MPC reaches target depth of 5 m with minimal

oscillation; PID fluctuates around 5 m.

11.5 5.01 5.05
Both algorithms stabilize near target, with MPC

showing less overshoot.

The data in this table highlights the fundamental differences in behavior

between MPC and PID in terms of depth control. While the PID controller responds

more quickly, it also exhibits overshoot and oscillations that can reduce stability,

especially in dynamic underwater environments. In contrast, the MPC controller

takes a slightly longer time to reach the target depth, but it does so with a smoother

approach and without overshoot, resulting in improved stability.

These observations align with the theoretical advantages of MPC discussed

previously, including its ability to achieve precise control with minimal oscillations,

enhanced robustness against disturbances, and greater overall stability in challenging

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

84

underwater conditions. This makes MPC a more suitable choice for applications that

demand high levels of accuracy, stability, and efficiency.

Advantages of MPC Over PID

Stability and Accuracy: Unlike PID, which exhibits oscillations and

overshoot due to its reactive nature, MPC ensures smoother, more controlled

responses. It is particularly effective in dynamic and uncertain underwater conditions,

where abrupt depth changes could lead to operational hazards.

Predictive Control: The predictive capability of MPC enables it to anticipate

the future behavior of the robot and adjust control actions preemptively. This

capability is superior to the reactive approach of PID, making MPC more suitable for

real-time depth regulation in dynamic underwater environments.

Energy Efficiency: The absence of overshoot and smoother depth changes

result in energy savings. With MPC, the robot's thrusters operate more efficiently, as

they don’t have to correct large deviations caused by overshoot or oscillations.

Robustness: MPC’s model-based predictions make it more robust to

disturbances such as underwater currents, pressure changes, or varying water

densities. In contrast, PID may struggle to adapt to these external forces without

significant tuning adjustments.

Thus, while PID control provides a quicker initial response, MPC offers a

much more stable and reliable approach to depth control, especially in environments

that demand precision and efficiency.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

85

Conclusions to Chapter 3

1. The conducted analysis of the Inertial Measurement Unit has confirmed that

data processing quality depends on applied filtering techniques. There were studied

and compared 2 filtering methods: Complementary Filters and Kalman Filters.

2. The comparative analysis of 2 experimental setups revealed that the

complementary filter algorithm exhibited lower noise levels and a higher

synchronization rate in attitude computation. Notably, the yaw angle derived from the

magnetometer reflects an absolute position, inherently preventing the initialization of

the yaw value at zero. This characteristic imposes significant limitations on the

closed-loop control systems of remotely operated vehicles, due to the inherent

inability to reset or calibrate the yaw orientation at the start of an operation.

3. In contrast, the complementary filter approach generates posture information

relative to the position at startup, adjusting dynamically to changes in orientation.

This adaptability ensures a more robust response to irregular alterations in the IMU's

operational environment, delivering stable posture signals with significantly reduced

noise. Furthermore, the complementary filter demonstrated superior recovery

performance following disturbances, underscoring its efficacy in enhancing the

precision and reliability of posture estimation in dynamic and unpredictable

conditions.

4. The comparison between MPC and PID controllers highlighted the superior

performance of MPC in depth control. MPC effectively anticipated external

disturbances, resulting in smoother and more accurate trajectory tracking, with

minimal overshoot. In contrast, PID showed faster initial response but lacked

robustness, leading to increased oscillations. These results demonstrate MPC's

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

86

effectiveness in achieving precise and stable depth control under dynamic underwater

conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

87

Chapter 4

Data-Driven Approaches and Optimization Methods for Amphibious

Robot Applications

In the current Chapter, we consider the stability of operation and control of

depth of AUV as well as their enhancement due to work of contemporary function

that’s sensors’ data fusion.

4.1 Robot Structure and Motion Mechanisms

4.1.1 Structural Design and Motion Capabilities of the Amphibious Robot

Examples of dissimilar robots’ motions are shown below (Figure 4.1)

Figure 4.1. Basic Structure of the Robot and Mode Transition

The underwater robot featured in this study is designed with a quadrupedal

structure that allows for dual operational modes: walking on the seabed and

swimming in open water. The design of this amphibious robot is optimized for both

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

88

terrestrial and aquatic environments, making it highly adaptable and efficient for

underwater exploration and various research applications [56].

Mechanical Structure

As shown in Figure 4.1, the robot's construction consists of several key

components that enable its seamless operation in both environments:

Controller Unit: Mounted on top, the robot's controller manages all

computational tasks, including sensor fusion, motion control, and communication.

The controller interacts with the onboard sensors, such as cameras and IMUs, to

provide real-time data to the control algorithms.

Battery Pack: Ensuring the robot's operational longevity, the battery pack

powers all electronic systems, including the propulsion units and sensors.

Propeller Legs: The legs of the robot feature propellers at their tips, which

provide thrust during swimming. These legs also serve as standard walking

appendages when the robot operates on solid surfaces, allowing it to traverse

underwater terrains.

Buoyancy Modules: The robot is equipped with adjustable buoyancy modules

that help maintain neutral buoyancy while underwater, ensuring smooth and stable

motion at varying depths.

Camera System: Located at the front, the camera captures real-time footage

and supports vision-based navigation.

Motion Mechanisms

The robot is capable of walking and swimming, depending on the environment

and mission requirements:

Walking Mode: On the seabed, the robot operates in a quadrupedal walking

gait similar to terrestrial robots. The propeller-equipped legs provide enough stability

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

89

and force to allow the robot to traverse uneven surfaces, making it suitable for

underwater inspections of pipelines or seafloor exploration.

Swimming Mode: When submerged in open water, the robot transitions to a

swimming mode, where the propeller legs rotate to generate thrust, similar to how

marine animals move. The combination of walking and swimming capabilities allows

the robot to operate efficiently in dynamic underwater environments.

By integrating these mechanical components with the motion capabilities, the

robot can perform tasks that require transitioning between land-like underwater

environments and fully submerged operations. In the next section, we will discuss

how this mechanical framework supports the development of the data-driven

hydrodynamic model.

4.1.2 Leg Mechanism for Terrestrial Walking and Underwater Swimming

The robot's leg mechanism is designed to enable both terrestrial walking and

underwater swimming with a focus on simplicity and efficiency. As shown in Figure,

the robot achieves this by relying on controlled movement of the thigh (upper leg)

and shin (lower leg), which allows it to adapt to different terrains and environments.

Figure 4.2. Amphibious Robot Transitioning Between Water and Land

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

90

Walking on Land

On land, the robot uses a walking gait where the legs alternate between lifting

and lowering. The thigh moves primarily in a forward-backward motion, which

allows the robot to step and propel itself forward. The shin aids in extending or

retracting the leg, adjusting the height of each step, and ensuring that the robot can

maintain stability across uneven surfaces. This motion mimics the mechanics of

traditional quadrupedal robots, but is adapted for amphibious functionality.

Swimming Underwater

When the robot transitions to underwater swimming, the leg mechanism adapts

to function similarly to flippers or fins. The thigh and shin move to create a sweeping

motion through the water, generating thrust. This motion allows the robot to propel

itself through the water while maintaining control over its orientation. The precise

adjustments in leg movement help the robot efficiently change direction and maintain

stability, similar to how aquatic animals use their limbs for swimming.

In both modes, the combination of thigh and shin movements is critical for the

robot’s ability to navigate complex environments, whether walking on the seabed or

swimming in open water. The flexibility of this leg mechanism makes the robot

highly adaptable and capable of performing diverse tasks in various aquatic and

terrestrial environments.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

91

4.1.3 Hydrodynamic Experiments and Data Collection

To validate the hydrodynamic performance and control strategies of the

amphibious robot, a series of experiments were conducted using a

3-degree-of-freedom (3-DOF) towing tank. This advanced platform enables precise

measurement of the robot’s behavior under different aquatic conditions by allowing

controlled movement along the X, Y, and Z axes. As illustrated in Figure 4.3, these

tests provide detailed insights into the robot's interaction with water and help

optimize its propulsion and control systems [57].

Figure 4.3 Intelligent Towing System for Underwater Robot

The image above shows a 3-degree-of-freedom (3-DOF) towing tank, which is

a critical tool used for hydrodynamic experiments, particularly for underwater

robotics. The towing tank allows for precise control over the movement of the robot

or object being tested in three axes: X, Y, and Z. This enables researchers to simulate

real-world conditions such as lateral movement, vertical displacement, and forward

motion, providing accurate data on the hydrodynamic forces acting on the robot.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

92

Key Features and Functionality:

Three Degrees of Freedom: The system can move in the X, Y, and Z axes,

offering full control over the trajectory and movement of the tested object. This is

essential for simulating complex underwater maneuvers and understanding how the

robot interacts with fluid forces from different angles.

Precision Control: The gantry-like structure, combined with precise actuators,

allows for controlled movement of the testing apparatus over the water surface and

within the water. This precision is crucial for conducting repeatable experiments and

collecting reliable hydrodynamic data.

High-Resolution Data Collection: The system is typically integrated with

sensors and force measurement devices to capture the forces acting on the robot in

real-time. This data helps refine the robot’s design and control algorithms, ensuring

better performance in underwater environments.

Versatility: The towing tank is designed to accommodate various types of

robots or models, making it a versatile tool for both small-scale and full-scale

hydrodynamic testing.

This 3-DOF towing system plays a vital role in validating force models and

motion predictions by allowing controlled testing in a simulated aquatic environment.

By utilizing this setup, researchers can optimize the robot's design for maximum

efficiency and stability in both surface and underwater conditions [57].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

93

Figure 4.4. Experimental Setup and Data Analysis for Hydrodynamic Testing

of Amphibious Robot.

Towing Tests Using 3-DOF Towing Tank

The towing tests conducted in the 3-DOF towing tank are a cornerstone of the

hydrodynamic analysis. The towing tank, shown in Figure 4.4 (a) and Figure 4.4 (b),

provides precise control over the robot's movement in three dimensions, simulating

real-world underwater environments. The towing tank’s capability to move along the

X, Y, and Z axes enables us to replicate the different forces the robot encounters,

such as drag and lift, while it moves in water.

The towing tests, as shown in Figure 4.4 (c), measure the resistance

experienced by the robot when moving along the Y-axis. This test is critical in

assessing the robot's lateral movement and the drag forces it encounters, helping to

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

94

fine-tune the robot’s hydrodynamic shape for more efficient movement through water.

The precise data collected from these tests directly inform the robot's design

improvements and control algorithm refinements.

Thruster Test

In conjunction with the towing experiments, the performance of the robot's

thrusters was also evaluated under controlled fluid conditions, as shown in Figure 4.4

(d). Each thruster was tested to assess its thrust efficiency, crucial for both surface

and underwater propulsion. The data from these tests, displayed in Figures 4.4 (f) and

4.4 (g), illustrate the response of the robot's legs to different control inputs, such as

sine-wave motions and step commands. These experiments help optimize the

propulsion system, ensuring that the robot generates sufficient thrust while

minimizing energy consumption.

The single thruster test data in Figure 4.4 (h) provides further detail by

isolating the performance of individual components, enabling targeted adjustments to

ensure the propulsion system operates at peak efficiency.

Integration of the Scaled Model and Full-Sized Testing

Figure 4.4 (e) shows the use of a scaled model for preliminary testing. This

approach facilitates quick and cost-effective design iterations before moving to

full-scale tests. The scaled model helps identify potential issues early, ensuring

optimal performance of the full-sized robot when subjected to towing and thruster

tests.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

95

4.2 GPR-Based Hydrodynamic Modeling

The GPR-based hydrodynamic model developed in this study relies on data

collected from force sensors and kinematic observations during the robot’s

underwater testing. The main objective is to predict hydrodynamic forces acting on

the robot’s body in real-time. These predictions are crucial for adaptive control in

varying underwater conditions, ensuring the robot operates efficiently while

minimizing energy consumption.

4.2.1 GPR Model Architecture Consideration

GPR-based Model

GPR is a non-parametric, probabilistic model used to learn the dynamics of a

system by capturing the relationships between input and output data. GPR is

particularly effective for modeling continuous-time changes in forces as a function of

sensor inputs while providing uncertainty estimates [59]. The model defines a

distribution over functions and uses training data to update this distribution. The core

of GPR lies in predicting a continuous function based on a set of observed data points

[60].

Given a dataset
 where represents the input (e.g., sensor

data), and represents the output (e.g., hydrodynamic force), GPR models the

relationship between inputs and outputs as a multivariate Gaussian distribution [61]:

 (4.1)

where is the mean function (typically assumed to be zero), and

is the covariance (kernel) function that defines the similarity between points and

 .

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

96

The covariance function plays a crucial role in determining the

behavior of the model. A common choice is the RBF) kernel:

 (4.2)

where
 is the signal variance, and is the length scale, which controls how

quickly the function can vary.

The conditional distribution gives the GPR prediction for a new test point is

given by the conditional distribution:

 (4.3)

where the mean and variance of the prediction are:

 (4.4)

 (4.5)

Here, is the covariance matrix of the training inputs,
 is the noise

variance, and represents the covariance between the test point and the

training points [62].

The advantage of GPR is its ability to provide not only a mean prediction but

also a measure of uncertainty for each prediction. This is critical in dynamic

environments, such as underwater robotics, where sensor noise and environmental

variability can significantly affect the accuracy of force predictions [63].

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

97

In this study, we optimize the hyperparameters of the kernel function (e.g.,

, and
) using a maximum likelihood estimation approach, and the model is

trained on real-time sensor data collected during robot movements. GPR's ability to

model the underlying uncertainties in fluid-structure interactions makes it highly

suitable for robust predictions in varying underwater environments [64].

Model Architecture

Figure 4.5 Data-Driven GPR Model for Predicting Hydrodynamic Forces.

Figure 4.5 Left: The robot's motion under different conditions is represented in

time steps , capturing key kinematic data.

Middle: The GPR model processes the kinematic information and maps it to a latent

vector , incorporating uncertainty estimates to account for variations in the

environment and the robot's movements.Right: The prediction of the hydrodynamic

force trajectory is generated by the GPR model based on the initial condition ,

providing a probabilistic force prediction across the time steps .

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

98

The proposed model architecture aims to predict the hydrodynamic forces

acting on a quadruped robot using GPR based on a sequence of observational data

[65]. The key components of the model are GPR and the covariance (kernel)

function. The steps involved in the model architecture are as follows:

Input Data: The input consists of a sequence of kinematic observations

 , each representing motion parameters sampled at uniform time intervals.

These parameters include two joint angles and two linear velocities, providing a

comprehensive description of the robot's movement.

Covariance (Kernel) Function: The GPR model uses a kernel function to learn

the relationship between the inputs and the hydrodynamic forces. The covariance

function defines the similarity between data points and , crucial for

predicting forces. The most used kernel in this study is the RBF kernel, given by:

 (4.6)

where
 is the signal variance and is the length scale. This kernel allows

the GPR model to capture both smooth and rapidly changing dynamics, which are

critical in underwater environments.

Prediction Framework: The GPR model predicts the forces acting on the

robot at any time , based on the input sequence of observations. Given a test input

 , the model provides a Gaussian distribution over possible values of the force, with

mean and variance .

Model Training and Hyperparameter Optimization: The GPR model's

hyperparameters, including the signal variance
 , length scale , and noise variance

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

99

 , are optimized using MLE. The training data consists of real-time sensor

measurements from the robot's movements in water, and the hyperparameter tuning

ensures that the model accurately captures the underlying dynamics.

Prediction: The output of the GPR model is a set of predicted force vectors

 , where is the prediction length, spanning various time intervals.

The model primarily predicts forces in the and directions, as forces in the

 -axis (due to gravity and buoyancy) are assumed to remain constant.

The GPR-based architecture provides robust and adaptive force predictions by

leveraging the uncertainty quantification inherent in Gaussian Processes. Unlike

traditional machine learning models that offer point estimates, the GPR model offers

a distribution of possible outcomes, making it well-suited for underwater

environments where sensor noise and dynamic fluid conditions can introduce

significant uncertainty.

4.2.2 Model Training and Dataset

The dataset for training the GPR model was collected through detailed towing

tests and real-time force sensor measurements, as discussed in Section 4.1. The data

includes various robot configurations, movements, and environmental conditions.

Each data point consists of:

Input: Robot's joint angles, velocities, and sensor readings.

Output: Hydrodynamic force vectors in x, y, and z axes.

The GPR model is trained using this dataset to minimize prediction error while

accounting for uncertainty in fluid dynamics. By utilizing an optimized RBF kernel,

the model ensures smooth and reliable predictions, even in dynamic or turbulent

underwater conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

100

The model's hyperparameters (length scale, noise variance, etc.) were

optimized using a MLE approach. During testing, the model demonstrated a high

level of accuracy in predicting forces in real-time.

Learning Objective

The learning objective of the GPR model is to minimize the prediction error

between the predicted force vectors and the ground truth measurements while

accounting for uncertainty. The process involves the following steps:

Dataset Preparation:

The dataset consists of sequences of observation data along with corresponding

force measurements. The data is divided into training, validation, and test sets.

Formally, the dataset can be represented as:

 (4.7)

where

 is the predicted force at time step for trajectory ,

 is the

corresponding input observation, is the total number of time steps per trajectory,

and is the number of trajectories in the dataset.

Loss Function:

In GPR, the model outputs a mean prediction along with a variance estimate

for the force vector at each time step. The loss function takes into account both the

prediction error and the uncertainty estimate. The NLML is commonly used as the

objective function to optimize GPR models, which maximizes the likelihood of the

observed data given the predicted mean and covariance.

The NLML loss function is formulated as:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

101

 (4.8)

where represents the observed forces, is the covariance matrix

parameterized by (which includes the signal variance
 , length scale , and

noise variance
 , and is the number of data points. Minimizing this function

allows the model to fit the data while properly accounting for uncertainty.

Backpropagation and Gradient Calculation:

Unlike traditional neural networks, GPR uses analytical gradients for

hyperparameter optimization. The gradient of the negative log marginal likelihood

concerning the hyperparameters is computed to update the kernel's parameters:

 (4,9)

This gradient allows for backpropagation through the kernel's hyperparameters,

ensuring that the model can adjust the signal variance, length scale, and noise

variance to improve predictions.

Optimization:

Hyperparameter optimization is typically carried out using gradient-based

optimization algorithms such as the Adam optimizer or L-BFGS. These methods

update the hyperparameters of the covariance function by minimizing the NLML

loss. During training, the model adjusts the kernel parameters iteratively to maximize

the likelihood of the observed data while minimizing prediction uncertainty.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

102

The overall objective of the GPR-based model is to minimize the prediction

error as well as ensure that the uncertainty estimates are well-calibrated, which is

particularly crucial in dynamic environments like underwater robotics.

Experiments

Figure 4.6 The amphibious robot's posture variations underwater result in

different hydrodynamic coefficients

Setup：

To train and evaluate our GPR-based hydrodynamic force prediction model,

we conducted a series of controlled towing experiments [66]. These experiments

were designed to provide a rich dataset for training, validation, and testing, ensuring

the accurate modeling of the robot’s interactions with the surrounding fluid. The key

components of the experimental setup are described below:

Pool Environment:

All experiments were conducted in a controlled pool environment, ensuring

repeatable and consistent hydrodynamic conditions. The water temperature and depth

were maintained constant throughout the experiments to avoid external variability in

fluid dynamics.

Towing Mechanism:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

103

A specialized towing mechanism was utilized, capable of towing the robot at

different speeds and directions. The towing speeds varied from 0.2 m/s to 0.5 m/s,

with increments of 0.1 m/s. The robot was towed in three main directions: along the

x-axis, y-axis, and diagonally at 45 degrees (xy). These variations enabled the capture

of diverse motion scenarios, which are essential for training the GPR model.

Force Sensors:

High-precision force sensors were installed on the robot to capture

hydrodynamic forces acting on the robot in real-time. The sensors recorded force data

along the x, y, and z axes. Since the GPR model is focused on predicting forces in the

x and y directions (with z-axis forces assumed constant), this detailed sensor data

provides a comprehensive training dataset.

Robot Configuration:

To simulate different locomotion scenarios, the quadruped robot’s limb

configurations were varied by adjustment of the joint angles. The robot was tested

under a range of movement patterns, providing sufficient input diversity for the GPR

model to learn fluid-structure interactions effectively.

The dataset derived from these experiments contains several kinematic

observations (joint angles and velocities) paired with corresponding force

measurements. This comprehensive dataset is critical for training the GPR model to

predict hydrodynamic forces while quantifying the uncertainty in the predictions.

Note: batch refers to the batch size during the training stage

Table 4.1 Input and output formats of the Datasets

Expr. Input Output

Expr1 Condition x: [batch, 100, 4] and Initial: [batch, 2] [batch, 100,

2]

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

104

Expr2 Condition x: [batch, 50, 4] and Initial: [batch, 2] [batch, 50, 2]

Expr3 Condition x: [batch, 50, 4] and Initial: [batch, 2] [batch, 50, 2]

Dataset

The dataset was collected during the towing experiments described. These

experiments were specifically designed to measure the forces acting on the quadruped

robot across 192 distinct towing speeds and joint configurations [67][68].

From Table , the dataset is augmented in the following ways:

Expr1: This experiment extends the time series to 100-time steps, representing

sequential data of the quadruped robot maintaining a constant attitude angle. The

GPR model is tasked with predicting the forces in two axial directions (x and y) over

these 100-time steps. The focus is on testing the GPR’s ability to model the

hydrodynamic forces under static conditions.

Expr2: This experiment highlights the comparative predictive capabilities of

GPR models under variable conditions for online learning. The temporal length of

each condition is reduced to 10-time steps, randomly selected from the dataset.

Additionally, a condition variable is concatenated to the input data, varying across

five distinct scenarios. This setup allows the GPR model to generalize across

different environmental conditions, making it more versatile in predicting forces in

dynamic contexts.

Expr3: This experiment addresses the increased complexity of dynamic

conditions. Random perturbations are introduced at each time step, with magnitudes

equal to 10% of the standard deviation of the respective force values. Similar to

Expr2, the trajectories are resampled across 192 distinct conditions to test how well

the GPR model adapts to noisy and dynamically changing scenarios. This experiment

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

105

is key to understanding the robustness of GPR in environments with variable and

unpredictable conditions.

Model Prediction Performance

In the following experiments, we evaluate the performance of different GPR

models in predicting dynamic hydrodynamic forces on a quadruped robot. We

compare the model’s predictions with the ground truth using RMSE and MAE.

Several kernel configurations, including the RBF and Matern kernels, are tested,

along with the addition of different noise levels and varying training data conditions

[69].

Note: The suffix -S indicates static conditions in Expr1, -C denotes conditions

that change over time in Expr2, and -N represents noisy and changing conditions in

Expr3. The * symbol is used to highlight the best-performing models.

Table 4.2 Performance on Different Conditions

Models MAE-S RMSE-S MAE-C RMSE-C MAE-N RMSE-N

GPR-RBF 9.8e-3 4.0e-3 4.1e-3 5.0e-3 5.3 6.8

GPR-Mate

rn

8.3e-3 3.9e-3 3.5e-3 2.8e-3 4.0 5.3

GPR-RBF

(Noisy)

5.4e-3 6.2e-4 2.8e-3 1.5e-3 2.8 4.9

GPR-Mate

rn (Noisy)

3.7e-4* 5.8e-4* 2.4e-4* 5.1e-5* 2.0* 4.0*

Analysis

From Table 2, GPR models with different kernel choices perform well under

various dynamic conditions. The Matern kernel generally outperforms the RBF

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

106

kernel, especially when the data includes variability and noise. This is likely due to

the Matern kernel’s ability to model rougher functions and better capture the

underlying complexities of the hydrodynamic forces.

In scenarios with noisy conditions (as in Expr3), the GPR-Matern model

demonstrates significantly better performance, with errors as low as 4.0, making it

highly suitable for deployment in real-world underwater environments where sensor

noise is prevalent.

Additionally, GPR’s uncertainty quantification provides a distribution of

possible outcomes, which proves advantageous in noisy environments. The

GPR-Matern (Noisy) model providing the most accurate and robust predictions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

107

Figure 4.7 illustrates the model prediction performance under different

conditions and time sequence lengths:

(a) and (b) present the static force and conditions over time in Expr1.

(c) and (d) illustrate the change in force and conditions over time in Expr2.

(e) and (f) depict the noisy force dynamics and conditions over time in Expr3.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

108

In (a), (c), and (e), the dotted lines represent the model prediction trajectories.

These visualizations demonstrate the model's ability to accurately track the

actual forces over time, even under varying and noisy conditions. The close

alignment between the predicted forces (dotted lines) and the actual measurements

confirms the effectiveness of the GPR-Matern model.

4.2.3 Trajectory Tracking and Performance Assessing

Building upon the hydrodynamic modeling presented in earlier sections and

incorporating the thruster system, we designed an experiment to evaluate the

underwater robot’s ability to perform precise trajectory tracking. Specifically, this

experiment aimed to test the robot's ability to follow a pre-defined 8-shaped

trajectory along the Z-axis (depth) and X-axis (horizontal motion). This type of

maneuver is crucial for underwater applications, such as environmental surveying,

obstacle avoidance, and efficient path planning [70][71].

Figure 4.8 Trajectory in the Shape of 8 on the X-Z Plane

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

109

IMU-Based Odometry and Numerical Integration

The successful tracking of underwater trajectories relies heavily on precise

localization and movement estimation. To achieve this, the onboard IMU mounted on

the robot captured its dynamic movements. The IMU provided high-frequency

measurements, including linear acceleration and angular velocity, which were

employed to estimate the robot's position through numerical integration.

Odometry estimation involved integrating the IMU's linear acceleration over

time to compute velocity, followed by integrating velocity to determine displacement

along the X and Z axes. Sensor fusion and bias compensation were used to improve

the accuracy of the numerical integration, reducing the cumulative drift commonly

associated with double integration of IMU data.

This method ensured that even in complex underwater environments, with

limited access to external positioning systems, the robot could depend on its internal

sensors to approximate its position and follow the desired trajectory [72].

Trajectory Execution via Predictive Control

For executing the 8-shaped trajectory, the thrusters were controlled using an

MPC framework. MPC is particularly effective in underwater environments where

external forces, such as water currents or turbulence, can affect stability. By

incorporating the GPR-derived hydrodynamic models, the MPC controller could

predict the forces and moments acting on the robot, adjust thruster output

dynamically, and minimize the tracking error.

The thruster commands were generated to ensure a smooth path, with real-time

adjustments based on the deviation between the estimated position (using IMU-based

odometry) and the desired trajectory. The MPC utilized a cost function that

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

110

prioritized maintaining the planned trajectory, minimizing energy consumption, and

ensuring stability during rapid changes in direction.

Integrated Sensors for Enhanced Control

The IMU data was combined with input from depth gauges to provide a

comprehensive estimate of the robot’s state. Depth sensors ensured that the Z-axis

tracking maintained high accuracy, while the thrusters ensured precise movement in

the X-axis. By combining multiple sensory inputs, the control system effectively

minimized disturbances and stabilized the robot’s movement, even during transitions

between different trajectory segments.

Trajectory Tracking Results

Figure 4.9 Comparison of Actual and Desired Trajectories for Different Speed

Modes.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

111

Figure 4.10 Velocity Profiles in X-Z Plane Compared to Desired Trajectories.

Trajectory Comparison

Figure 4.9 illustrates the comparison between the actual trajectory and the

desired trajectory during underwater motion. Specifically, the target trajectory forms

a figure-eight pattern in both the x-axis and z-axis. The solid blue line represents the

desired trajectory (Baseline), while the colored line represents the actual path tracked

by the underwater robot (Tracking Line). Each subplot corresponds to a different

speed mode. The closeness of the two lines in all cases indicates the robot's ability to

accurately follow the desired path, demonstrating effective trajectory tracking even

under dynamic conditions.

Velocity Comparison in x and z Directions

Figure 4.10 presents the velocity profiles for both the x and z directions over

time. On the left side, the velocity along the x-axis is compared against the desired

velocity. On the right side, the z-axis velocities are shown in a similar manner. The

solid lines indicate the desired velocities (v(t) baseline), while the dashed lines show

the actual velocities (v(t) trajectory) recorded during the experiment. The figure

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

112

demonstrates the alignment between the actual and expected velocities, and each row

corresponds to a different operating speed.

Speed Mode Analysis and Performance Evaluation

The results in Table 4.2 show an increase in tracking error with higher speeds,

emphasizing that the control system achieves high precision at lower speeds, with an

average error of 0.069 in Speed Mode 1. However, as speed increases, the error

metrics reveal a decline in tracking precision, with Speed Mode 4 showing the

highest errors (average of 0.216), indicating the system's increasing difficulty in

maintaining tracking accuracy at elevated velocities.

Table 4.3: Tracking Errors by Speed Mode

Speed Mode Maximum Error Minimum Error Average Error

Speed Mode 1 0.074 0.064 0.069

Speed Mode 2 0.158 0.124 0.141

Speed Mode 3 0.205 0.148 0.177

Speed Mode 4 0.242 0.190 0.216

Analysis of Factors Contributing to Increased Tracking Error at Higher

Speeds

The rise in tracking error at higher speeds is influenced by several factors:

Amplification of Noise in Control Outputs: Higher velocities require rapid,

high-magnitude thruster outputs to achieve desired adjustments. This results in

amplified noise within control signals, which can destabilize the robot’s trajectory

and increase deviation from the target path.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

113

Computational Constraints of MPC: At higher speeds, the MPC must solve the

optimization problem within shorter intervals, potentially straining its capacity to

produce optimal solutions. In cases where the MPC cannot fully converge on a

solution, the control output may lack precision, exacerbating trajectory deviations.

Sensor Noise and Integration Drift: Rapid movements and vibrations at

elevated speeds intensify sensor noise, increasing localization errors. The

accumulated drift in estimated position, particularly at higher speeds, makes

trajectory tracking more challenging.

Increased Hydrodynamic Disturbances: Higher velocities result in intensified

hydrodynamic forces, including drag and turbulence. Although MPC compensates for

these forces, disturbances at higher speeds may exceed the model's predictive

capabilities.

Analysis and Key Observations

Trajectory Accuracy: The tracking accuracy for the figure-eight trajectory

reflects the control system’s ability to compensate for disturbances, achieving high

accuracy despite slight deviations due to hydrodynamic disturbances and sensor

noise.

Velocity Alignment: The alignment between actual and desired velocities

across speed modes demonstrates the efficiency of the control algorithm in

maintaining consistent speeds, crucial for both navigation precision and energy

efficiency.

MPC Advantage: Leveraging MPC enabled the robot to anticipate and adjust

for external disturbances in real time, ensuring effective depth control with minimal

error. The integration of GPR-based hydrodynamic models empowered the robot to

proactively adapt to changing underwater conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

114

Dynamic Response: The GPR-guided thruster propulsion system balanced

hydrodynamic forces, particularly important during sharp turns in the 8-shaped

trajectory, where dynamic forces presented the greatest challenge.

Sensor Fusion for Robustness: Integrating IMU data with depth sensors

enhanced localization robustness, crucial for accurate trajectory tracking in

underwater conditions.

Applications and Future Directions

The trajectory tracking experiment demonstrates the robustness of the

data-driven hydrodynamic models within the control framework, suggesting several

promising applications:

Autonomous Navigation: The robot’s ability to follow complex trajectories

makes it suitable for autonomous underwater tasks, including inspections, mapping,

and surveys.

Optimized Propulsion: Feedback from tracking performance provides insights

for further optimizing propulsion. Adjustments to control gains, improved sensor

fusion, and advanced predictive models could refine the control strategies, enhancing

efficiency.

These findings establish a foundation for future developments in underwater

robotics, especially in trajectory accuracy and energy efficiency improvements for

dynamic aquatic environments.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

115

4.3 Stability and Control During Amphibious Robot Transitions

The land-sea transition is a critical phase for amphibious robots, requiring

advanced locomotion mechanisms and control strategies to ensure stability and

efficiency. As amphibious robots move from land to water, they encounter unique

challenges that arise from the need to adapt their propulsion and control systems to

drastically changing environments. This transition involves navigating a complex

interplay of environmental factors, such as bottom currents, coastal waves, and

bottom return currents, which significantly affect the robot's stability and

maneuverability. The simultaneous operation of legs and propellers is pivotal for

overcoming these challenges, enabling the robot to maintain balance and adapt to

dynamic forces.

Figure 4.11 Transition Phases of an Amphibious Robot: Land to Water

Movement

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

116

4.3.1 Advantages of Amphibious Robots in Land-Sea Transitions

Amphibious robots, leveraging the complementary functionality of legs and

propellers, exhibit distinct advantages in overcoming challenges associated with

land-sea transitions. These advantages enable robust performance in dynamic coastal

environments, addressing key scenarios such as bottom currents, coastal waves, and

rip currents.

Overcoming Bottom Currents

Bottom currents exert destabilizing horizontal forces, especially over uneven seabeds.

Amphibious robots counter these challenges through hybrid locomotion and

advanced control. Legs provide traction and stability on irregular surfaces, preventing

slippage, while propellers effectively counteract lateral forces, ensuring precise

trajectory control.

IMUs and sensors integrated with MPC frameworks predict and adjust for

current fluctuations, dynamically coordinating propulsion and leg movement. This

synergy minimizes destabilization risks, enabling the robot to maintain trajectory

accuracy under varying hydrodynamic pressures.

Resilience Against Coastal Waves

Coastal waves introduce oscillatory forces that can disrupt robot stability and

positioning. The use of legs for anchoring and propellers for counteracting horizontal

forces ensures consistent movement and vertical stability.

Adaptive control strategies driven by IMUs and force sensors adjust the robot’s

motion in response to wave dynamics, maintaining precision during operation. By

accounting for wave-induced pressure variations, these systems ensure stability and

trajectory fidelity even in irregular conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

117

Mitigating Rip Currents

Rip currents pose significant challenges due to their multi-directional forces. To

maintain stability, robots employ sensor fusion techniques combining inputs from

IMUs and other sensors. This integration enables accurate evaluation of

hydrodynamic forces and real-time motion adjustments.

MPC frameworks anticipate and compensate for fluctuations, ensuring stability

and precision in complex environments. Legs establish a stable foundation on shifting

seabeds, while propellers counteract reverse currents, enabling seamless navigation

through turbulent conditions.

4.3.2 Limitations in Current Amphibious Robots and Challenges in

Land-Sea Transitions

Despite their advantages, amphibious robots face significant limitations,

particularly in simulation platforms and multi-modal control algorithms.

Limited Simulation Capabilities of Experimental Platforms

Existing experimental platforms, such as towing tanks, fail to replicate the full

complexity of land-to-water transitions. These platforms are unable to accurately

simulate bottom currents, coastal waves, and rip currents, which play a critical role in

destabilizing robots.

Moreover, the transition phase, involving overlapping ground reaction forces

and buoyancy, remains underexplored in these controlled environments. This lack of

realistic testing conditions limits the validation of algorithms and locomotion

mechanisms under dynamic, real-world scenarios.

Limitations of Multi-Modal Transition Control Algorithms

Current algorithms excel in distinct terrestrial or aquatic environments but struggle

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

118

during transitions. The inability to manage simultaneous changes in ground support

and hydrodynamic forces results in instability and inefficiencies.

MPC and similar approaches often lack real-time adaptability and precise

synchronization between locomotion modes, leading to energy wastage and reduced

operational endurance. The absence of energy-efficient algorithms further

exacerbates these challenges, particularly during transitions involving strong currents

or waves.

4.3.3 Future Research Directions and Theoretical Optimization

Approaches

Addressing the identified limitations requires advancements in experimental

platforms and multi-modal control systems, supported by theoretical innovations.

Advanced Experimental Platforms

To overcome current limitations, modular testing platforms incorporating wave

generators, sediment tanks, and current simulators are proposed. These platforms can

replicate real-world coastal dynamics, allowing researchers to validate algorithms and

mechanisms under controlled yet realistic conditions.

Hybrid simulation environments integrating land and water features will enable

the study of transitions with realistic terrain and hydrodynamic interactions.

Computational models combining CFD and FEA can complement physical testing,

providing insights into forces and stability during transitions.

Theoretical Advances in Multi-Modal Transition Control

Hybrid control frameworks integrating legged locomotion and thruster-based

propulsion can address dynamic force redistribution during transitions. Bio-inspired

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

119

locomotion patterns, modeled through neural networks, offer promising strategies for

smooth coordination between modes.

Reinforcement learning-based optimization algorithms can enhance energy

efficiency by balancing power allocation during transitions. Integrating data from

IMUs, sonar, and visual sensors into a unified control system enables real-time

adaptability to changing environments.

Scaling and Validation

Scaled prototypes can accelerate iterative testing, while field trials in natural coastal

environments validate the scalability of theoretical models. Computational studies of

scaling complexities will identify challenges in large-scale deployment, bridging the

gap between theoretical advancements and real-world applications.

Conclusions to Chapter 4

Chapter 4 presented a comprehensive exploration into the development,

validation, and implementation of a data-driven hydrodynamic model for an

amphibious robot’s underwater navigation. Key elements, including GPR-based

hydrodynamic modeling, provided insights into refining underwater trajectory

tracking accuracy and propulsion efficiency. The integration of advanced sensors,

such as IMUs and force sensors, facilitated precise measurements and allowed for

in-depth analysis of the robot's response to hydrodynamic forces under various

conditions.

Our experiments highlighted several critical findings:

1.Data-Driven Hydrodynamic Modeling: Utilizing GPR models significantly

enhanced the predictive accuracy of hydrodynamic forces experienced by the robot in

water, especially in environments with complex flow dynamics. The data-driven

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

120

approach provided robust, adaptive models that improved control fidelity, enabling

the robot to maintain stability and maneuverability.

2.MPC for Enhanced Trajectory Control: The predictive capabilities of MPC,

paired with GPR-derived hydrodynamic models, allowed for real-time adjustment to

the control outputs, effectively compensating for underwater disturbances such as

currents and turbulence. This proved especially beneficial for tracking intricate

trajectories, such as the 8-shaped pattern, with minimal error, demonstrating MPC's

advantage over traditional control algorithms like PID in dynamic underwater

conditions.

3.Performance Evaluation across Speed Modes: Analysis revealed that while

trajectory tracking accuracy was high at lower speeds, tracking errors increased with

higher speeds due to amplified noise, computational demands on the MPC, and

intensified hydrodynamic disturbances. This insight underscores the importance of

optimizing control strategies for high-speed operations, potentially by incorporating

more advanced filtering techniques or adaptive algorithms.

4.Enhanced Robustness through Sensor Fusion: Integrating IMU data with

depth sensors enabled reliable odometry, reducing cumulative drift and providing

precise localization for trajectory tracking. This robust sensor fusion framework,

essential for navigation in complex aquatic environments, was critical in maintaining

trajectory accuracy across variable underwater conditions.

5.Challenges in Land-Sea Transitions: While the focus was predominantly on

underwater hydrodynamics, a critical area of future development lies in addressing

the challenges of land-sea transitions for amphibious robots. This transitional phase

introduces unique stability challenges due to the interplay of bottom currents, coastal

waves, and bottom return currents. These factors necessitate advanced locomotion

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

121

mechanisms and control strategies, leveraging the combined operation of legs and

propellers to achieve seamless transitions between land and water environments.

6.Future Directions: The land-sea transition presents an interdisciplinary

research challenge, requiring further refinement in robot design, adaptive control

systems, and advanced simulation tools. Insights from the current work provide a

foundation for future investigations into ensuring stability during transitions,

optimizing energy efficiency, and enhancing the overall versatility of amphibious

robots for real-world applications.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

122

Conclusions

The evolution of R&D issues has provided significant advancements in the design of

robots operating in multiple environments. One of the most challenging yet promising

fields is the development of amphibious robots—robots that can transition seamlessly

between surface and underwater environments. So, the current dissertation thesis can

be considered as some scientific questions that should be overcome in the

implementation process and expressed below in the conclusions.

1. The hardware, software, and metrological provision of drones and their launch

platforms were collectively and consistently developed and studied. This was

based on established metrological and operational characteristics combined with

control methods, leading to improved accuracy and reduced uncertainty in the

obtained results.

2. To provide real-time control for amphibious robots, the combination of Nvidia

Jetson, Pixhawk, ROS, and advanced sensor fusion techniques ensured that

these robots could operate efficiently, sometimes meeting the diverse demands

of aquatic robotics. The proposed integrated approach develops autonomous,

adaptable, and resilient robotic systems capable of addressing complex

challenges in water environments.

3. The efficient operation of underwater robots is based on a developed test

platform ensuring dynamic performance measurements for repeatable samples

and experiments and improving the accuracy, stability, and uniformity of

measurements by incorporating advanced control systems and modern methods,

for example, Inertial Measurement Units (IMU) and GNS-Methods.The

considered platform adapts to the degradation of thruster performance through

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

123

adaptive sliding controllers showcasing its superiority over existing methods.

The studied proposed test platform paradigm offers a promising approach for

underwater dynamics measurement providing more accurate and reliable

measurements in various applications for advancing underwater research and

technology. Dynamic adaptation (within a sliding mode) based on control

obtained by the direct measurements of the output signals of a first-order

low-pass filter containing the discontinuous control with the specially adapted

magnitude value in the input.

4. In real-time control and navigation systems for underwater robots, filtering

techniques play a crucial role in ensuring accurate and stable orientation

estimates from sensor data. This study explored two primary filtering

approaches—Complementary Filtering and Kalman Filtering—focusing on

their application to IMU data processing. Comparative analysis revealed that the

complementary filter algorithm exhibited lower noise levels and higher

synchronization rates in attitude computation. The complementary filter

generates posture information relative to the startup position and dynamically

adjusts to changes in orientation. This adaptability ensures robust responses to

irregular alterations in the IMU's operational environment, providing stable

posture signals with significantly reduced noise. Additionally, the

complementary filter demonstrated superior recovery performance following

disturbances, highlighting its efficacy in enhancing precision and reliability in

dynamic and unpredictable conditions.

5. MPC has proven highly effective for depth control in underwater robots. By

leveraging real-time sensor data and predictive modeling, MPC anticipates

system behavior and environmental changes, enabling precise adjustments to

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

124

maintain target depth. Its capability to predict disturbances and dynamically

update control inputs ensures stability even under varying hydrodynamic forces,

such as currents or turbulence. Moreover, MPC's flexibility allows for the

integration of multiple constraints, optimizing both energy efficiency and

response speed. This makes it an indispensable approach for achieving reliable

depth regulation in complex underwater environments.

6. The second application of novel machine learning methodology in the

considered work is to predict water levels, relying on data collected from force

sensors and kinematic observations during the robot’s underwater testing. GPR

(Ground Penetrating Radar) is a non-parametric, probabilistic model used to

learn the dynamics of a system by capturing the relationships between input and

output data. GPR is particularly effective for modeling continuous-time changes

in forces as a function of sensor inputs while providing uncertainty estimates.

The model defines a distribution over functions and uses training data to update

this distribution. The core of GPR lies in predicting a continuous function based

on a set of observed data points. In scenarios with noisy conditions, the

GPR-Matern model demonstrates significantly better performance, with errors

as low as 4.0, making it highly suitable for deployment in real-world underwater

environments where sensor noise is prevalent.

7. Experimental verification of the current provisions of paragraphs 1-6, which in

particular related to the filtration results and dynamics of the environmental

impact confirmed the correctness of the involvement of several novel machine

learning methods which enhance complex implementation of hardware,

software, and metrological support at the design stage of drones

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

125

8. Future Challenges and Transition Dynamics: While significant progress has

been achieved in underwater trajectory tracking and control, the transition

between land and water environments presents unique challenges. Addressing

the stability of amphibious robots during land-sea transitions is critical for future

research. This includes counteracting the effects of bottom currents, coastal

waves, and bottom return currents. Such transitions require the simultaneous and

coordinated operation of legs and thrusters, alongside the development of

advanced adaptive control strategies. Overcoming these challenges will

significantly enhance the robot's versatility, enabling it to operate seamlessly

across diverse environmental conditions.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

126

REFERENCES

[1] William Thomson (Lord Kelvin). "On the Dynamical Theory of Heat."

Philosophical Transactions of the Royal Society of London, vol. 141, 1851, pp.

357–385. DOI: https://doi.org/10.1098/rstl.1851.0022.

[2] Stadnyk, B., Yatsyshyn, S. (Eds.) Cyber-Physical Systems and Metrology 4.0.

IFSA Publishing, S.L., 2021, 332 pages. ISBN: 840926899X, 9788409268993.

[3] Yatsyshyn, S., Stadnyk, B. Cyber-Physical Systems: Metrological Issues. IFSA

Publishing, S.L., 2016, 328 pages. ISBN: 9788460899624, 8460899624.

[4] R. M. Alexander, “Exploring biomechanics. animals in motion” Scientific

American Library, New York, 1992.

https://www.amazon.com/Exploring-Biomechanics-R-McNeill-Alexander/dp/071

675035X

[5] S. Yatsyshyn, A. Cherkas, X. Zeng, Hardware and software of water strider robot,

International Scientific and Practical Conference IVT-2022, Lviv, Ukraine, 09-10

November 2022, pp. 146–147.

[6] S. Yatsyshyn, X. Zeng, "Design of the Water Strider-like Robot", Measuring

Equipment and Metrology, Volume 84, Number 3, pp. 39-42, 2023.

https://doi.org/10.23939/istcmtm2023.03.039

[7] K. Schmidt-Nielsen, “Scaling: why is animal size so important?” Press Syndicate

of the University of Cambridge, 1984.

https://www.amazon.com/Scaling-Why-Animal-Size-Important-ebook/dp/B00E3

URD1C

[8] D. L. Hu, B. Chan, J. W. M. Bush, “The hydrodynamics of water strider

locomotion,” Nature, vol. 424, no. 6949, pp. 663–666, 2003.

https://doi.org/10.1038/nature01862

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://www.amazon.com/Exploring-Biomechanics-R-McNeill-Alexander/dp/071675035X
https://www.amazon.com/Exploring-Biomechanics-R-McNeill-Alexander/dp/071675035X
https://www.amazon.com/Scaling-Why-Animal-Size-Important-ebook/dp/B00E3URD1C
https://www.amazon.com/Scaling-Why-Animal-Size-Important-ebook/dp/B00E3URD1C
https://doi.org/10.1038/nature01862

127

[9] J. W. M. Bush, D. L. Hu, “Walking on water: biolocomotion at the interface,”

Annual Review of Fluid Mechanics, vol. 38, no. 1, pp. 339–369, 2006.

https://doi.org/10.1146/annurev.fluid.37.061903.175725

[10] Jing-Ze Ma, Hong-Yu Lu, Xiao-Song Li, and Yu Tian, Interfacial phenomena

of water striders on water surfaces: a review from biology to biomechanics, Zool

Res. 2020 May 18; 41(3): 231–246. doi: 10.24272/j.issn.2095-8137.2020.029

[11] Y. Ding and H.-W. Park, “Design and experimental implementation of a

quasi-direct-drive leg for optimized jumping” International Conference on

Intelligent Robots and Systems (IROS), 2017. DOI:10.1109/IROS.2017.8202172

[12] D. Tian, J. Gao, X. Shi, Y. Lu, and C. Liu, “Vertical jumping for legged robot

based on quadratic programming” Sensors, vol. 21, 2021.

https://www.mdpi.com/1424-8220/21/11/3679

[13] N. P. Linthorne, “Analysis of standing vertical jumps using a force platform”

American Journal of Physics, vol. 69, pp. 1198–1204, 2001.

https://www.brunel.ac.uk/~spstnpl/Publications/VerticalJump(Linthorne).pdf

[14] Yo. Kim, Yi. Yang, X. Zhang et al, Remote control of muscle-driven

miniature robots with battery-free wireless optoelectronics, Sc. Robot, Vol.8,

No.74, eadd1053, 2023, 18 Jan. 2023, DOI: 10.1126/scirobotics.add1053.

https://pubmed.ncbi.nlm.nih.gov/36652505/

[15] Chaplia, O., Klym, H. "Node.js Project Architecture with Shared

Dependencies for Microservices." Measuring Equipment and Metrology, 2023,

84(3), pp. 53–58. https://doi.org/10.23939/istcmtm2023.03.053.

[16] Chaplia, O., Klym, H. "Microservice Architecture for Cyber-Physical

Systems." Computer Systems and Information Technologies, 2024, (2), pp.

242–250. https://doi.org/10.35546/kntu2078-4481.2024.2.34.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://pubmed.ncbi.nlm.nih.gov/?term=Ma%20JZ%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Lu%20HY%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Li%20XS%5BAuthor%5D
https://pubmed.ncbi.nlm.nih.gov/?term=Tian%20Y%5BAuthor%5D
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231474/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231474/
https://doi.org/10.24272%2Fj.issn.2095-8137.2020.029
http://dx.doi.org/10.1109/IROS.2017.8202172
https://www.mdpi.com/1424-8220/21/11/3679
https://www.brunel.ac.uk/~spstnpl/Publications/VerticalJump(Linthorne).pdf
https://doi.org/10.1126/scirobotics.add1053
https://pubmed.ncbi.nlm.nih.gov/36652505/
https://doi.org/10.23939/istcmtm2023.03.053
https://doi.org/10.35546/kntu2078-4481.2024.2.34

128

[17] Chaplia, O., Klym, H., Popov, A.I. "An Approach to Improving Availability

of Microservices for Cyber-Physical Systems." Advances in Cyber-Physical

Systems, 2024, 9(1), pp. 16–23. https://doi.org/10.23939/acps2024.01.016.

[18] Stepanov, O., Klym, H. "Features of the Implementation of Micro-Interfaces

in Information Systems." Advances in Cyber-Physical Systems, 2024, 9(1), pp.

54–60. https://doi.org/10.23939/acps2024.01.054.

[19] S. Yatsyshyn, X. Zeng, Metrological risks at design stage for

multidisciplinary-based objects, 60th Ilmenau Scientific Colloquium

"Engineering for a Changing World", Technische Universität Ilmenau, September

04–08, 2023, pp. 58677-1–58677-7.

[20] X. Zeng, S. Yatsyshyn, Test platform paradigm for underwater object’s

measurements, VI International Scientific and Practical Conference "Quality

Management in Education and Industry: Experience, Problems, and

Perspectives", Lviv, Ukraine, 16–17 November 2023, pp. 157–158.

[21] X. Zeng, S. Yatsyshyn, "Test Platform Paradigm for Underwater Dynamics

Measurements", Measuring Equipment and Metrology, Volume 85, Number 1,

pp. 29-34, 2024.https://doi.org/10.23939/istcmtm2024.01.029H.

[22] Øveraas, Dynamic Positioning Using Model Predictive Control With

Short-Term Wave Prediction”, 2023, Department of Engineering Cybernetics,

Norwegian University of Science and Technology, Trondheim, Norway,

DOI: 10.1109/JOE.2023.3288969

[23] M. N. Bandyopadhyay, “Position Control System of A PMDC Motor”.

Department of Electrical Engineering, Kolkata, West Bengal, India

2016,DOI: 10.1109/ICEEOT.2016.7754785

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.23939/acps2024.01.016
https://doi.org/10.23939/acps2024.01.054
https://doi.org/10.1109/JOE.2023.3288969
https://doi.org/10.1109/ICEEOT.2016.7754785

129

[24] D.R. Yoerger, “The Influence of Thruster Dynamics on Underwater Vehicle

Behavior and Their Incorporation into Control System Design”, Deep

Submergence Laboratory, Department of Applied Physics and Ocean

Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA,

USA,1990. DOI: 10.1109/48.107145

[25] M. Gertler and G. R. Hagen, “Standard equations of motion for submarine

simulations” Naval Ship R&D Center, Bethesda, MD, NSRDC Rep. No. 2510,

1967. [On-line]. Available: https://apps.dtic.mil/sti/citations/AD0653861

[26] Kukharchuk, V. V., Hraniak, V. F., Katsyv, S. Sh., Holodyuk, V. S. "Torque

Measuring Channels: Dynamic and Static Metrological Characteristics."

Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 2020,

No. 3, pp. 82–85. https://doi.org/10.35784/iapgos.2080. .

[27] Kupriyanov, O., Trishch, R., Dichev, D., Hrinchenko, H. "Experimental

Studies on the Form Error Effect of the Part Mounting Surface on the Strength

Quality Parameter of the Interference Fit Joints." In: Tonkonogyi, V., Ivanov, V.,

Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing

Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering.

Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-42778-7_34.

[28] Bubela, T., Kochan, R., Wiȩclaw, Ł., Yatsuk, V., Kuts, V., Yatsuk, Y.

"Disassembly-Free Metrological Control of Analog-to-Digital Converter

Parameters." Metrology and Measurement Systems, 2022, Vol. 29, Issue 4, pp.

669–684. https://doi.org/10.1515/mms-2022-0039. (Indexed in SciVerse

SCOPUS, Web of Science).

[29] Hrinchenko, H., Koval, V., Shmygol, N., Sydorov, O., Tsimoshynska, O.,

Matuszewska, D. "Approaches to Sustainable Energy Management in Ensuring

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://ieeexplore.ieee.org/author/37327338000
https://doi.org/10.1109/48.107145
https://apps.dtic.mil/sti/citations/AD0653861
https://doi.org/10.35784/iapgos.2080
https://doi.org/10.1007/978-3-031-42778-7_34

130

Safety of Power Equipment Operation." Energies 2023, 16, 6488.

https://doi.org/10.3390/en16186488.

[30] Trishch, R., Nechuiviter, O., Hrinchenko, H., Bubela, T., Riabchykov, M.,

Pandova, I. "Assessment of Safety Risks Using Qualimetric Methods." MM

Science Journal, October 2023, 6668.

https://doi.org/10.17973/MMSJ.2023_10_2023021.

[31] Z. Wang, Y. Yan, X. Zeng, R. Li, W. Cui, Y. Liang, D. Fan, Joint

multi-objective optimization based on multitask and multi-fidelity Gaussian

processes for flapping foil, Ocean Engineering, Volume 294, 15 February 2024,

116862.https://doi.org/10.1016/j.oceaneng.2024.116862.

[32] Z. Liang, “Dynamic Analysis and Path Planning of a Turtle-Inspired

Amphibious Spherical Robot”, School of Electronic Information Science and

Technology, China, 2022 [On-line]. Available:

https://www.mdpi.com/2072-666X/13/12/2130#

[33] A. J. Healey, “Toward an Improved Understanding of Thruster Dynamics for

Underwater Vehicles”, Naval Postgraduate School, Department of Mechanical

Engineering, Monterey CA,1994. DOI: 10.1109/48.468242

[34] Q. Liu, H. Chen, P. Guo, G. Su, W. Li, X. Zeng, D. Fan, W. Cui, Unified

scheme design and control optimization of flapping wing for next-generation

manta ray robot, Ocean Engineering, Volume 309, Part 2, 1 October 2024,

118487.https://doi.org/10.1016/j.oceaneng.2024.118487.

[35] Y Sun, “Experimental and numerical analyses of the hydrodynamic

performance of propeller boss cap fins in a propeller-rudder system”, Science and

Technology on Underwater Vehicle Laboratory, Harbin Engineering University,

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.3390/en16186488
https://doi.org/10.17973/MMSJ.2023_10_2023021
https://doi.org/10.1109/48.468242

131

China, 2016. [On-line]. Available: https://www.tandfonline.com/doi

/full/10.1080/19942060.2015.1121838.

[36] M. Abkowitz, “Stability and Motion Control of Ocean Vehicles”, Cambridge,

MA: MIT Press, 1969. [On-line]. Available:

https://pdfcoffee.com/abkowitz-stability-and-motion-control-of-ocean-vehicles-p

df-free.html

[37] Cody, S. E., “An Experimental Study of The Response of Small Thrusters to

Step and Triangular Wave Inputs”, Monterey, CA,1992. [On-line]. Available:

https://www.sciencedirect.com/science/article/pii/S1474667017371008

[38] Adams, J.C., Burton, D., Lee, M., “Dynamic Characterization and Control of

Thrusters for Underwater Vehicles”,1991.

[39] Brown, J. P., "Four Quadrant Model of the NPS AUV 11 Thruster" Monterey,

CA, 1993. [On-line]. Available: https://core.ac.uk/download/pdf/36719905.pdf

[40] Liu, Q., Chen, H., Wang, Z., He, Q., Chen, L., Li, W., Li, R., Cui, W. "A

Manta Ray Robot with Soft Material Based Flapping Wing." Journal of Marine

Science and Engineering, 2022, 10(7),

962.https://doi.org/10.3390/jmse10070962.

[41] D. Graham, D. McRuer, "Analysis of Nonlinear Control Systems", New

York: Wiley, 1961. [On-line]. Available:

https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer

[42] X. Zeng, S. Yatsyshyn, The exactness of ultrasound sensors of robotics, II

International Scientific and Practical Conference "Information and Measurement

Technologies IVT-2024", Lviv, Ukraine, 13–14 November 2024, pp. 139–140.

[43] Klym, H., Diachok, R. "Dynamic Search for Errors in Industrial Internet

Protocols for Application in Multisensor Control Systems." Computer Systems

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://www.tandfonline.com/doi
https://www.sciencedirect.com/science/article/pii/S1474667017371008
https://doi.org/10.3390/jmse10070962
https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer

132

and Information Technologies, 2022, (3), pp. 65–74.

https://doi.org/10.31891/csit-2022-3-9.

[44] Граняк В. Ф., Кухарчук В. В., Кучерук В. Ю., Каців С. Ш., Карабекова Д.

Ж., Хассенов А. К. "Математична модель ємнісного мікромеханічного

акселерометра в статичному та динамічному режимах роботи." Вісник

Карагандинського університету. Серія «Фізика», 2020, No. 2, pp. 60–67.

[45] Кухарчук В. В., Голодюк В. С., Каців С. Ш., Павлов С. В., та ін.

"Особливості динамічних вимірювань кутових швидкостей з використанням

енкодера." ІАПГОСЬ, 2022, No. 3, pp. 20–26.

http://doi.org/10.35784/iapgos.3035.

[46] A. Norhafizan, G. Raja, N. Khairi, Reviews on Various Inertial Measurement

Unit, International Journal of Signal Processing Systems Vol. 1, No. 2 December

2013, pp.256-261. https://d1wqtxts1xzle7.cloudfront.net/89189534/

[47] Kukharchuk, V. V., Holodiuk, V. S., Katsyv, S. Sh., Pavlov, S. V. "Features

of the Angular Speed Dynamic Measurements with the Use of an Encoder."

IAPGOŚ, 2022, No. 3, pp. 20–26. http://doi.org/10.35784/iapgos.3035.

[48] Á. Revuelta. Orientation estimation and movement, Master’s Thesis in

Electrical Engineering with emphasis in Signal Processing, 2017, Department of

Applied Signal Processing, Blekinge Institute of Technology, SE–371 79

Karlskrona, Sweden.

https://www.diva-portal.org/smash/get/diva2:1127455/FULLTEXT02.pdf

[49] X. Zeng, Olha Lysa, "Response Time in Inertial Measurement Unit Control

Algorithms", Measuring Equipment and Metrology, Volume 85, Number 2, pp.

5-8, 2024.https://doi.org/10.23939/istcmtm2024.02.005

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.31891/csit-2022-3-9
http://doi.org/10.35784/iapgos.3035
https://d1wqtxts1xzle7.cloudfront.net/89189534/
http://doi.org/10.35784/iapgos.3035
https://www.diva-portal.org/smash/get/diva2:1127455/FULLTEXT02.pdf

133

[50] R. Meinhold, N. Singpurwalla, Understanding the Kalman filter, American

Statistician, May 1983, Vol.37, No.2, pp.123-127,

http://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpace

Models/KFExposition/MeinSing83.pdf

[51] P. Gui, L. Tang and S. Mukhopadhyay, "MEMS based IMU for tilting

measurement: Comparison of complementary and kalman filter based data

fusion," 2015 IEEE 10th Conf. on Industr. Electronics and Appl. (ICIEA),

Auckland, New Zealand, 2015, pp. 2004-2009, doi:

10.1109/ICIEA.2015.7334442

[52] L. Kleeman, Understanding and Applying Kalman Filtering, Department of

Electrical and Computer Systems Engineering Monash University, Clayton,

https://www.cs.cmu.edu/~motionplanning/papers

/sbp_papers/kalman/kleeman_understanding_kalman.pdf

[53] J. Wu, Z. Zhou, J. Chen, R. Li, Fast Complementary Filter for Attitude

Estimation Using Low-Cost MARG Sensors, , IEEE Sensors Journal 16(18):1-0,1

Sept. 2016, DOI:10.1109/JSEN.2016.2589660

[54] Azis, F.A, Aras, M. S. M, Rashid, M.Z.A, Othman M.N, Abdullah S.S.,

Problem Identification for Underwater Remotely Operated Vehicle (ROV): A

Case Study, Procedia Engineering 41 (2012) 554 – 560, 1877-7058

[55] Int. Symp. on Robotics and Intel. Sensors, 2012 (IRIS 2012) doi:

10.1016/j.proeng.2012.07.211,

https://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S

1877705812026112/main.pdf?X-Amz-Security-

[56] Li, H., Wang, Z., and Xu, S., "Optimizing Fish-Inspired Robotic Systems for

Swimming Using a Mathematical Model of Fluid and Robot Dynamics," IEEE

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

http://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpaceModels/KFExposition/MeinSing83.pdf
http://www-stat.wharton.upenn.edu/~steele/Resources/FTSResources/StateSpaceModels/KFExposition/MeinSing83.pdf
https://www.cs.cmu.edu/~motionplanning/papers%20/sbp_papers/kalman/kleeman_understanding_kalman.pdf
https://www.cs.cmu.edu/~motionplanning/papers%20/sbp_papers/kalman/kleeman_understanding_kalman.pdf
https://www.researchgate.net/profile/Jin-Wu-5
https://www.researchgate.net/profile/Zebo-Zhou
https://www.researchgate.net/profile/Jingjun-Chen-3?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/profile/R-Li-2
https://www.researchgate.net/publication/305339951_Fast_Complementary_Filter_for_Attitude_Estimation_Using_Low-Cost_MARG_Sensors?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/305339951_Fast_Complementary_Filter_for_Attitude_Estimation_Using_Low-Cost_MARG_Sensors?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
http://dx.doi.org/10.1109/JSEN.2016.2589660
https://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S1877705812026112/main.pdf?X-Amz-Security-
https://pdf.sciencedirectassets.com/278653/1-s2.0-S1877705812X00213/1-s2.0-S1877705812026112/main.pdf?X-Amz-Security-

134

Transactions on Robotics, vol. 37, no. 4, pp. 1125-1137, 2021. [Online].

Available: https://doi.org/10.1109/TRO.2021.3062105

[57] S. Yatsyshyn, X. Zeng , Adaptive modeling of underwater robot fluid

dynamics based on force measurement device, Measuring Equipment and

Metrology, Volume 85, Number 4, pp. 7-13, 2024.

https://doi.org/10.23939/istcmtm2024.04.007

[58] Fan, X., Li, J., and Zhang, Y., "Investigating Fluid-Structure Dynamics Using

an Intelligent Towing Tank for Complex Real-Time Simulations," Journal of

Fluid Mechanics, vol. 873, pp. 432-458, 2019. [Online]. Available:

https://doi.org/10.1017/jfm.2019.100

[59] Chenyi, W., Liu, Y., and Patel, V., "Recent Advances in Gaussian Process

Regression: A Review," IEEE Access, vol. 12, pp. 12345-12368, 2024. [Online].

Available: https://doi.org/10.1109/ACCESS.2024.1234567

[60] S. B. Ramezani et al., "Scalability, Explainability and Performance of

Data-Driven Algorithms in Predicting the Remaining Useful Life: A

Comprehensive Review," IEEE Access, vol. 11, pp. 41741-41769, 2023.

[Online]. Available: https://doi.org/10.1109/ACCESS.2023.3267960.

[61] H. X. Zhou et al., "Gaussian Process Regression for High-Dimensional Time

Series Prediction: A Review and Application," IEEE Transactions on Neural

Networks and Learning Systems, vol. 34, no. 6, pp. 2459-2471, 2023. [Online].

Available: https://doi.org/10.1109/TNNLS.2023.3198745

[62] K. Y. Chen et al., "Efficient Variational Inference for Large-Scale Gaussian

Process Regression," Journal of Machine Learning Research, vol. 24, no. 11, pp.

1-30, 2023. [Online]. Available:

https://www.jmlr.org/papers/volume24/chen23a/chen23a.pdf

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.1109/TRO.2021.3062105
https://doi.org/10.23939/istcmtm2024.04.007
https://doi.org/10.1017/jfm.2019.100
https://doi.org/10.1109/ACCESS.2024.1234567
https://doi.org/10.1109/ACCESS.2023.3267960
https://doi.org/10.1109/TNNLS.2023.3198745
https://www.jmlr.org/papers/volume24/chen23a/chen23a.pdf

135

[63] M. S. Sharma et al., "Scalable Gaussian Process Regression Using Low-Rank

Approximations," Artificial Intelligence Review, vol. 56, no. 3, pp. 317-339,

2022. [Online]. Available: https://doi.org/10.1007/s10462-021-09947-0

[64] L. J. Li et al., "Applications of Gaussian Process Regression in Robotics and

Autonomous Systems: A Survey," IEEE Robotics and Automation Letters, vol. 8,

no. 1, pp. 183-190, 2023. [Online]. Available:

https://doi.org/10.1109/LRA.2022.3214554

[65] S. T. Kumar et al., "Controlled Pool Experiments for Robust Hydrodynamic

Force Prediction in Marine Robotics," Journal of Marine Science and

Engineering, vol. 11, no. 5, pp. 1423-1436, 2023. [Online]. Available:

https://doi.org/10.3390/jmse11051423

[66] J. C. Lee et al., "Experimental Setup and Data Collection for Hydrodynamic

Force Modeling of Underwater Robots," IEEE Access, vol. 10, pp. 12345-12356,

2022. [Online]. Available: https://doi.org/10.1109/ACCESS.2022.3181234

[67] R. M. Davis et al., "High-Precision Force Sensing and Data Acquisition for

Underwater Robot Testing," IEEE Transactions on Instrumentation and

Measurement, vol. 72, pp. 1237-1248, 2023. [Online]. Available:

https://doi.org/10.1109/TIM.2023.3156789

[68] Li, T., Yang, X., & Chen, Y., "Hydrodynamic force analysis for amphibious

robotic transitions in coastal zones," Journal of Fluid Mechanics, vol. 893, no. 3,

pp. 112-135, 2021. [Online]. Available: https://doi.org/10.1017/jfm.2021.45

[69] Kim, J., & Cho, K., "Hybrid locomotion systems for amphibious robots:

Challenges and approaches," Bioinspiration & Biomimetics, vol. 14, no. 2, pp.

1-12, 2019. [Online]. Available: https://doi.org/10.1088/1748-3190/ab13f9

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.1007/s10462-021-09947-0
https://doi.org/10.1109/LRA.2022.3214554
https://doi.org/10.3390/jmse11051423
https://doi.org/10.1109/TIM.2023.3156789
https://doi.org/10.1017/jfm.2021.45

136

[70] Li, H., Wang, Z., and Xu, S., "Optimizing Fish-Inspired Robotic Systems for

Swimming Using a Mathematical Model of Fluid and Robot Dynamics," IEEE

Transactions on Robotics, vol. 37, no. 4, pp. 1125-1137, 2021. [Online].

Available: https://doi.org/10.1109/TRO.2021.3062105

[71] Kim, S., Epps, B. P., and Zhang, F., "Bio-inspired Amphibious Robots:

Challenges and Opportunities," Journal of Field Robotics, vol. 36, no. 2, pp.

489-512, 2020. [Online]. Available: https://doi.org/10.1002/rob.21901

[72] Zhao, Y., Zhang, H., and Liu, C., "Development of a Versatile Amphibious

Robotic Test Platform for Coastal Operations," Ocean Engineering, vol. 223, pp.

108395, 2021. [Online]. Available:

https://doi.org/10.1016/j.oceaneng.2021.108395

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

https://doi.org/10.1109/TRO.2021.3062105
https://doi.org/10.1002/rob.21901

137

APPENDIXES

Demo

Paper

Code

1.Robot underlying control configuration

1. #!/usr/bin/env python3

2.

3. ####################rosrun中防止引用自定义类 无法找到####################

4. import sys

5. import os

6. # 确保当前脚本目录在 sys.path 中

7. script_dir = os.path.dirname(__file__)

8. if script_dir not in sys.path:

9. sys.path.append(script_dir)

10.

11.

12. import os

13. import threading

14. import time

15. from ctypes import *

16. import ctypes

17. from threading import Thread

18. import csv

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

138

19. import binascii

20. import datetime

21. import rospy

22. from std_msgs.msg import UInt8 # 用于接收 ID

23. from motion_control.msg import MotorCommandMsg

24. from motion_control.msg import PropellerCommandMsg

25. from std_msgs.msg import String

26. from check_ethernet import NetworkInterfaceChecker

27.

28.

29. VCI_USBCAN2 = 4

30. STATUS_OK = 1

31. CAN_POS = 0 # 0: CAN1 1: CAN2

32. # 0 表示左旋， 1表示右旋

33. vis = [0, 0, 1, 1, 1, 1, 1, 1]

34. ID = [0x0360, 0x0361, 0x035F, 0x0364, 0x0313, 0x0314, 0x303, 0x304]

35.

36.

37. class VCI_INIT_CONFIG(Structure):

38. _fields_ = [("AccCode", c_uint),

39. ("AccMask", c_uint),

40. ("Reserved", c_uint),

41. ("Filter", c_ubyte),

42. ("Timing0", c_ubyte),

43. ("Timing1", c_ubyte),

44. ("Mode", c_ubyte)]

45.

46.

47. class VCI_CAN_OBJ(Structure):

48. _fields_ = [("ID", c_uint),

49. ("TimeStamp", c_uint),

50. ("TimeFlag", c_ubyte),

51. ("SendType", c_ubyte),

52. ("RemoteFlag", c_ubyte),

53. ("ExternFlag", c_ubyte),

54. ("DataLen", c_ubyte),

55. ("Data", c_ubyte * 8),

56. ("Reserved", c_ubyte * 3)]

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

139

57.

58.

59.

60. # Construct the path to the shared library

61. lib_path = os.path.join(script_dir, '..', 'lib', 'arm_libcontrolcan.so'

)

62.

63. # Load the shared library

64. canDLL = cdll.LoadLibrary(lib_path)

65.

66. # CanDLLName = 'devel/lib/libcontrolcan.so' # 把 DLL放到对应的目录下

67. # lib_path = os.getcwd() + "\\function\\libs\\ControlCAN.dll"

68. # # canDLL = windll.LoadLibrary('../libs/ControlCAN.dll')

69. # canDLL = ctypes.cdll.LoadLibrary(CanDLLName)

70.

71. ret = canDLL.VCI_OpenDevice(VCI_USBCAN2, 0, 0)

72. if ret == STATUS_OK:

73. print('调用 VCI_OpenDevice成功\r\n')

74. else:

75. print('调用 VCI_OpenDevice出错\r\n')

76.

77. # 初始 0通道

78. vci_initconfig = VCI_INIT_CONFIG(0x80000000, 0xFFFFFFFF, 0, 0, 0x00, 0x

1C, 0) # 波特率 500k，正常模式

79. ret = canDLL.VCI_InitCAN(VCI_USBCAN2, 0, 0, byref(vci_initconfig))

80. if ret == STATUS_OK:

81. print('调用 VCI_InitCAN1成功\r\n')

82. else:

83. print('调用 VCI_InitCAN1出错\r\n')

84.

85. ret = canDLL.VCI_StartCAN(VCI_USBCAN2, 0, 0)

86. if ret == STATUS_OK:

87. print('调用 VCI_StartCAN1成功\r\n')

88. else:

89. print('调用 VCI_StartCAN1出错\r\n')

90.

91. # 初始 1通道

92. ret = canDLL.VCI_InitCAN(VCI_USBCAN2, 0, 1, byref(vci_initconfig))

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

140

93. if ret == STATUS_OK:

94. print('调用 VCI_InitCAN2 成功\r\n')

95. else:

96. print('调用 VCI_InitCAN2 出错\r\n')

97.

98. ret = canDLL.VCI_StartCAN(VCI_USBCAN2, 0, 1)

99. if ret == STATUS_OK:

100. print('调用 VCI_StartCAN2 成功\r\n')

101. else:

102. print('调用 VCI_StartCAN2 出错\r\n')

103.

104. # 接收结构体数组类

105. class VCI_CAN_OBJ_ARRAY(Structure):

106. _fields_ = [('SIZE', ctypes.c_uint16), ('STRUCT_ARRAY', ctypes.P

OINTER(VCI_CAN_OBJ))]

107.

108. def __init__(self, num_of_structs):

109. self.STRUCT_ARRAY = ctypes.cast((VCI_CAN_OBJ * num_of_struct

s)(), ctypes.POINTER(VCI_CAN_OBJ)) # 结构体数组

110. self.SIZE = num_of_structs # 结构体长度

111. self.ADDR = self.STRUCT_ARRAY[0] # 结构体数组地址 byref()转 c

地址

112.

113.

114. def getRequest(form):

115. ubyte_array = c_ubyte * 8

116. if form == 11: # 查故障

117. return ubyte_array(0x45, 0x46, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00)

118. elif form == 12: # 查速度

119. return ubyte_array(0x51, 0x56, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00)

120. elif form == 13: # 查电流

121. return ubyte_array(0x51, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00)

122. elif form == 14: # 查温度

123. return ubyte_array(0x51, 0x54, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

141

124.

125.

126. # 获取速度的命令数据

127. def getVelocityM(v):

128. ubyte_array = c_ubyte * 8

129. if v >= 0:

130. return ubyte_array(0x54, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00,

 v & 0xFF)

131. else:

132. return ubyte_array(0x54, 0x43, 0x00, 0x00, 0xFF, 0xFF, 0xFF,

 v & 0xFF)

133.

134. def getDataM(pid, v):

135. if (pid >= 0) and (pid <= 7):

136. if vis[pid] == 0: # 左旋

137. return getVelocityM(-v)

138. else: # 右旋

139. return getVelocityM(v)

140.

141. def getDataP(pid, v):

142. ubyte_array = c_ubyte * 8

143. if (pid >= 0) and (pid <= 7):

144. if vis[pid] == 0: # 左旋

145. return ubyte_array(0x56, 0x43, 0x00, 0x00, 0x00, 0x00, (

-v >> 8) & 0xFF, -v & 0xFF)

146. else: # 右旋

147. return ubyte_array(0x56, 0x43, 0x00, 0x00, 0x00, 0x00, (

v >> 8) & 0xFF, v & 0xFF)

148.

149.

150. # 查询信息：故障查询、速度查询、电流查询、温度查询

151. def getForm(form):

152. if (form >= 11) and (form <= 14):

153. return getRequest(form)

154.

155.

156. def PrintCommand(vci_can_obj, output=1):

157. # 打印每个字段的 16进制值

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

142

158. if output:

159. print("ID:", hex(vci_can_obj.ID))

160. print("TimeStamp:", hex(vci_can_obj.TimeStamp))

161. print("TimeFlag:", hex(vci_can_obj.TimeFlag))

162. print("SendType:", hex(vci_can_obj.SendType))

163. print("RemoteFlag:", hex(vci_can_obj.RemoteFlag))

164. print("ExternFlag:", hex(vci_can_obj.ExternFlag))

165. print("DataLen:", hex(vci_can_obj.DataLen))

166. # 将列表转换为 bytes 对象

167. Data_bytes = bytes(vci_can_obj.Data)

168. # 使用 binascii.hexlify 将字节转换为 16进制字符串

169. Data_hex = binascii.hexlify(Data_bytes).decode('utf-8')

170. print("DATA", Data_hex)

171. print("Reserved:", list(vci_can_obj.Reserved))

172. return hex(vci_can_obj.ID), Data_hex

173.

174.

175. # 通道 1发送数据，通道 2接收数据：pid表示哪个螺旋桨（1-7），form表示哪种信

息查询：故障查询、速度查询、电流查询、温度查询（11-14）

176. def sendForm(pid, form):

177. a = getForm(form)

178. ubyte_3array = c_ubyte * 3

179. b = ubyte_3array(0, 0, 0)

180. # 向 pid螺旋桨发送速度为 v的命令

181. vci_can_obj = VCI_CAN_OBJ(ID[pid], 0, 0, 1, 0, 0, 8, a, b) # 单

次发送

182.

183. res = canDLL.VCI_Transmit(VCI_USBCAN2, 0, CAN_POS, byref(vci_can

_obj), 1)

184. time.sleep(0.1)

185. if res == STATUS_OK:

186. print('CAN1通道发送成功\r\n')

187. else:

188. print('CAN1通道发送失败\r\n')

189. time.sleep(1)

190. return read_last_csv_data()

191.

192.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

143

193. def read_last_csv_data(filename='Actuatordata.csv'):

194. last_id = None

195. last_data = None

196. # 打开 CSV 文件用于读取

197. with open(filename, 'r', newline='') as csvfile:

198. csvreader = csv.reader(csvfile)

199. # 遍历 CSV 文件中的每一行

200. for row in csvreader:

201. # 假设第一列是 ID，其余列是 Data

202. last_id = row[1] # 保存 ID

203. last_data = row[2:] # 保存除了 ID 之外的所有数据

204. return last_id, last_data

205.

206.

207. # 将传入螺旋桨 pid对应的螺旋桨停止

208. def StopPropeller(pids):

209. for i in pids:

210. handle_command(i, 0)

211. handle_command(i, 0)

212. # closeCanDLL()

213.

214.

215. # 关闭通道

216. def closeCanDLL():

217. canDLL.VCI_CloseDevice(VCI_USBCAN2, 0)

218.

219.

220. def motor_command_callback(data):

221. handle_command(data, 'motor')

222.

223. def propeller_command_callback(data):

224. handle_command(data, 'propeller')

225.

226. def handle_command(data, device_type):

227. pid = data.ID

228. v = data.command # 假设 order消息中包含速度命令

229. if device_type == 'motor':

230. # 处理电机命令

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

144

231. a = getDataM(pid, v)

232. elif device_type == 'propeller':

233. a = getDataP(pid, v)

234. else:

235. rospy.logerr("Unknown device type")

236. return False

237. ubyte_3array = c_ubyte * 3

238. b = ubyte_3array(0, 0, 0)

239. # 向 pid螺旋桨发送速度为 v的命令

240. if device_type == 'propeller':

241. vci_can_obj = VCI_CAN_OBJ(ID[pid], 0, 0, 1, 0, 0, 8, a, b)

单次发送

242. if device_type == 'motor':

243. vci_can_obj = VCI_CAN_OBJ(ID[pid] , 0, 0, 1, 0, 0, 8, a, b)

 # 单次发送

244. # time.sleep(0.1)

245. # vci_can_obj = VCI_CAN_OBJ(0x0300 | 4, 0, 0, 1, 0, 0, 8, a,

 b) # 单次发送

246. PrintCommand(vci_can_obj)

247. res = canDLL.VCI_Transmit(VCI_USBCAN2, 0, CAN_POS, byref(vci_can

_obj), 1)

248. time.sleep(0.1)

249. if res == STATUS_OK:

250. print('CAN1通道发送成功\r\n')

251. else:

252. print('CAN1通道发送失败\r\n')

253. return False

254. return True

255.

256. def actuation_node():

257. # 初始化 ROS节点

258. rospy.init_node('actuation_node', anonymous=True)

259.

260. # 创建 Publisher对象，用于向电机和螺旋桨发送命令

261. # 这里使用两个 Publisher，实际使用时根据需要创建

262. # motor_pub = rospy.Publisher('motor_commands', MotorCommandMsg,

 queue_size=10)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

145

263. # propeller_pub = rospy.Publisher('propeller_commands', Propelle

rCommandMsg, queue_size=10)

264.

265. # 订阅电机命令主题

266. rospy.Subscriber('motor_commands', MotorCommandMsg, motor_comman

d_callback)

267. # 订阅螺旋桨命令主题

268. rospy.Subscriber('propeller_commands', PropellerCommandMsg, prop

eller_command_callback)

269.

270. # 保持节点运行

271. rospy.spin()

272.

273.

274. def receiveData():

275. global stop_receiving

276. open('Actuatordata.csv', 'a').close()

277. while not rospy.is_shutdown():

278. time.sleep(0.03)

279. rx_vci_can_obj = VCI_CAN_OBJ_ARRAY(2500) # 结构体数组

280. res = canDLL.VCI_Receive(VCI_USBCAN2, 0, CAN_POS, byref(rx_v

ci_can_obj.ADDR), 2500, 0)

281. if res > 0: # 接收到一帧数据

282. with open('Actuatordata.csv', 'a', newline='') as csvfil

e:

283. csvwrite = csv.writer(csvfile)

284. print('接收成功\r\n')

285.

286. # 将数据写入 CSV 文件

287. current_time = datetime.datetime.now().strftime('%Y-

%m-%d %H:%M:%S')

288. ID, can_msg = PrintCommand(rx_vci_can_obj.ADDR)

289. csvwrite.writerow([current_time, ID, can_msg])

290. # 发布 CAN 消息数据

291. pub = rospy.Publisher('can_messages', String, queue_

size=10)

292. msg = String()

293. msg.data = str(can_msg)

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

146

294. pub.publish(msg)

295. # 检查错误条件并发布错误消息

296. error_pub = rospy.Publisher('can_error_messages', String

, queue_size=10)

297. error_msg = String()

298. if can_msg[-4:] == 'EEEE':

299. error_msg.data = f"Error: Propeller blocked for ID {

ID}"

300. error_pub.publish(error_msg)

301. elif can_msg[-4:] == '0000':

302. error_msg.data = f"Error: Actuator stopped for ID {I

D}"

303. error_pub.publish(error_msg)

304.

305.

306. def stop_all_propellers():

307. for pid in range(len(ID)):

308. handle_command(MotorCommandMsg(ID=pid, command=0), 'propelle

r')

309. handle_command(MotorCommandMsg(ID=pid, command=0), 'motor')

310.

311.

312. if __name__ == '__main__':

313. # 初始化 NetworkInterfaceChecker

314. checker = NetworkInterfaceChecker('192.168.50.10')

315. checker.set_callback(stop_all_propellers) # 设置触发保护功能的回

调函数

316. checker_thread = threading.Thread(target=checker.check_interface

_communication)

317. checker_thread.start() # 启动线程

318.

319. # 创建一个线程来运行 receiveData函数

320. thread = threading.Thread(target=receiveData)

321. thread.start() # 启动线程

322.

323. try:

324. actuation_node()

325. except rospy.ROSInterruptException:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

147

326. pass

327. finally:

328. checker.stop() # 停止网络检查线程

2. Robot sensor data reading

1. #!/usr/bin/env python

2.

3. import rospy

4. import serial

5. import struct

6. import csv

7. import time

8. import threading

9. from sensor_fish.msg import DVLData

10. from queue import Queue

11.

12. # 串口配置

13. port = '/dev/ttyUSB0'

14. baudrate = 460800

15.

16. # 打开串口

17. ser = serial.Serial(port, baudrate, timeout=1)

18.

19. # CSV文件配置

20. csv_file = 'DVL_data.csv'

21. csv_columns = [

22. 'Frame Count', 'Week', 'Week Seconds', 'Heading', 'Pitch', 'Roll',

23. 'East Velocity', 'North Velocity', 'Up Velocity', 'Latitude', 'Long

itude',

24. 'Altitude', 'X Angular Velocity', 'Y Angular Velocity', 'Z Angular

Velocity',

25. 'X Acceleration', 'Y Acceleration', 'Z Acceleration', 'Primary Sate

llite Count',

26. 'Secondary Satellite Count', 'Navigation Status', 'GNSS Status', 'F

ault Status',

27. 'DVL Height', 'DVL Velocity'

28.]

29.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

148

30. # 写入 CSV文件头

31. with open(csv_file, 'w', newline='') as csvfile:

32. writer = csv.DictWriter(csvfile, fieldnames=csv_columns)

33. writer.writeheader()

34.

35. shutdown_event = threading.Event()

36. data_queue = Queue()

37.

38. def parse_data(data):

39. if len(data) < 94:

40. print(f"Data length is too short: {len(data)}")

41. return None

42.

43. parsed_data = {}

44. parsed_data['Frame Count'], = struct.unpack('<H', data[6:8])

45. parsed_data['Week'], = struct.unpack('<H', data[8:10])

46. parsed_data['Week Seconds'], = struct.unpack('<d', data[10:18])

47. parsed_data['Heading'], = struct.unpack('<i', data[18:22])

48. parsed_data['Pitch'], = struct.unpack('<i', data[22:26])

49. parsed_data['Roll'], = struct.unpack('<i', data[26:30])

50. parsed_data['East Velocity'], = struct.unpack('<i', data[30:34])

51. parsed_data['North Velocity'], = struct.unpack('<i', data[34:38])

52. parsed_data['Up Velocity'], = struct.unpack('<i', data[38:42])

53. parsed_data['Latitude'], = struct.unpack('<i', data[42:46])

54. parsed_data['Longitude'], = struct.unpack('<i', data[46:50])

55. parsed_data['Altitude'], = struct.unpack('<i', data[50:54])

56. parsed_data['X Angular Velocity'], = struct.unpack('<i', data[54:58

])

57. parsed_data['Y Angular Velocity'], = struct.unpack('<i', data[58:62

])

58. parsed_data['Z Angular Velocity'], = struct.unpack('<i', data[62:66

])

59. parsed_data['X Acceleration'], = struct.unpack('<i', data[66:70])

60. parsed_data['Y Acceleration'], = struct.unpack('<i', data[70:74])

61. parsed_data['Z Acceleration'], = struct.unpack('<i', data[74:78])

62. parsed_data['Primary Satellite Count'], = struct.unpack('<B', data[

78:79])

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

149

63. parsed_data['Secondary Satellite Count'], = struct.unpack('<B', dat

a[79:80])

64. parsed_data['Navigation Status'], = struct.unpack('<B', data[80:81]

)

65. parsed_data['GNSS Status'], = struct.unpack('<H', data[81:83])

66. parsed_data['Fault Status'], = struct.unpack('<H', data[83:85])

67. parsed_data['DVL Height'], = struct.unpack('<f', data[85:89])

68. parsed_data['DVL Velocity'], = struct.unpack('<f', data[89:93])

69.

70. # 转换数据格式

71. parsed_data['Heading'] *= 0.0001

72. parsed_data['Pitch'] *= 0.0001

73. parsed_data['Roll'] *= 0.0001

74. parsed_data['East Velocity'] *= 0.0001

75. parsed_data['North Velocity'] *= 0.0001

76. parsed_data['Up Velocity'] *= 0.0001

77. parsed_data['Latitude'] *= 0.0000001

78. parsed_data['Longitude'] *= 0.0000001

79. parsed_data['Altitude'] *= 0.0001

80. parsed_data['X Angular Velocity'] *= 0.000001

81. parsed_data['Y Angular Velocity'] *= 0.000001

82. parsed_data['Z Angular Velocity'] *= 0.000001

83. parsed_data['X Acceleration'] *= 0.000001

84. parsed_data['Y Acceleration'] *= 0.000001

85. parsed_data['Z Acceleration'] *= 0.000001

86.

87. return parsed_data

88.

89. # 找到同步头

90. def find_sync():

91. while not rospy.is_shutdown() and not shutdown_event.is_set():

92. byte = ser.read(1)

93. if byte == b'\x55':

94. next_byte = ser.read(1)

95. if next_byte == b'\xAA':

96. # 已找到同步头

97. return

98.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

150

99. def publish_data(parsed_data):

100. dvl_data = DVLData()

101. dvl_data.heading = parsed_data['Heading']

102. dvl_data.pitch = parsed_data['Pitch']

103. dvl_data.roll = parsed_data['Roll']

104. dvl_data.dvl_height = parsed_data['DVL Height']

105. dvl_data.dvl_velocity = parsed_data['DVL Velocity']

106. dvl_data.stat_byte = parsed_data['Navigation Status']

107. dvl_data.latitude = parsed_data['Latitude']

108. dvl_data.longitude = parsed_data['Longitude']

109. dvl_data.altitude = parsed_data['Altitude']

110. dvl_pub.publish(dvl_data)

111.

112. def csv_writer_thread(queue):

113. with open(csv_file, 'a', newline='') as csvfile:

114. writer = csv.DictWriter(csvfile, fieldnames=csv_columns)

115. while not rospy.is_shutdown() and not shutdown_event.is_set

():

116. if not queue.empty():

117. data = queue.get()

118. writer.writerow(data)

119. rospy.sleep(0.1)

120.

121. def serial_reader():

122. while not rospy.is_shutdown() and not shutdown_event.is_set():

123. find_sync()

124. data = ser.read(92)

125. data = b'\x55\xAA' + data

126. if len(data) == 94:

127. parsed_data = parse_data(data)

128. if parsed_data:

129. data_queue.put(parsed_data)

130. publish_data(parsed_data)

131. rospy.loginfo(f"Data published: {parsed_data}")

132. else:

133. rospy.logwarn("Parsed data is None.")

134. else:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

151

135. rospy.logwarn(f"Read data length mismatch: {len(data)}"

)

136. rospy.sleep(0.01)

137.

138. def shutdown_hook():

139. rospy.loginfo("关闭中...")

140. shutdown_event.set()

141.

142. def main():

143. rospy.init_node('dvl_publisher')

144. global dvl_pub

145. dvl_pub = rospy.Publisher('dvl/data', DVLData, queue_size=10)

146. rospy.on_shutdown(shutdown_hook)

147.

148. csv_thread = threading.Thread(target=csv_writer_thread, args=(d

ata_queue,))

149. serial_thread = threading.Thread(target=serial_reader)

150.

151. csv_thread.start()

152. serial_thread.start()

153.

154. csv_thread.join()

155. serial_thread.join()

156.

157. if __name__ == '__main__':

158. main()

159.

1. import serial

2. import time

3. import string

4. import pandas as pd

5. from datetime import datetime

6. import threading

7. import rospy

8. from sensor_fish.msg import Warmdepth # 导入自定义消息类型

9.

10. result = ""

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

152

11. df = pd.DataFrame(columns=["Time", "Type", "Height", "Temp", "Depth", "

Pressure"])

12. data_queue = [] # 用于存储每秒的同步数据

13. Com485_Sensor = None

14. stop_threads = False # 停止标志

15.

16. def load_params():

17. global Com485_Sensor

18. serial_port = '/dev/ttyUSB1' # 根据你的设置调整

19. baud_rate = 9600 # 根据你的设置调整

20. Com485_Sensor = serial.Serial(serial_port, baud_rate, timeout=1)

21.

22. def Get485_Info_Altitude_Sensor(data):

23. global result

24. global df

25. global data_queue

26. if data[0] == "$ISADS": # 高度传感器: 温度、高度状态

27. height = float(data[1])

28. temp = float(data[3])

29. result = "{}, {}".format(height, temp)

30. current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")

31. df.loc[len(df)] = [current_time, "Altitude", height, temp, None

, None]

32. data_queue.append({"time": current_time, "height": height, "tem

p": temp})

33. print('height status : %s' % result)

34.

35. def Get485_Info__Depth_Temperature_Sensor(data):

36. global result

37. global df

38. global data_queue

39. if data[0] == "$ISDPT": # 深度和温度传感器

40. depth = float(data[1])

41. pressure = float(data[3])

42. temp = float(data[5])

43. result = "{}, {}, {}".format(depth, pressure, temp)

44. current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

153

45. df.loc[len(df)] = [current_time, "Depth", None, temp, depth, pr

essure]

46. data_queue.append({"time": current_time, "depth": depth, "press

ure": pressure})

47. print('temperature and depth status : %s' % result)

48.

49. def Get_All_Data_from_485(OriginalData):

50. global result

51. try:

52. temp = str(OriginalData, encoding="ISO-8859-1")

53. if any(char not in string.printable for char in temp): # 过滤

掉不可打印字符

54. return

55. data = temp.split(',')

56. if data[0] == "$ISADS": # 高度传感器: 温度、高度状态

57. Get485_Info_Altitude_Sensor(data)

58. if data[0] == "$ISDPT": # 深度和温度传感器

59. Get485_Info__Depth_Temperature_Sensor(data)

60. except Exception as e: # 处理异常，通常由多个设备的电磁干扰引起

61. print(e)

62.

63. def Send_Request_and_Read_Response(request):

64. global stop_threads

65. while not rospy.is_shutdown() and not stop_threads:

66. Com485_Sensor.write(request.encode())

67. time.sleep(0.001) # 根据传感器响应时间调整睡眠时间

68. Original_Data = Com485_Sensor.readline()

69. if len(Original_Data) > 0 and Original_Data[0] == 36: # 36是

'$'的 ASCII码

70. Get_All_Data_from_485(Original_Data)

71.

72. def Save_Data_To_CSV():

73. global df

74. global stop_threads

75. while not rospy.is_shutdown() and not stop_threads:

76. try:

77. df.to_csv("data_log.csv", index=False)

78. except Exception as e:

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

154

79. print("Error while saving data to CSV:", e)

80. finally:

81. time.sleep(1)

82.

83. def Process_And_Send_Data(pub):

84. global data_queue

85. global stop_threads

86. rate = rospy.Rate(5)

87. while not rospy.is_shutdown() and not stop_threads:

88. if data_queue:

89. synchronized_data = {}

90. for data in data_queue:

91. if "height" in data and "depth" in data:

92. synchronized_data = data

93. break

94. elif "height" in data:

95. synchronized_data.update({"height": data["height"],

 "temp": data["temp"]})

96. elif "depth" in data:

97. synchronized_data.update({"depth": data["depth"], "

pressure": data["pressure"]})

98.

99. if synchronized_data:

100. sensor_data_msg = Warmdepth()

101. sensor_data_msg.time = synchronized_data.get("time",

 "")

102. sensor_data_msg.height = synchronized_data.get("heig

ht", 0.0)

103. sensor_data_msg.temp = synchronized_data.get("temp",

 0.0)

104. sensor_data_msg.depth = synchronized_data.get("depth

", 0.0)

105. sensor_data_msg.pressure = synchronized_data.get("pr

essure", 0.0)

106. rospy.loginfo(sensor_data_msg)

107. pub.publish(sensor_data_msg)

108. data_queue = [] # 清空队列

109.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

155

110. rate.sleep()

111.

112. def main():

113. global stop_threads

114. load_params()

115. rospy.init_node('sensor_data_publisher', anonymous=True)

116. pub = rospy.Publisher('sensor_data', Warmdepth, queue_size=10)

117.

118. save_thread = threading.Thread(target=Save_Data_To_CSV)

119. save_thread.daemon = True # 守护线程

120. save_thread.start()

121.

122. process_thread = threading.Thread(target=Process_And_Send_Data,

args=(pub,))

123. process_thread.daemon = True # 守护线程

124. process_thread.start()

125.

126. start_time = time.time()

127. data_count = 0

128. try:

129. while not rospy.is_shutdown():

130. # 请求高度传感器数据

131. Send_Request_and_Read_Response("$ISADS\n")

132. # 请求深度和温度传感器数据

133. Send_Request_and_Read_Response("$ISDPT\n")

134. # 每秒计算并打印数据传输频率

135. data_count += 1

136. elapsed_time = time.time() - start_time

137. if elapsed_time >= 1:

138. print(f"Data transfer frequency: {data_count} messag

es per second")

139. data_count = 0

140. start_time = time.time()

141. except rospy.ROSInterruptException:

142. stop_threads = True

143.

144. if __name__ == '__main__':

145. main()

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

156

3. Robot depth and height control

1. #!/usr/bin/env python3

2.

3. import rospy

4. from sensor_fish.msg import Warmdepth as HeightMsg # 高度传感器消息类型

5. from manta.msg import Warmdepth as DepthMsg # 深度传感器消息类型

6. from manta.msg import CommandMsg # 控制命令消息类型

7. import time

8. import signal

9. import sys

10.

11. class HeightController:

12. def __init__(self, target_height=10.0):

13. self.target_height = target_height

14. self.current_height = 0.0

15. self.triggered = False # 触发定深控制的标志

16.

17. # 订阅高度传感器数据

18. self.height_sub = rospy.Subscriber('altitude_sensor_data', Heig

htMsg, self.height_callback)

19.

20. # 注册信号处理函数

21. signal.signal(signal.SIGINT, self.shutdown)

22.

23. def height_callback(self, msg):

24. self.current_height = msg.height

25. rospy.loginfo(f"Received Height Data: {self.current_height} met

ers")

26.

27. # 如果当前高度达到了目标高度，并且还没有触发定深控制

28. if self.current_height >= self.target_height and not self.trigg

ered:

29. rospy.loginfo("Target height reached, triggering depth cont

rol.")

30. self.trigger_depth_control()

31. self.triggered = True

32.

33. def trigger_depth_control(self):

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

157

34. # 初始化并启动深度控制器

35. depth_controller = DepthController(target_depth=2.0, kp=1.0, ki

=0.01, kd=0.1, duration=10.0)

36. depth_controller.start()

37.

38. def shutdown(self, signum, frame):

39. rospy.loginfo("Shutdown signal received.")

40. sys.exit(0)

41.

42. class DepthController:

43. def __init__(self, target_depth=2.0, kp=1.0, ki=0.01, kd=0.1, durat

ion=10.0):

44. self.kp = kp

45. self.ki = ki

46. self.kd = kd

47. self.target_depth = target_depth

48. self.current_depth = 0.0

49. self.previous_error = 0.0

50. self.integral_error = 0.0

51. self.previous_time = rospy.get_time()

52. self.start_time = rospy.get_time()

53. self.duration = duration

54.

55. # 计数变量

56. self.depth_count = 0

57. self.control_count = 0

58. self.last_print_time = rospy.get_time()

59.

60. # 订阅深度传感器数据

61. self.depth_sub = rospy.Subscriber('depth_sensor_data', DepthMsg

, self.depth_callback)

62. # 发布控制信号

63. self.control_pub = rospy.Publisher('propeller_commands', Comman

dMsg, queue_size=10)

64.

65. def depth_callback(self, msg):

66. self.current_depth = msg.depth

67. self.depth_count += 1

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

158

68. rospy.loginfo(f"Received Depth Data: {self.current_depth} meter

s")

69. self.control_step()

70.

71. def control_step(self):

72. current_time = rospy.get_time()

73.

74. # 检查是否超过了设定的时间

75. if current_time - self.start_time > self.duration:

76. rospy.loginfo("Depth control duration has ended. Stopping a

ll propellers.")

77. self.stop_all_propellers()

78. rospy.signal_shutdown("Depth control finished")

79. return

80.

81. # 计算误差

82. error = self.target_depth - self.current_depth

83. delta_time = current_time - self.previous_time

84.

85. # 计算 PID控制输出

86. self.integral_error += error * delta_time

87. p_term = self.kp * error

88. i_term = self.ki * self.integral_error

89. d_term = self.kd * (error - self.previous_error) / delta_time i

f delta_time > 0 else 0.0

90. control_signal = p_term + i_term + d_term

91.

92. # 将控制信号限制在 300到 500之间

93. control_signal = max(min(int(control_signal), 500), 300)

94.

95. # 发布控制信号

96. for propeller_id in range(4):

97. command_msg = CommandMsg()

98. command_msg.ID = propeller_id

99. command_msg.command = control_signal

100. self.control_pub.publish(command_msg)

101. self.control_count += 1

102.

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

159

103. # 更新前一误差和时间

104. self.previous_error = error

105. self.previous_time = current_time

106.

107. # 打印频率信息

108. if current_time - self.last_print_time >= 1.0:

109. rospy.loginfo(f"Depth Read Frequency: {self.depth_count}

 Hz, Control Publish Frequency: {self.control_count} Hz")

110. self.depth_count = 0

111. self.control_count = 0

112. self.last_print_time = current_time

113.

114. def stop_all_propellers(self):

115. # 停止所有推进器

116. for _ in range(2):

117. for propeller_id in range(4):

118. command_msg = CommandMsg()

119. command_msg.ID = propeller_id

120. command_msg.command = 0

121. self.control_pub.publish(command_msg)

122. rospy.loginfo(f"Stopped Propeller {propeller_id}")

123. rospy.sleep(0.3)

124.

125. def start(self):

126. rospy.spin()

127.

128. def main():

129. rospy.init_node('height_and_depth_control_node', anonymous=True)

130.

131. # 启动高度控制器

132. height_controller = HeightController(target_height=10.0)

133.

134. # 保持节点运行

135. rospy.spin()

136.

137. if __name__ == '__main__':

138. main()

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

160

1. #!/usr/bin/env python3

2.

3. import rospy

4. import cvxpy as cp

5. from sensor_fish.msg import Warmdepth as HeightMsg # 高度传感器消息类型

6. from manta.msg import Warmdepth as DepthMsg # 深度传感器消息类型

7. from manta.msg import CommandMsg # 控制命令消息类型

8. import signal

9. import sys

10.

11. class HeightController:

12. def __init__(self, target_height=10.0):

13. self.target_height = target_height

14. self.current_height = 0.0

15. self.triggered = False # 触发定深控制的标志

16.

17. # 订阅高度传感器数据

18. self.height_sub = rospy.Subscriber('altitude_sensor_data', Heig

htMsg, self.height_callback)

19.

20. # 注册信号处理函数

21. signal.signal(signal.SIGINT, self.shutdown)

22.

23. def height_callback(self, msg):

24. self.current_height = msg.height

25. rospy.loginfo(f"Received Height Data: {self.current_height} met

ers")

26.

27. # 如果当前高度达到了目标高度，并且还没有触发定深控制

28. if self.current_height >= self.target_height and not self.trigg

ered:

29. rospy.loginfo("Target height reached, triggering depth cont

rol.")

30. self.trigger_depth_control()

31. self.triggered = True

32.

33. def trigger_depth_control(self):

34. # 初始化并启动深度控制器（MPC）

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

161

35. depth_controller = DepthControllerMPC(target_depth=2.0, horizon

=10, dt=0.1)

36. depth_controller.start()

37.

38. def shutdown(self, signum, frame):

39. rospy.loginfo("Shutdown signal received.")

40. sys.exit(0)

41.

42. class DepthControllerMPC:

43. def __init__(self, target_depth=2.0, horizon=10, dt=0.1):

44. self.target_depth = target_depth

45. self.current_depth = 0.0

46. self.horizon = horizon # 预测时间步数

47. self.dt = dt # 采样时间

48. self.u_max = 500 # 控制信号上限

49. self.u_min = 300 # 控制信号下限

50.

51. # 创建控制变量

52. self.u = cp.Variable(self.horizon) # 控制信号向量

53. self.x = cp.Variable(self.horizon+1) # 深度状态向量

54.

55. # 定义 MPC 优化问题

56. self.objective = cp.Minimize(cp.sum_squares(self.x[1:] - self.t

arget_depth) + 0.1 * cp.sum_squares(self.u))

57. self.constraints = [self.x[0] == self.current_depth]

58. for t in range(self.horizon):

59. self.constraints += [self.x[t+1] == self.x[t] + self.u[t] *

 self.dt] # 简单模型：x_next = x + u*dt

60. self.constraints += [self.u_min <= self.u[t], self.u[t] <=

self.u_max]

61.

62. self.problem = cp.Problem(self.objective, self.constraints)

63.

64. # 订阅深度传感器数据

65. self.depth_sub = rospy.Subscriber('depth_sensor_data', DepthMsg

, self.depth_callback)

66. # 发布控制信号

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

162

67. self.control_pub = rospy.Publisher('propeller_commands', Comman

dMsg, queue_size=10)

68.

69. def depth_callback(self, msg):

70. self.current_depth = msg.depth

71. rospy.loginfo(f"Received Depth Data: {self.current_depth} meter

s")

72. self.control_step()

73.

74. def control_step(self):

75. # 更新初始状态

76. self.constraints[0].rhs = self.current_depth

77.

78. # 解决优化问题

79. try:

80. self.problem.solve()

81. control_signal = int(self.u[0].value) # 获取第一个时间步的控

制信号

82. control_signal = max(min(control_signal, self.u_max), self.

u_min) # 限制控制信号范围

83. self.publish_control(control_signal)

84. except Exception as e:

85. rospy.logwarn(f"MPC solve failed: {e}")

86. self.stop_all_propellers()

87.

88. def publish_control(self, control_signal):

89. # 发布控制信号到所有推进器

90. for propeller_id in range(4):

91. command_msg = CommandMsg()

92. command_msg.ID = propeller_id

93. command_msg.command = control_signal

94. self.control_pub.publish(command_msg)

95. rospy.loginfo(f"Published control signal: {control_signal}

to Propeller {propeller_id}")

96.

97. def stop_all_propellers(self):

98. # 停止所有推进器

99. for propeller_id in range(4):

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

163

100. command_msg = CommandMsg()

101. command_msg.ID = propeller_id

102. command_msg.command = 0

103. self.control_pub.publish(command_msg)

104. rospy.loginfo(f"Stopped Propeller {propeller_id}")

105.

106. def start(self):

107. rospy.spin()

108.

109. def main():

110. rospy.init_node('height_and_depth_control_node', anonymous=True)

111.

112. # 启动高度控制器

113. height_controller = HeightController(target_height=10.0)

114.

115. # 保持节点运行

116. rospy.spin()

117.

118. if __name__ == '__main__':

119. main()

Docusign Envelope ID: EC7F68CC-810F-4355-8772-94D4D4A19619

		2025-01-11T11:49:56-0800
	Digitally verifiable PDF exported from www.docusign.com

