

Software Testing

Base course

(3rd edition)

Book version 3.2.6 as of 2024-05-24
Software Testing. Base course.

Software Testing. Base course.

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 2/278

Table of Contents

FOREWORD FROM THE AUTHOR, OR WHAT IS THIS BOOK FOR ... 4

CHAPTER 1: TESTING AND TESTERS .. 6

1.1. WHAT TESTING IS AND WHERE IT CAME FROM ... 6

1.2. WHO IS A TESTER AND WHAT IS THEIR WORK .. 9

1.3. WHAT YOU NEED TO KNOW AND BE ABLE TO LEARN ... 11

1.4. MYTHS AND MISCONCEPTIONS ABOUT TESTING .. 15

CHAPTER 2: GENERAL KNOWLEDGE AND SKILLS... 17

2.1. SOFTWARE TESTING AND SOFTWARE DEVELOPMENT PROCESSES 17

2.1.1. Software development models ... 17
2.1.2. Software testing lifecycle ... 26
2.1.3. Software testing principles ... 28

2.2. DOCUMENTATION AND REQUIREMENTS TESTING .. 31

2.2.1. What a “requirement” is ... 31
2.2.2. The importance of requirements .. 32
2.2.3. Ways of requirements gathering .. 36
2.2.4. Requirements levels and types .. 38
2.2.5. Good requirements properties ... 42
2.2.6. Requirements testing techniques .. 49
2.2.7. Examples of requirements analysis and testing .. 52
2.2.8. Common mistakes in requirements analysis and testing ... 61

2.3. SOFTWARE TESTING CLASSIFICATION ... 65

2.3.1. Simplified testing classification ... 65
2.3.2. Detailed testing classification .. 67

2.3.2.1. Testing classification scheme .. 67
2.3.2.2. Classification by code execution.. 70
2.3.2.3. Classification by access to application code and architecture 71
2.3.2.4. Classification by automation level ... 73
2.3.2.5. Classification by specification level (by testing level) ... 75
2.3.2.6. Classification by functions under test importance (decreasingly)

 (by functional testing level) ... 77
2.3.2.7. Classification by ways of dealing with application... 80
2.3.2.8. Classification by application nature ... 81
2.3.2.9. Classification by architecture tier... 82
2.3.2.10. Classification by end-user participation .. 83
2.3.2.11. Classification by formalization level .. 84
2.3.2.12. Classification by aims and goals .. 85
2.3.2.13. Classification by techniques and approaches .. 91
2.3.2.14. Classification by execution chronology .. 98

2.3.3. Alternative and additional testing classifications .. 100
2.3.4. Classification by reference to white box and black box testing 105

2.4. CHECKLISTS, TEST CASES, TEST SUITES... 108

2.4.1. Checklist ... 108
2.4.2. Test case and its lifecycle .. 113
2.4.3. Test case attributes ... 117
2.4.4. Test management tools .. 122
2.4.5. Good test case properties .. 128
2.4.6. Test suites .. 137
2.4.7. The logic for creating effective checks ... 142
2.4.8. Typical mistakes in writing checklists, test cases and test suites 149

Software Testing. Base course.

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 3/278

2.5. DEFECT REPORTS ... 155

2.5.1. Errors, defects, malfunctions, failures, etc. .. 155
2.5.2. Defect report and its lifecycle .. 158
2.5.3. Defect report fields (attributes) .. 162
2.5.4. Defects management (bug-tracking) tools ... 170
2.5.5. Good defect report properties .. 177
2.5.6. Logic for creating effective defect reports ... 182
2.5.7. Typical mistakes in writing defect reports .. 186

2.6. WORKLOAD ESTIMATION, PLANNING AND REPORTING .. 191

2.6.1. Planning and reporting ... 191
2.6.2. Test plan and test result report .. 194
2.6.3. Workload estimation ... 210

2.7. EXAMPLES OF VARIOUS TESTING TECHNIQUES USAGE ... 216

2.7.1. Positive and negative test cases ... 216
2.7.2. Equivalence classes and boundary conditions ... 218
2.7.3. Domain testing and parameters combinations .. 223
2.7.4. Pairwise testing and combinations search ... 226
2.7.5. Exploratory testing .. 230
2.7.6. Root cause analysis .. 234

CHAPTER 3: TEST AUTOMATION ... 238

3.1. AUTOMATION BENEFITS AND RISKS ... 238

3.1.1. Automation advantages and disadvantages .. 238
3.1.2. Areas of test automation high and low efficiency .. 242

3.2. AUTOMATED TESTING FEATURES ... 244

3.2.1. Required knowledge and skills .. 244
3.2.2. Features of automated test cases .. 245
3.2.3. Test automation technologies .. 248

3.3. AUTOMATION BEYOND DIRECT TESTING TASKS .. 258

CHAPTER 4: APPENDIXES ... 259

4.1. TESTER’S CAREER .. 259

4.2. TASKS COMMENTS ... 260

4.3. WINDOWS AND LINUX BATCH FILES TO AUTOMATE SMOKE TESTING 263

4.4. PAIRWISE TESTING DATA SAMPLE .. 272

4.5. LIST OF KEY DEFINITIONS.. 275

CHAPTER 5: LICENSE AND DISTRIBUTION ... 278

Foreword from the author, or what is this book for

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 4/278

Foreword from the author, or what is this book for

Many thanks to colleagues in the
EPAM Software Testing Division for their valuable comments and

recommendations during the preparation of the material.

My special thanks go to the thousands of readers who
have sent in questions, suggestions and comments —

your input has made the book better.

This book is based on fifteen years of experience in training testers. During this

time, a great collection of questions from trainees has been gathered, and the typical
problems and difficulties of many beginners have become clear. It seems reasonable to
summarize this material in a book that will help novice testers immerse themselves in
their profession more quickly and avoid many frustrating mistakes.

Since the first and second editions were published, the book has undergone nu-
merous revisions based on feedback from readers and the author’s reconsideration of
certain ideas and formulations. Thanks to questions from readers and discussions at
training sessions, it has been possible to clarify and smooth out controversial points, clar-
ify definitions and provide explanations where this has proved necessary. The perfection
is unattainable, but we want to believe that a big step has been taken in its direction.

This book is not intended to be a full study of the entire subject area with all its
intricacies, so do not take it as a textbook or reference book — over decades of evolution
the testing has accumulated so much data that even a dozen books are not enough for
its formal presentation. Also, reading only this one book is not enough to become a “test-
ing guru”.

So, why do you need this book!?
Firstly, this book is worth reading if you are determined to do testing — it will be

useful for “very beginners” as well as for those who have some experience in testing.
Secondly, this book may and should be used as reference material during training

sessions. Here you may and should do a lot of scribbling, writing, marking things you
don’t understand, writing down questions, etc.

Thirdly, this book is a kind of “map”, with references to many external sources
(which may be useful even for experienced testers) and many examples with explana-
tions.
 Before we get into the material itself, let’s define the symbols:

Definitions and other important information to remember. Will often be found
next to the following sign.

Extra information or reference to relevant sources. Everything that is useful to
know. Some definitions will be footnoted.

Warnings and frequent mistakes. It is not enough to show the “right way”; ex-
amples of the wrong approach are often of great benefit.

Tasks for self-study. It is strongly recommended that you do them (even if you
think they are very easy).
The appendix{260} contains commentary on many of the exercises, but don’t rush
to look there — work on your own first.

You will find two kinds of footnotes in the text as numbers: if the number is not in
curly brackets12345 it is a standard footnote that should be looked up from the bottom of
the page; if the number is in curly brackets{12345} it is a page number on which additional
information is available (in the electronic version of the book it is a clickable link)

Foreword from the author, or what is this book for

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 5/278

In addition to the text in this book, a free online course with a series of video tuto-
rials, tests and self-study exercises is recommended.

Finally, nothing in this book is rigid; you can find alternative definitions to any term,
and counterarguments to any recommendation. And that’s okay. Over time, you will begin
to understand the context of the situation and the applicability (usefulness!) of this or that
information. So, let’s get started!

https://svyatoslav.biz/urls/stc_online_eng/

Chapter 1: Testing and testers

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 6/278

Chapter 1: Testing and testers

1.1. What testing is and where it came from

First of all, let’s define software testing so that we have a clearer understanding of
what we are talking about.

Software testing is a process of analyzing software and accompanying docu-
mentation in order to identify defects and improve the quality of the product.

The ISTQB1 glossary does not contain the term “software testing”. There is only
the term “testing”2.

Throughout the decades of software development, testing and quality assurance
have been approached in very different ways. Several major “eras of testing” can be dis-
tinguished.

In the 1950s and 1960s, the testing process was very formalized, separated from
the software development process and was “mathematised”. In fact, testing was more
like debugging3. The concept of exhaustive testing4 (checking all possible ways of code
execution with all possible input data) was around. However, it soon became clear that
exhaustive testing was impossible because the number of possible paths and input data
was very large and it was difficult to find problems in the documentation with this ap-
proach.

Task 1.1.a: imagine that your program determines from the three entered inte-
ger numbers whether a triangle with these lengths of sides can exist. Suppose
your program runs in some isolated ideal environment and all you have to do is
check it works correctly on three 8-byte integers. You’re using automation and
the computer can do 100 million checks per second. How long does it take to
check all the variations?

Have you thought about how to prepare verification data for this test (which can
be used to determine if the program worked correctly in each case)?

 In fact, in the 1970’s two fundamental ideas of testing were born: testing was first
seen as a process of proving the operability of a program under some given conditions
(positive testing5), and then exactly the opposite: as a process of proving the inoperability
of a program under some given conditions (negative testing6). Not only this internal con-
tradiction has not disappeared with time but nowadays many authors stress it justly as
two complementary purposes of testing.

It should be noted that “the process of proving that the program is not working” is
a bit more challenging, as it does not allow you to turn a blind eye to the problems that
are detected.

1 International Software Testing Qualifications Board Glossary. [http://www.istqb.org/downloads/glossary.html]
2 Testing. The process consisting of all lifecycle activities, both static and dynamic, concerned with planning, preparation and evalu-

ation of software products and related work products to determine that they satisfy specified requirements, to demonstrate that
they are fit for purpose and to detect defects. [ISTQB Glossary]

3 Debugging. The process of finding, analyzing and removing the causes of failures in software. [ISTQB Glossary]
4 Complete testing, exhaustive testing. A test approach in which the test suite comprises all combinations of input values and

preconditions. [ISTQB Glossary]
5 Positive Testing. Testing aimed at showing software works. Also known as “test to pass”. [aptest.com]
6 Negative testing. Testing aimed at showing software does not work. Also known as “test to fail”. [aptest.com]

http://www.istqb.org/downloads/glossary.html
http://aptest.com/
http://aptest.com/

What testing is and where it came from

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 7/278

Warning! It is likely to be a misconception that negative test cases should end
with application failures and malfunctions. No, they don’t. Negative test cases
try to cause failures and malfunctions but a correctly functioning application
withstands the test and continues to work correctly. Note also that the expected
outcome of negative test cases is exactly the correct behavior of the application,
while negative test cases are considered to have passed successfully if they
failed to “break” the application. (See “Checklists, test cases, test suites”{108}
chapter for details).

A lot of “testing classics” may be taken from the book “The Art of Software Test-
ing” by Glenford J. Myers (editions of 1979, 2004, 2011). However, most critics
note that this book is hardly suitable for beginners and is much more oriented
to programmers than to testers. Which, however, does not compromise its
value.

So, once again, the most important things that testing “acquired” in the 70s:

• Testing ensures that the program meets the requirements.

• Testing identifies conditions under which the software performs incorrectly.

 In the 1980s, there was a key change in the place of testing in software develop-
ment: instead of one of the final stages of project creation, testing was applied throughout
the software lifecycle7 (see also the description of the iterative incremental software de-
velopment model in “Software development models”{17} chapter), which allowed in a great
number of cases not only to quickly detect and fix problems, but even to predict and
prevent their occurrence.
 The same period also marked the rapid development and formalization of testing
methodologies and the first basic attempts to automate testing.

 In the 1990s, there was a transition from testing as such to a more comprehensive
process called “quality assurance”8, which covers the entire software development cycle
and involves planning, design, creation and execution of test cases, support of existing
test cases and test environments.

Testing reached a new quality level, which naturally led to further development of
methodologies, appearance of sufficiently powerful tools for controlling the testing pro-
cess and test automation tools, already quite similar to their contemporary descendants.

Rex Black’s book “Critical Testing Processes” is a good source of additional
information on testing processes.

 In the noughties of the current century, the development of testing continued in
the context of the search for new ways, methodologies, techniques, and approaches to
quality assurance. The rise of agile development methodologies and approaches such as
“test-driven development” (TDD9) have had a major impact on the understanding of test-
ing. Test automation was already seen as a normal part of most projects. The idea that
the focus of the testing process should not be on the suitability of the software, but on its
ability to provide the end-user with the ability to perform their tasks effectively became
popular.

7 Software lifecycle. The period of time that begins when a software product is conceived and ends when the software is no longer

available for use. The software lifecycle typically includes a concept phase, requirements phase, design phase, implementation
phase, test phase, installation and checkout phase, operation and maintenance phase, and sometimes, retirement phase. Note
these phases may overlap or be performed iteratively. [ISTQB Glossary]

8 Quality assurance. Part of quality management focused on providing confidence that quality requirements will be fulfilled. [ISTQB

Glossary]
9 Test-driven development. A way of developing software where the test cases are developed, and often automated, before the

software is developed to run those test cases. [ISTQB Glossary]

What testing is and where it came from

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 8/278

 We will talk about the current stage of testing throughout the rest of this book. If
we briefly mention its main characteristics, the following list appears: agile methodologies
and agile testing, deep integration with the development process, wide use of automation,
a huge set of technologies and tools, cross-functionality of the team (when tester and
programmer can do each other’s work in many ways).

A really comprehensive history of software testing (since 1822, no joke) can be
found in the article “The History of Software Testing”10 at Testing References.
“The Growth of Software Testing”11 (by David Gelperin, Bill Hetzel) is also of
great interest.

Task 1.1.b: if you are not very familiar with terms like TDD, BDD, DDT, KDT —
find their description on the internet and study them. Of course, this task also
applies to any other terms you don’t understand.

10 “The History of Software Testing” [http://www.testingreferences.com/testinghistory.php]
11 “The Growth of Software Testing”, David Gelperin, Bill Hetzel [https://www.researchgate.net/publica-

tion/234808293_The_growth_of_software_testing]

http://www.testingreferences.com/testinghistory.php
https://www.researchgate.net/publication/234808293_The_growth_of_software_testing
https://www.researchgate.net/publication/234808293_The_growth_of_software_testing

Who is a tester and what is their work

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 9/278

1.2. Who is a tester and what is their work

If you look up information by the keywords from the title of this chapter, you may
find a raft of completely contradictory answers. And the point here is that the authors of
most “job descriptions” attribute a certain exaggerated set of characteristics of its individ-
ual representatives to the entire profession.

At the same time, in some countries even on the state level, the positions of “soft-
ware testing specialist” and “software tester” are separated.

 Now let’s return to the original question and look at it from two points of view: what
the qualification of the tester is, and where they work.

For a simplified description, see table 1.2.a.

Table 1.2.a — Typical activities of a tester.

 Small companies Large companies

Low qualification

An apprentice, often left to his

own devices to do tasks.

An average project participant,

at the same time undergoing in-

tensive professional develop-

ment.

High qualification

Highly skilled jack of all trades,

with broad, but not always struc-

tured experience

An expert in one or several ar-

eas, an adviser, a competency

head.

 Since the higher the qualification of a specialist{259}, the wider his choice of jobs is
(even within one large company), let us focus on the qualification peculiarities of a tester’s
work.
 At the beginning of their career, any specialist (and the tester is no exception) is a
doer and an apprentice. It is enough to have good understanding of test cases, defect
reports, know how to read requirements, use a couple of tools, and get along well in a
team.

Gradually the tester begins to immerse himself in all the stages of project develop-
ment, understanding them more and more fully, begins not only to actively use, but also
develop project documentation, making increasingly responsible decisions.

If one were to express figuratively the main goal of the tester, it would sound like:
“to understand what the project needs at the moment, whether the project gets it right,
and if not, how to change the situation for the better”. Sounds like a project manager’s
goal, right? Right. Starting at some level of development, IT professionals, by and large,
differ only in their technical skill sets and the primary application area of those skills.

So, what technical skills do you need to successfully start working as a tester?
Before proceeding to the list itself, let us stipulate especially: this list is designed primarily
for those who come to testing from non-technical professions (although it often has to be
announced to engineering students as well).

0) Ability to speak foreign languages. Yes, it is a non-technical skill. But never-
theless, it comes in at number zero. You can take it as an axiom: “no English
— no career in IT”. Other foreign languages are also welcome, but English
comes first.

Task 1.2.a: if you have doubts whether your level of English is suf-
ficient, check yourself: if you can easily read technical articles on
Wikipedia at least, you have a minimum of sufficient level

Who is a tester and what is their work

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 10/278

1) A good PC skillset at a truly advanced level and a willingness to continuously
develop in this area. Can you imagine a professional chef who can’t fry pota-
toes (not “doesn’t have to”, but “can’t do it in principle”)? Does it look strange?
Equally strange looks “IT person” (that’s right, in quotes), who is unable to type
a properly formatted text, copy a file across a network, set up a virtual machine
or do any other everyday chore.

2) Programming. It makes life a whole lot easier for any IT person — and a tester
first and foremost. Is it possible to test without programming knowledge? Yes,
it is. Is it really possible to do it well? No. And now the most important (nearly
religious-philosophical) question: what programming language to study?
C/C++/C#, Java, PHP, JavaScript, Python, Ruby, etc. — Start with whatever
your project is developed with. If you don’t have a project yet, start with JavaS-
cript (currently the most versatile solution).

3) Databases and SQL. Here, the tester is also not required to be highly skilled,
but minimal skills in working with the most common DBMSes and the ability to
write simple queries can be considered mandatory.

4) Understanding of networks and operating systems. At least at a minimum level
to be able to diagnose the problem and solve it on your own, if possible.

5) Understanding the principles of web and mobile applications. These days, al-
most everything is built as such applications, and an understanding of the rel-
evant technologies is essential for effective testing.

I hope you noticed that testing itself is not on the list. That’s right, because the
whole book is devoted to it, so let’s not copy it here.

At the end of the chapter, let’s also mention the personal qualities that allow a
tester to become an excellent professional quicker:

1) increased responsibility and diligence;
2) good communication skills, the ability to express thoughts clearly, quickly, and

distinctly;
3) patience, concentration, attention to detail, observation;
4) good abstract and analytical thinking;
5) the ability to conduct unconventional experiments, aptitude for research.

Of course, it is difficult to find someone who possesses all these qualities equally,
but it is always useful to have a reference point for self-development.

It is quite usual to hear the question whether it is necessary for a tester to have
a technical degree. It is not. Although it is certainly easier in the early stages of
their career if they have one. But over time, the difference between those who
have such an education and those who do not becomes almost imperceptible.

What you need to know and be able to learn

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 11/278

1.3. What you need to know and be able to learn

In the previous chapter we deliberately did not discuss a specific list of skills and
knowledge that a novice tester needs, because they deserve separate consideration.

The tables below are the adapted extract from the tester’s competence map. All
skills here are nominally divided into three groups:

• Professional — these are the “testers’” skills, the key skills that distinguish a tester
from other IT professionals.

• Technical — these are general IT skills that a tester should possess nonetheless.

• Soft skills — these are skills that help any professional to be a good team-player,
to communicate with colleagues in effective and efficient way.

Task 1.3.a: While reading the lists of skills given here, mark things you do not
understand, look for additional information and make yourself understand at
least to the level of “I know what it is all about”.

Professional skills

Table 1.3.a — Tester’s professional skills

Subject area Entry level Junior or Middle specialist level

Testing and software development processes

Testing process This is the subject of
“Software testing and

software develop-
ment processes”{17}

chapter

Profound understanding of the stages of the testing
process, their interrelationship and mutual influence,
ability to plan their own work within the given task de-
pending on the stage of the test

Software develop-
ment process

A general understanding of software development
models, their relationship to testing, and the ability to
prioritize your own work depending on the stage of
project development

Documentation work

Requirement anal-
ysis

This is the subject of
“Documentation and
requirements test-

ing”{31} chapter

The ability to identify connections and interdependen-
cies between different levels and forms of presenta-
tion of requirements, the ability to formulate questions
to clarify ambiguities

Requirements test-
ing

Awareness of the properties of good requirements
and sets of requirements, ability to analyze require-
ments to identify their shortcomings, ability to elimi-
nate shortcomings in requirements, ability to apply
techniques to improve the quality of requirements

Requirement man-
agement

Not required

General understanding of the processes for identify-
ing, documenting, analyzing and modifying require-
ments

Business analysis
General understanding of the processes for identify-
ing and documenting different levels and forms of
submission of requirements

Estimations and planning

Creating a test plan
These issues are
partly covered in

“Workload estima-
tion, planning and re-
porting”{191} chapter,
but their in-depth un-
derstanding requires
a separate lengthy

study

General understanding of planning principles in the
testing context, ability to use a ready-made test plan
to plan your own work

Creating a test
strategy

General understanding of the principles of building a
testing strategy, ability to use a ready-made strategy
to plan your own work

Workload estima-
tions

General understanding of the principles of workload
estimation, ability to estimate your own workload
when planning your own work

What you need to know and be able to learn

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 12/278

Subject area Entry level Junior or Middle specialist level

Working with test cases

Creating checklists This is the subject of
“Checklists, test

cases, test suites”{108}
chapter

Strong ability to use test design techniques and ap-
proaches, the ability to decompose the objects to be
tested and the tasks to be performed, the ability to
create checklists

Creating test cases
Strong ability to design test cases according to ac-
cepted templates, to analyze ready-made test cases
and to detect and correct deficiencies in them

Test case manage-
ment

Not required
General understanding of the processes for creating,
modifying and improving the quality of test cases

Testing methodologies

Functional and do-
main testing

This is the subject of
“Detailed testing
classification”{67}

chapter

Knowledge of test types, strong ability to use test de-
sign techniques and approaches, ability to create
checklists and test cases, ability to create defect re-
ports

User interface test-
ing

Not required

Ability to test the user interface on the basis of ready-
made test scripts or as part of exploratory testing

Exploratory testing
General ability to use matrices to quickly define test
scenarios, general ability to carry out new tests based
on the results of just completed tests

Integration testing
Ability to carry out integration testing based on ready-
made test scripts

Localization testing
Ability to carry out localization testing on the basis of
ready-made test scripts

Installation testing
Ability to carry out installation testing on the basis of
ready-made test scripts

Regression testing
General understanding of how regression testing is
organized, ability to carry out regression testing by
means of ready-made plans

Working with defect reports

Creating defect re-
ports

This is the subject of
“Defect reports”{155}

chapter

Strong knowledge of the lifecycle of a defect report,
strong ability to produce defect reports according to
accepted templates, ability to analyze final reports, to
detect and correct deficiencies in reports

Defect root cause
analysis

Not required

The basic skill of examining an application to identify
the source (cause) of an error, the elementary skill of
making recommendations to correct the error

Using bug-tracking
systems

Ability to use bug-tracking systems at all stages of the
defect reporting lifecycle

Working with test result reports

Creating test result
reports

Not required, but it is
partly dealt with in
“Workload estima-

tion, planning and re-
porting”{191} chapter

The ability to provide the necessary information to
form the test results report, and the ability to analyze
completed test results reports to refine own work
planning

What you need to know and be able to learn

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 13/278

Technical skills

Table 1.3.b — Tester’s technical skills

Subject area Entry level Junior or Middle specialist level

Operating systems

Windows
Using at an advanced

level

Installation, use and administration, problem solving,
configuration in order to set up a test environment
and perform test cases

Linux General familiarity
Installation, use and administration, problem solving,
configuration in order to set up a test environment
and perform test cases

Mac OS Not required General familiarity

Virtual machines
Using at the beginner

level

Installation, use and administration, problem solving,
configuration in order to set up a test environment
and perform test cases

Databases

Relational theory

Not required

General understanding and the ability to read and un-
derstand database schemes in common graphical
notation12

Relational DBMSes
The ability to install, configure and use the test envi-
ronment to set up and execute test cases

SQL
Ability to create and execute simple queries using da-
tabase/DBMS tools13

Computer networks

Network protocols

Not required

General understanding of the TCP/IP stack, ability to
configure local operating system network settings

Network utilities
General understanding and ability to use utilities to
diagnose network conditions and faults

Web technologies

Web servers

Not required

General understanding of web servers, installation
and configuration skills

Application servers
General understanding of application servers, instal-
lation and configuration skills

Web services
A general understanding of how web services work
and how to diagnose problems with them

Markup languages
A general awareness

of HTML and CSS
Ability to use HTML and CSS to create simple pages

Communication
protocols

Not required

General understanding of OSI model application
layer protocols, general understanding of trouble-
shooting principles

Web programming
languages

Basic knowledge of at least one programming lan-
guage used to create web applications

Mobile platforms and technologies

Android
Not required

Using at the beginner level

iOS Using at the beginner level

12 [For now, this book is still in Russian, nevertheless a lot of schemas and examples there is still useful.] “Relational Databases by

examples”, Svyatoslav Kulikov [https://svyatoslav.biz/relational_databases_book/]
13 [For now, this book is still in Russian, nevertheless a lot of SQL there is still useful.] “Using MySQL, MS SQL Server and Oracle

by examples”, Svyatoslav Kulikov [https://svyatoslav.biz/database_book/]

https://svyatoslav.biz/relational_databases_book/
https://svyatoslav.biz/database_book/

What you need to know and be able to learn

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 14/278

Soft skills

Table 1.3.c — Tester’s soft skills

Subject area Entry level Junior or Middle specialist level

Communication skills

Business e-mailing Minimum skills
Understanding and strict adherence to the rules of
business communication using e-mail and instant
messenger services

Oral business com-
munication

Minimum skills
Understanding and strict adherence to the rules of
oral business communication

Getting interviews Not required Initial interviewing experience

Self-management skills

Time management
Minimum skills, gen-

eral concepts

Developed time management skills, the use of appro-
priate tools and the ability to estimate the workload of
the tasks assigned

Reporting on their
work

Basic skills
Developed skills to report on their work, ability to use
appropriate tools

You have probably noticed that this list of skills does not include a separate list
dedicated to test automation. It is not included in this book for three reasons:

• it is huge;
• it is constantly changing;
• this book is still about testing in general, although there is brief information about

test automation (see “Test automation”{238} chapter).

To put it in a nutshell, an “automatizer” must know everything what a “classic”
tester knows and be able to code in 3–5 languages, at least a little. That’s all. Entry-level
tools can be mastered in a few days.

Myths and misconceptions about testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 15/278

1.4. Myths and misconceptions about testing

Perhaps you were expecting to read something like James Whittaker’s “The 7
Plagues of Software Testing” (see below). No, there are “myths” here that are relevant
not to experienced professionals, but to beginners and those who are just about to learn
how to test.

The text for this chapter is drawn mainly from conversations with participants in the
trainings, and more specifically from phrases beginning with “But I thought that...” or “Isn’t
it true that...”

Be sure to read the excellent article series “The 7 Plagues of Software Testing”14
(James Whittaker).

So: “But I thought that...” / “Isn’t it true that...”

It is not necessary to know about computers

 No comment. No, there may be some infinitesimal percentage of the tester’s ac-
tivity that can be realized “handwavy”. But this percentage can be neglected.

It is essential to be really good at programming

It is heartbreaking to attribute this thought to myths. It is good when a tester knows
programming. It is even better when he knows it well. But even a general approximate
knowledge of programming is enough to start a career. After that, it’s up to the situation.

Testing is easy

If we take the analogy, cooking is also easy, if we’re talking about brewing tea in a
bag. But just as such tea does not end in cooking, so testing does not end in cases of
“oops, this picture won’t load”. Even on a purely practical level, testing tasks can be com-
parable in complexity to tasks of program design and development (hmm, why is there
no myth “programming is easy”, although “Hello world” is not hard to code). And if we look
at “software reliability” from the scientific point of view, the prospects of increasing com-
plexity are not limited by anything at all. Does every tester have to “get into this maze”?
No. But if you want to, you can. Besides, it is very entertaining.

Testing is heaps of routine and boredom

 No more and no less than in other IT professions. The rest depends on the indi-
vidual tester and how they organize their work.

Tester should be taught all sorts of things

 They shouldn’t. Certainly not “all sorts of thing”. Yes, when we are talking about an
explicit learning process, its organizers (whether it is a university course, a training course
in some kind of training center or a separate training within a company) often undertake
a certain “pedagogical commitment”. But such learning activities are never a substitute
for self-development (although they may, in due time, help to choose the right path). The
IT industry is changing very intensively and continuously. So, testers have to educate
themselves till grey hairs.

14 “The Plague of Aimlessness”, James Whittaker [https://testing.googleblog.com/2009/06/7-plagues-of-software-testing.html]

“The Plague of Repetitiveness”, James Whittaker [http://googletesting.blogspot.com/2009/06/by-james.html]
“The Plague of Amnesia”, James Whittaker [http://googletesting.blogspot.com/2009/07/plague-of-amnesia.html]
“The Plague of Boredom”, James Whittaker [http://googletesting.blogspot.com/2009/07/plague-of-boredom.html]
“The Plague of Homelessness”, James Whittaker [http://googletesting.blogspot.com/2009/07/plague-of-homelessness.html]
“The Plague of Blindness”, James Whittaker [http://googletesting.blogspot.com/2009/07/plague-of-blindness.html]
“The 7th Plague and Beyond”, James Whittaker [http://googletesting.blogspot.com/2009/09/7th-plague-and-beyond.html]
“The Plague of Entropy”, James Whittaker [http://googletesting.blogspot.com/2009/09/plague-of-entropy.html]

https://testing.googleblog.com/2009/06/7-plagues-of-software-testing.html
http://googletesting.blogspot.com/2009/06/by-james.html
http://googletesting.blogspot.com/2009/07/plague-of-amnesia.html
http://googletesting.blogspot.com/2009/07/plague-of-boredom.html
http://googletesting.blogspot.com/2009/07/plague-of-homelessness.html
http://googletesting.blogspot.com/2009/07/plague-of-blindness.html
http://googletesting.blogspot.com/2009/09/7th-plague-and-beyond.html
http://googletesting.blogspot.com/2009/09/plague-of-entropy.html

Myths and misconceptions about testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 16/278

Testers are those who could not become programmers

And violinists are those who couldn’t become pianists, aren’t they? I think that there
is a certain small percentage of “those who failed to become programmers” in testing.
This small percentage is overshadowed by those who originally and deliberately started
in testing, and those who came into testing from programming.

Testing is a difficult career to build

With the proper diligence, a career in testing is perhaps the most dynamic (as
compared to other IT fields). Testing itself is a very fast-paced IT industry, and there’s
always something that you’re passionate about and good at, and it’s easy to become
proficient and successful in that environment.

Testers are always “at fault”, i.e., they are to be held responsible for all
bugs

This is only true if we accept that the patient’s illness is caused by the thermometer
showing a high temperature. The testers are more likely to be held responsible for those
defects, which were found by the user, i.e., appeared already at the stage of real product
operation. However, even in this situation there is no clear-cut conclusion — the whole
team is responsible for the final success of the product, and it would be foolish to shift the
responsibility to just one part of it.

Testers will soon be redundant as everything will be automated

Once terminators start running around the streets — yes, this myth will become
true: programs will learn how to function without humans. But then we will all have other
problems. And joking aside, humanity has been on the road to automation for hundreds
of years now, which has been imprinting itself on all our lives and, in most cases, allowing
the simplest and most unskilled work to be transferred to machines. But who makes you
stay at the level of the doer of such work? Starting at a certain level, testing becomes a
harmonious combination of science and art. And have many scientists or creators been
replaced by automation?

Please: you may have some thoughts along the lines of “I thought that in test-
ing...” / “Is it true that in testing...” If so, please share them in the anonymous
survey: https://svyatoslav.biz/software_testing_book_poll_eng/

https://svyatoslav.biz/software_testing_book_poll_eng/

Chapter 2: General knowledge and skills

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 17/278

Chapter 2: General knowledge and skills

2.1. Software testing and software development processes

2.1.1. Software development models

To get a better understanding of how testing relates to programming and other
project activities, let’s start by looking at the basics — lifecycle models15 as a part of the
software lifecycle16. It is important to note that software development is only a part of the
software lifecycle, and we are talking about development here.

The information in this chapter belongs more to the discipline of project manage-
ment and is therefore very brief: please do not take it as an exhaustive guide — it barely
covers one hundredth of a percent of the relevant subject area.

Software development model (SDM) is a framework that systematizes the
various project activities, their interaction and consistency in the software de-
velopment process. The choice of one or another model depends on the scale
and complexity of the project, the subject area, available resources, and many
other variables.

 The choice of software development model has a major impact on the testing pro-
cess, determining the choice of strategy, schedule, resources required, etc.

There are many software development models, but in general, waterfall model, v-
model, iterative incremental model, spiral model and agile model can be considered clas-
sic.

A list of software development models (with brief descriptions) recommended
for testers to learn can be found in “What are the Software Development Mod-
els?”17 article.

 Knowing and understanding software development models is necessary in order
to be aware from the very first days of work of what is going on around you, and why you
are doing it. Many beginner testers have noted that a sense of meaninglessness about
the process is overwhelming, even if the tasks at hand are interesting. The more fully you
can visualize what is happening on a project, the clearer you will see your own contribu-
tion to the overall project and the meaning of what you are doing.

Another important thing to understand is that no model is a dogma or a one-size-
fits-all solution. There is no perfect model. There is one that is worse or better suited to a
specific project, a specific team and specific conditions.

A common mistake! The only thing worth warning against right now is the friv-
olous interpretation of the model and rearranging it “to your own taste” without
a crystal-clear understanding of what you are doing and why. What happens
when the logic of the model is violated, was well described by Maxim Dorofeev
in his slidecast “Scrum Tailoring”18.

15 Lifecycle model. A partitioning of the life of a product or project into phases. [ISTQB Glossary]
16 Software lifecycle. The period of time that begins when a software product is conceived and ends when the software is no longer

available for use. The software lifecycle typically includes a concept phase, requirements phase, design phase, implementation
phase, test phase, installation and checkout phase, operation and maintenance phase, and sometimes, retirement phase. Note
these phases may overlap or be performed iteratively. [ISTQB Glossary]

17 “What are the Software Development Models?” [http://istqbexamcertification.com/what-are-the-software-development-models/]
18 “Scrum Tailoring”, Maxim Dorofeev [http://cartmendum.livejournal.com/10862.html]

http://istqbexamcertification.com/what-are-the-software-development-models/
http://cartmendum.livejournal.com/10862.html

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 18/278

The waterfall model19 is now mostly of historical interest, as it is hardly applicable
in modern projects. It assumes that each of the project phases is executed once, and that
they strictly follow each other (figure 2.1.a). In a very simplified way, it can be said that
within this model the team “sees” only the previous and the next phases at any single
moment of time. In real software development, however, one has to “see the whole pro-
ject” and return to the previous phases to correct deficiencies or to clarify something.

Figure 2.1.a — Waterfall model

The disadvantages of the waterfall model include the fact that end-user participa-
tion is either not foreseen at all, or is only indirectly foreseen at the one-time requirements
gathering stage. In terms of testing, this model is bad in that testing explicitly appears
only in the middle of project development, reaching its peak at the very end.

19 In a waterfall model, each phase must be completed fully before the next phase can begin. This type of model is basically used

for the project which is small and there are no uncertain requirements. At the end of each phase, a review takes place to deter-
mine if the project is on the right path and whether or not to continue or discard the project. [http://istqbexamcertifica-
tion.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/]

General Planning

Testing (as we now understand it) comes

to life barely in the middle of the project

lifecycle. Testing reaches its maximum at

the end of the project. Usually – too late.

User Requirements

System

Requirements

Technical

Architecture

Detailed Design

Coding and

Debugging

Integration- and

Unit-Testing

Installation Testing

System Testing

Acceptance Testing

Final Reporting

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 19/278

However, the waterfall model is often used intuitively for relatively simple tasks,
and its shortcomings have served as an excellent starting point for new models. Also, this
model, in a slightly improved form, is used on large projects where the requirements are
very stable and can be well formulated at the beginning of the project (aerospace, medical
software, etc.)

A relatively brief and yet good description of the waterfall model can be found
in the “What is Waterfall model advantages, disadvantages and when to use
it?”20 article.

An excellent description of the history of the development and downfall of the
waterfall model was created by Maxim Dorofeev in the form of a slidecast
“The Rise And Fall Of Waterfall”21, which can be viewed in his LiveJournal.

V-model22 is a logical development of the waterfall model. It is notable (figure
2.1.b) that in general both waterfall and v-model software lifecycle models can contain
the same set of stages, but the fundamental difference lies in how this information is used
in the project implementation process.

In very broad terms, using the v-model, at each stage “on the way down” you need
to think about what will happen and how it will happen at the corresponding stage “on the
way up”. Testing here appears at the earliest stages of project development to minimize
risks and to detect and correct many potential problems before they become real prob-
lems.

Figure 2.1.b — V-model

A brief description of the v-model can be found in the “What is V-model ad-
vantages, disadvantages and when to use it?”23 article. An explanation of using
the v-model in testing can be found in the “Using V Models for Testing”24 article.

20 “What is Waterfall model advantages, disadvantages and when to use it?” [http://istqbexamcertification.com/what-is-waterfall-

model-advantages-disadvantages-and-when-to-use-it/]
21 LJ of Maxim Dorofeev. [http://cartmendum.livejournal.com/44064.html]
22 V-model. A framework to describe the software development lifecycle activities from requirements specification to maintenance.

The V-model illustrates how testing activities can be integrated into each phase of the software development lifecycle. [ISTQB
Glossary]

23 “What is V-model advantages, disadvantages and when to use it?” [http://istqbexamcertification.com/what-is-v-model-advantages-

disadvantages-and-when-to-use-it/]
24 “Using V Models for Testing”, Donald Firesmith [https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html]

General Planning

User Requirements

System

Requirements

Technical

Architecture

Detailed Design

Coding and Debugging

Integration- and

Unit-Testing

Installation Testing

System Testing

Acceptance Testing

Final ReportingTesting starts from

the very beginning

but it is

concentrated mostly

on the transition

between stages.

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://cartmendum.livejournal.com/44064.html
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/
https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 20/278

Iterative25 incremental26 model is fundamental to the modern approach to soft-
ware development. As evidenced by its name, the model is characterized by a certain
duality (and the ISTQB glossary does not even provide a single definition, breaking it up
into separate parts):

• In terms of lifecycle, the model is iterative because it involves repeating the same
stages many times.

• In terms of product development (increase in its useful functions), the model is
incremental.

A key feature of this model is the division of the project into relatively small intervals
(iterations), each of which can generally include all the classical stages inherent in the
waterfall and V models (figure 2.1.c). The result of an iteration is an incremental increase
in product functionality, expressed as an intermediate build27.

Figure 2.1.c — Iterative incremental model

The length of iterations can vary depending on many factors, but the principle of
repetition itself ensures that both testing and demonstrating the product to the end-user
(with feedback) is actively applied from the start and throughout the entire development
of the project.

In many cases, it is acceptable to parallelize individual stages within an iteration
and to actively refine in order to eliminate deficiencies found in any of the (previous)
stages.

The iterative incremental model has worked very well for large and complex pro-
jects, carried out by large teams over long periods of time. However, the main disad-
vantages of this model often include high overheads due to the high “bureaucracy” and
overall cumbersomeness of the model.

25 Iterative development model. A development lifecycle where a project is broken into a usually large number of iterations. An

iteration is a complete development loop resulting in a release (internal or external) of an executable product, a subset of the
final product under development, which grows from iteration to iteration to become the final product. [ISTQB Glossary]

26 Incremental development model. A development lifecycle where a project is broken into a series of increments, each of which

delivers a portion of the functionality in the overall project requirements. The requirements are prioritized and delivered in priority
order in the appropriate increment. In some (but not all) versions of this lifecycle model, each subproject follows a 'mini V-model'
with its own design, coding and testing phases. [ISTQB Glossary]

27 Build. A development activity whereby a complete system is compiled and linked, so that a consistent system is available including

all latest changes. [Based on “daily build” term from ISTQB Glossary]

General Planning
Planning +

Requirements

Architecture and

Design

Coding and

Debugging

Integration- and

Unit-Testing

Build Installation

TestingResults Evaluation

Final Reporting

Reporting

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 21/278

Rather brief and very good descriptions of the iterative incremental model can
be found in the articles “What is Iterative model advantages, disadvantages and
when to use it?”28 and “What is Incremental model advantages, disadvantages
and when to use it?”29.

Spiral model30 is a special case of the iterative incremental model, which empha-
sizes the management of risks, especially those affecting the organisation of the project
development process and the milestones.

A schematic representation of the spiral model is shown in figure 2.1.d. Note that
four key phases are clearly highlighted there:

• Elaboration of objectives, alternatives and constraints.

• Risk analysis, and prototyping.

• Product development (interim versions).

• Planning the next cycle.

From the point of view of testing and quality assurance, the increased focus on
risk is a tangible advantage when using the spiral model for conceptual design, where
requirements are naturally complex and unstable (can change many times in the course
of the project).

Barry Boehm, the author of the model, elaborates on these issues in his publica-
tions31, 32 and provides many insights and recommendations on how to apply the spiral
model to maximum effect.

Rather brief and very good descriptions of the spiral model can be found in the
articles “What is Spiral model — advantages, disadvantages and when to use
it?”33 and “Spiral Model”34.

28 “What is Iterative model advantages, disadvantages and when to use it?” [http://istqbexamcertification.com/what-is-iterative-model-

advantages-disadvantages-and-when-to-use-it/]
29 “What is Incremental model advantages, disadvantages and when to use it?” [http://istqbexamcertification.com/what-is-incremental-

model-advantages-disadvantages-and-when-to-use-it/]
30 Spiral model. A software lifecycle model which supposes incremental development, using the waterfall model for each step, with

the aim of managing risk. In the spiral model, developers define and implement features in order of decreasing priority.
[https://www.geeksforgeeks.org/software-engineering-spiral-model/]

31 “A Spiral Model of Software Development and Enhancement”, Barry Boehm [http://www-scf.usc.edu/~csci201/lectures/Lec-

ture11/boehm1988.pdf]
32 “Spiral Development: Experience, Principles, and Refinements”, Barry Boehm. [http://www.sei.cmu.edu/reports/00sr008.pdf]
33 “What is Spiral model — advantages, disadvantages and when to use it?” [http://istqbexamcertification.com/what-is-spiral-model-

advantages-disadvantages-and-when-to-use-it/]
34 “Spiral Model” [https://searchsoftwarequality.techtarget.com/definition/spiral-model]

http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-iterative-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-incremental-model-advantages-disadvantages-and-when-to-use-it/
https://www.geeksforgeeks.org/software-engineering-spiral-model/
http://www-scf.usc.edu/~csci201/lectures/Lecture11/boehm1988.pdf
http://www-scf.usc.edu/~csci201/lectures/Lecture11/boehm1988.pdf
http://www.sei.cmu.edu/reports/00sr008.pdf
http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-spiral-model-advantages-disadvantages-and-when-to-use-it/
https://searchsoftwarequality.techtarget.com/definition/spiral-model

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 22/278

Figure 2.1.d — Spiral model

Agile model35 is a collection of different approaches to software development and
is based on the so-called “agile manifesto”36 that describes fundamental values of Agile
Software Development:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

This topic is so extensive that references to articles are insufficient, and there-
fore it is worth reading these books:

• “Agile Testing” (Lisa Crispin, Janet Gregory).

• “Essential Scrum” (Kenneth S. Rubin).

35 Agile software development. A group of software development methodologies based on EITP iterative incremental development,

where requirements and solutions evolve through collaboration between self-organizing cross-functional teams. [ISTQB Glos-
sary]

36 “Manifesto for Agile Software Development” [http://agilemanifesto.org/iso/en/manifesto.html]

Elaboration of

objectives,

alternatives and

constraints

Project

Product

Project

lifecycle

Project

development

process

Product

exploitation

Risk analysis and

prototyping

Development of the

(interim) product

Planning the next

cycle

Project and

product

Lifecycle

Development,

integration and

testing

Implementation and

maintenance

General

concept

Clarified

requirements
Architecture

Design

Detailing

Coding

Integration

Testing

Detailing

Coding

Integration

Testing

Assessing interim results of ...

In
c
re

a
s
in

g
 t
h
e
 o

v
e
ra

ll
v
a
lu

e
 o

f
th

e
 p

ro
d
u
c
t

http://agilemanifesto.org/iso/en/manifesto.html

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 23/278

 As it is easy to guess, the approaches underlying the agile model are the logical
development and continuation of everything that has been created and tested in the wa-
terfall, v-model, iterative incremental model, spiral model and other models for ten years.
Moreover, for the first time a significant result was achieved in the reduction of bureau-
cratic component and maximum adaptation of the software development process to the
instantaneous changes of the market and customer requirements.

Figure 2.1.e — The essence of the agile model

 In a very simplified (almost borderline) way, the agile model is a documentation-
light mixture of iterative incremental and spiral models (figures 2.1.c and 2.1.d); however,
the “agile manifesto” and all of its advantages and disadvantages should be kept in mind.

Values

STRATEGY

RELEASE

ITERATION

DAILY

CONSTANTLY

TDD

Build

Refactoring

Integration

Cooperation

Build

Standup

meeting

Testing

Planning

Evaluation

Retrospective
Backlog

Release plan

Evaluation

Vision

Goals

Agreements

Budget

Adaptability

Transparency

Simplicity

Unity

Visibility

Remaining to do

Performance

Done

Tests

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 24/278

Figure 2.1.f — Iterative approach within the agile model and scrum

 The main disadvantage of the agile model is considered to be the difficulty of ap-
plying it to complex projects and the frequent misapplication of its approaches due to a
misunderstanding of the fundamental principles of the model.

Nevertheless, it is possible to ascertain that more and more projects are starting
to use an agile development model.

A very detailed and elegant summary of the principles of the agile software de-
velopment model can be found in the “The Agile System Development Lifecy-
cle”37 article.

 The essence of software development models can be summarized in table 2.1.a.

Table 2.1.a (part 1) — Comparison of software development models

Model Advantages Disadvantages Testing

Waterfall • Each stage has a

clear verifiable out-

come.

• At each moment, the

team performs one

type of work.

• Works well for minor

tasks.

• Total inability to

adapt the project to

changes in require-

ments.

• Extremely late crea-

tion of a working

product.

• From the middle of

the project.

V-model • Each stage has a

clear verifiable out-

come.

• Testing is given at-

tention from the very

first stage.

• Works well for pro-

jects with stable re-

quirements.

• Lack of flexibility and

adaptability.

• No early prototyping.

• Difficulty in fixing

problems missed in

the early stages of

project development.

• In the transitions be-

tween stages.

37 “The Agile System Development Life Cycle” [http://www.ambysoft.com/essays/agileLifecycle.html]

Project

Backlog

Sprint

Backlog

Sprint

(2-4 weeks)

Deliverable

Iteration

(24 h)

http://www.ambysoft.com/essays/agileLifecycle.html

Software development models

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 25/278

Table 2.1.a (part 2) — Comparison of software development models

Model Advantages Disadvantages Testing

Iterative incremental

model

• Quite early prototyp-

ing.

• Easy management

of iterations.

• Decomposition of

the project into man-

ageable iterations.

• Lack of flexibility

within iterations.

• Difficulty in fixing

problems missed in

the early stages of

project development.

• At certain points in

the iterations.

• Re-testing (after re-

finement) what has

already been tested

before.

Spiral model • In-depth risk analy-

sis.

• Suitable for major

projects.

• Quite early prototyp-

ing.

• High overhead

costs.

• Difficult to apply for

minor projects.

• High dependence of

success on the qual-

ity of risk analysis.

Agile model • Maximum customer

involvement.

• A lot of work with re-

quirements.

• Tight integration of

testing and develop-

ment.

• Minimization of doc-

umentation.

• Difficult to implement

for major projects.

• Difficulty in creating

stable processes.

• At certain moments

of iterations and at

any necessary mo-

ment.

One more brief and informative comparison of software lifecycle models can be
found in “Project Lifecycle Models: How They Differ and When to Use Them”38
article. And a general overview of all models in the context of software testing
is provided in “What are the Software Development Models?”39 article.

Task 2.1.a: Imagine that at a job interview you are asked to name the main
software development models and list their advantages and disadvantages in
terms of testing. Don’t wait for the interview, answer the question now and write
down your answer.

38 “Project Lifecycle Models: How They Differ and When to Use Them” [http://www.business-esolutions.com/islm.htm]
39 “What are the Software Development Models?” [http://istqbexamcertification.com/what-are-the-software-development-models/]

http://www.business-esolutions.com/islm.htm
http://istqbexamcertification.com/what-are-the-software-development-models/

Software testing lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 26/278

2.1.2. Software testing lifecycle

 Following the general iterative logic prevailing in all modern software development
models, the testing lifecycle is also expressed as a closed-loop sequence of operations
(figure 2.1.g).
 It is important to realize that the length of such an iteration (and hence the degree
of detailedness of each stage) can vary enormously, from a few hours to tens of months.
Generally, when it is a long period of time, it is divided into many relatively short iterations,
but itself “tends” to one or another stage at any given time (for example, more planning
at the beginning of the project, more reporting at the end).
 Once again, the scheme is not a dogma and you can easily find alternatives (for
example, here40 and here41), but the overall essence and key principles remain the same.
These are what we are going to consider.

Figure 2.1.g — Software testing lifecycle

 Stage 1 (general planning and requirements analysis) is objectively required at
least to answer questions such as: what will be tested, how much work will be involved,
what are the difficulties, do we have everything we need, etc. Normally it is not possible
to answer these questions without a requirements analysis, because it is the requirements
that are the primary source of answers.

40 “Software Testing Life Cycle” [http://softwaretestingfundamentals.com/software-testing-life-cycle/]
41 “Software Testing Life Cycle” [http://www.softwaretestingmentor.com/software-testing-life-cycle/]

General planning and

requirements analysis

Acceptance criteria

establishment

Test strategy establishment

Test cases creation

Test cases execution

Defect reporting

Test results analysis

Test results reporting

1

2

3

4

5

6

7

8

Testing

http://softwaretestingfundamentals.com/software-testing-life-cycle/
http://www.softwaretestingmentor.com/software-testing-life-cycle/

Software testing lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 27/278

 Stage 2 (acceptance criteria establishment) helps to formulate or refine the metrics
and indicators of whether testing can or should be started (entry criteria42), suspended
(suspension criteria43) and resumed (resumption criteria44), completed or terminated (exit
criteria45).

Stage 3 (test strategy establishment) is another reference to planning, but at a
local level: those parts of the test strategy46 which are relevant for the current iteration are
reviewed and refined.

Stage 4 (test cases creation) deals with the development, revision, refinement,
redesign, and other activities with test cases, test suites, test scenarios, and other arte-
facts that will be used in testing itself.

Stage 5 (test cases execution) and stage 6 (defect reporting) are closely related
and in fact run in parallel: defects are reported as soon as they are found during the
execution of the test cases. However, often after all test cases have been executed and
all defect reports prepared, there is an explicit clarification stage in which all defect reports
are re-examined to develop a common understanding of the problem and to clarify defect
characteristics such as severity and priority.

Stage 7 (test results analysis) and stage 8 (test results reporting) are also closely
related and run almost in parallel. The conclusions of the results analysis depend on the
testing plan, the acceptance criteria and the refined strategy from Stages 1, 2 and 3.
Conclusions are documented at Stage 8 and serve as a basis for Stages 1, 2, and 3 in
the upcoming iteration of the test.

This completes the cycle.

Five of the eight stages in the testing lifecycle involve project management, which
we’re not going to discuss, so we’ll talk briefly about all the planning and reporting in
“Workload estimation, planning and reporting”{191} chapter. And now we move on to the
key skills and core activities of testers and will begin with working with documentation.

42 Entry criteria. The set of generic and specific conditions for permitting a process to go forward with a defined task, e.g., test phase.

The purpose of entry criteria is to prevent a task from starting which would entail more (wasted) effort compared to the effort
needed to remove the failed entry criteria. [ISTQB Glossary]

43 Suspension criteria. The criteria used to (temporarily) stop all or a portion of the testing activities on the test items. [ISTQB

Glossary]
44 Resumption criteria. The criteria used to restart all or a portion of the testing activities that were suspended previously. [ISTQB

Glossary]
45 Exit criteria. The set of generic and specific conditions, agreed upon with the stakeholders for permitting a process to be officially

completed. The purpose of exit criteria is to prevent a task from being considered completed when there are still outstanding
parts of the task which have not been finished. Exit criteria are used to report against and to plan when to stop testing. [ISTQB
Glossary]

46 Test strategy. A high-level description of the test levels to be performed and the testing within those levels for an organization or

program (one or more projects). [ISTQB Glossary]

Software testing principles

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 28/278

2.1.3. Software testing principles

The principles presented in this chapter are described (one way or another)
throughout the rest of this book, but since interviewers often require beginner testers to
“list and explain the principles of testing47”, here we will briefly consider them all together.

Testing shows the presence of defects, not their absence

It is very difficult to find something about which we do not know nothing: neither
“where is it”, nor “what it looks like”, nor even “whether it exists at all”. It’s kind of like trying
to “remember if I forgot something”.

Due to the fact that it is not physically possible to check the behavior of a complex
software product in all possible situations and conditions, testing cannot guarantee that
in a given situation, under certain circumstances, a defect will not occur.

What testing can do is use a colossal set of techniques, approaches, tools, and
solutions to test the most likely, most sought after situations and detect defects when they
occur.

Such defects will be eliminated, which will significantly improve the quality of the
product, but still does not guarantee against the occurrence of problems in the remaining,
unverified situations and conditions.

Exhaustive testing is impossible

Exhaustive testing{89} in theory is designed to test the application “with all possible
combinations of all possible inputs under all possible execution conditions”. But as just
emphasized in the previous principle, this is physically impossible.

As will be shown in chapter 2.7.2{218} (“Equivalence classes and boundary condi-
tions"), even for a single simple username input field, there can be something about 2.432
positive checks and an infinite number of negative checks.

Therefore, due to the laws of physics, there is not the slightest chance to test the
software product completely, “exhaustively”.

However, this does not mean that testing as such is not effective. Thoughtful re-
quirements analysis, risk assessment, prioritization, subject matter analysis, modeling,
working with end users, the use of special testing techniques — these and many other
approaches allow testers to identify those areas or conditions of product that require spe-
cial attention.

And since the amount of work here is disproportionately less, such testing is no
longer just possible, but is also performed on an everyday basis.

Early testing is more effective

This principle encourages not to postpone testing “for later” or “to the last moment”.
Of course, too early testing can be ineffective and even force us to re-do a lot of work,
but testing started on time (without delay) has the greatest effect.

Visually, this idea is shown in figure 2.2.a{32} in one of the following chapters: early
testing helps to eliminate or reduce costly changes.

This principle has a great analogy from everyday life. Imagine that you are going
on a trip and are thinking of a list of things that you need to take with you.

At the “thinking” stage any addition, deletion, any change of any item in this list
costs nothing. At the “shopping” stage defects in the list may require a second trip to the

47 At the moment it is difficult to determine who and when first formulated these principles. Many sources simply copy their description

from each other, therefore, for simplicity, we will provide a link to such a source: “7 Principles of Software Testing” [https://www.in-
terviewbit.com/blog/principles-of- software-testing/]

https://www.interviewbit.com/blog/principles-of-%20software-testing/
https://www.interviewbit.com/blog/principles-of-%20software-testing/

Software testing principles

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 29/278

store. At the “departure” stage flaws in the list of things will clearly lead to a noticeable
loss of nerves, time and money. And if some fatal defect in that list of things becomes
clear only upon arrival to the destination, it may turn out that the whole trip is now mean-
ingless.

Defect clustering

Defects don’t “just happen”. And even more, a lot of defects don’t “just happen” in
some “problem area” of the application (no wonder it is called a “problem area”).

Perhaps some new or sophisticated technology is being used here. Maybe here
the application has to work in adverse conditions or interact with external unreliable com-
ponents. Or maybe it so happened that the corresponding part of the requirements was
not scrutinized properly. Or even (alas, this happens) insufficiently responsible or insuffi-
ciently competent people were implementing this part of the application.

Anyway, the “clustering” of defects according to some obvious feature is a good
reason to continue researching this area of the software product: most likely, this is where
even more defects will be found.

Yes, detecting such tendencies towards clustering (and especially the global root
cause analysis) often requires certain knowledge and experience, but if such a “cluster”
is identified, this allows testers to significantly minimize efforts and at the same time sig-
nificantly improve the quality of the application.

The pesticide paradox

The name of this principle comes from a well-known phenomenon in agriculture: if
the same pesticide is sprayed on crops for a long time, insects soon develop immunity,
which makes the pesticide ineffective.

The same is true for software testing, where the pesticide paradox manifests itself
in repeating the same (or just similar) checks over and over again: over time, these checks
will stop finding new defects.

To overcome the pesticide paradox, it is necessary to regularly review and update
test cases, diversify testing approaches, apply various testing techniques, keep a “fresh
look” at the situation (perhaps with the involvement of those team members who have not
previously worked with this particular area of software product).

Testing depends on the context

For sure you will approach differently the preparation of “a bite to eat” for yourself
and the organization of a family dinner on some very solemn occasion.

In testing, the logic is the same: software products can belong to different subject
matter areas, can be built using different technologies, can be used to solve more or less
“risky” tasks, etc. — all this and much more affects how the testing process should be
organized.

The set of characteristics of a software product affects the thoroughness of testing,
the set of techniques and tools used, the principles of testers’ work organization, etc.

The main idea of this principle is that it is impossible to develop some “universal
approach to testing” for all occasions, and even just thoughtlessly copying testing ap-
proaches from one project to another often does not end in anything good.

If we take into account both the general and unique properties of the current project
and build testing accordingly, it turns out to be the most effective and efficient.

Software testing principles

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 30/278

Absence of defects is a fallacy

Imagine that you bought someone an orange. The ideal orange. The best orange
in the world. The orange worthy of becoming the standard for oranges for all time. But the
“customer” is disappointed — he asked for a grapefruit.

Similarly, a software product must not only be free from defects (as far as possi-
ble), but also satisfy the requirements of the customer and end users — otherwise it will
become unusable.

Often the violation of this principle consists in insufficient development and imple-
mentation of non-functional requirements{40} for the product, and that entails fair criticism
from end users and a general decline in the popularity of the product.

If you combine this principle with the previous one, it turns out that understanding
the context of the product and the needs of users allows testers to choose the best strat-
egy and achieve the best results.

Although these testing principles are not in themselves a magical guarantee of

success, keeping them in mind should allow you to better understand and assimilate the
material presented further in this book.

Documentation and requirements testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 31/278

2.2. Documentation and requirements testing

2.2.1. What a “requirement” is

As we have just discussed in the chapter on the testing lifecycle, it all starts one
way or another with documentation and requirements.

Requirement48 is a description of what functions and under what conditions an
application has to perform while solving a useful task for the user.

A slight “historical journey”: if you search for requirements definitions in litera-
ture from 10–20–30 years ago, you will notice that initially the definition of re-
quirements did not refer to users, their tasks, or the application’s features that
were useful to them. The user was an abstract figure, irrelevant to the applica-
tion. This approach is now unacceptable, as it not only leads to the commercial
failure of the product in the market, but also increases development and testing
costs manifold.

A good short introduction to all that is covered in this chapter can be found in
the short article “What is documentation testing in software testing”49.

48 Requirement. A condition or capability needed by a user to solve a problem or achieve an objective that must be met or possessed

by a system or system component to satisfy a contract, standard, specification, or other formally imposed document. [ISTQB
glossary]

49 “What is documentation testing in software testing”. [http://istqbexamcertification.com/what-is-documentation-testing/]

http://istqbexamcertification.com/what-is-documentation-testing/

The importance of requirements

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 32/278

2.2.2. The importance of requirements

The requirements are the baseline for determining what the project team designs,
implements and tests. Elementary logic dictates that if the requirements are wrong, then
the implementation becomes wrong, i.e., a lot of human work will be done in vain. Figure
2.2.a illustrates this point.

 Brian Hanks, describing the importance of the requirements50, emphasizes that
they:

• Make it possible to understand what the system should do and under what condi-
tions.

• Provide an opportunity to assess the extent of the changes and manage them.

• Provide the basis for a project plan (including a test plan).

• Help to prevent or resolve conflict situations.

• Make it easier to prioritize a task suite.

• Enable an objective assessment of the extent of progress in project development.

Regardless of which software development model is used on the project, the later
the problem is discovered, the more complex and expensive the solution will be. At the
beginning (of “waterfall”, of “the way down in V-model”, of an “iteration”, of a “spiral coil”)
is the planning and working with requirements.

If a problem in the requirements is identified at this stage, its solution may be lim-
ited to revising a couple of words in the text, whereas an omission caused by a problem
in the requirements and discovered during the operational phase may even destroy the
project completely.

Figure 2.2.a — Cost of error correction depending on when the error is detected

 If the charts don’t convince you, let’s try to illustrate the same point with a simple
example. Suppose you and your friends are making a shopping list before you decide to
go to the mall. You go shopping and your friends are waiting for you at home. How much
does it “cost” to add, subtract or change a few items while you’re still making the list?
None.

50 “Requirements in the Real World”, Brian F. Hanks, February 28, 2002.

General Planning

User Requirements

System

Requirements

Technical

Architecture

Detailed Design

Development and

Debugging

Integration and Unit-

testing

Installation Testing

System Testing

Acceptance Testing

Final Reporting

0

20

500

1000

Operation

Project Time

Defects Fixing

Cost

The importance of requirements

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 33/278

If the thought of an erratic list catches up with you on your way to the mall, you’ll
already have to make a phone call (cheap, but not free). If you realize there’s “something
wrong” with the list in the queue at the cash register, you’ll have to go back to the sales
floor and waste time. If you realize the problem on the way home, or even at home, you
have to go back to the mall.

And finally, the clinical case: something on the list was originally completely wrong
(e.g., “100 kg of chocolates — that’s it”), the trip is made, all the money is spent, the
chocolates are delivered and only then it turns out that “well, we were just joking”.

Task 2.2.a: imagine you and your friends are on a tight budget and your list of
requirements is prioritized (something is mandatory, something should be
bought if there is money available, etc.). How does this affect the risks associ-
ated with mistakes in the list?

Another argument in favor of requirements testing is that it has been estimated
that ½ to ¾ of all software problems originate there. As a result, there is a risk that it will
turn out as it is shown in figure 2.2.b.

Since we always say “documentation and requirements” rather than just “require-
ments”, it is worth considering the list of documentation that should be tested during soft-
ware development (although we will concentrate especially on the requirements below).

Figure 2.2.b — A typical project with poor requirements

 Basically, documentation can be divided into two major types depending on when
and where it is used (there will be a lot of footnotes with definitions, because lots of ques-
tions often arise about the types of documentation, so we will have to go into some more
detail).

How the client

explained what he

wanted

How the project

manager understood

the client

How the analyst

described the project

How the developer

implemented the

project

How the project was

promoted by the

consultants

How the project has

been documented

How the project was

handed over

How much the project

cost the client

How technical support

worked

What the client really

needed

The importance of requirements

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 34/278

• The product documentation (or development documentation51) is used by the
project team during product development and maintenance. It includes:

o Project management plan52 (including test plan53).
o Product requirements document (PRD54) and functional specifications55 doc-

ument (FSD56), software requirements specification (SRS57).
o Architecture and design58.
o Test cases59 and test suites60.
o Technical specifications61, such as database schemas, descriptions of algo-

rithms and interfaces, etc.

• Project documentation62 includes both product documentation and some addi-
tional types of documentation and is used not only in the development phase but
also in earlier and later phases (e.g., implementation and operation). It includes:

o User and accompanying documentation63, such as built-in help, installation
and usage guidelines, license agreements, etc.

o Market requirements document (MRD64), which is used by the developer or
customer representatives both at the initial stages (to clarify the concept of
the project) and at the final stages of project development (to promote the
product on the market).

51 Development documentation. Development documentation comprises those documents that propose, specify, plan, review, test,

and implement the products of development teams in the software industry. Development documents include proposals, user or
customer requirements description, test and review reports (suggesting product improvements), and self-reflective documents
written by team members, analyzing the process from their perspective. [“Documentation for Software and IS Development”,
Thomas T. Barker, “Encyclopedia of Information Systems” (Elsevier Press, 2002, pp. 684‐694.)]

52 Project management plan. A formal, approved document that defines how the project is executed, monitored and controlled. It

may be summary or detailed and may be composed of one of more subsidiary management plans and other planning documents.
[PMBOK, 3rd edition]

53 Test plan. A document describing the scope, approach, resources and schedule of intended test activities. It identifies amongst

others test items, the features to be tested, the testing tasks, who will do each task, degree of tester independence, the test
environment, the test design techniques and entry and exit criteria to be used, and the rationale for their choice, and any risks
requiring contingency planning. It is a record of the test planning process. [ISTQB Glossary]

54 Product requirements document, PRD. The PRD describes the product your company will build. It drives the efforts of the entire

product team and the company’s sales, marketing and customer support efforts. The purpose of the product requirements doc-
ument (PRD) or product spec is to clearly and unambiguously articulate the product’s purpose, features, functionality, and be-
havior. The product team will use this specification to actually build and test the product, so it needs to be complete enough to
provide them the information they need to do their jobs. [“How to write a good PRD”, Martin Cagan]

55 Specification. A document that specifies, ideally in a complete, precise and verifiable manner, the requirements, design, behavior,

or other characteristics of a component or system, and, often, the procedures for determining whether these provisions have
been satisfied. [ISTQB Glossary]

56 Functional specifications document, FSD. See “Software requirements specification, SRS”.
57 Software requirements specification, SRS. SRS describes as fully as necessary the expected behavior of the software system.

The SRS is used in development, testing, quality assurance, project management, and related project functions. People call this
deliverable by many different names, including business requirements document, functional spec, requirements document, and
others. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

58 Architecture. Design. A software architecture for a system is the structure or structures of the system, which comprise elements,

their externally-visible behavior, and the relationships among them. … Architecture is design, but not all design is architecture.
That is, there are many design decisions that are left unbound by the architecture, and are happily left to the discretion and good
judgment of downstream designers and implementers. The architecture establishes constraints on downstream activities, and
those activities must produce artifacts (finer-grained designs and code) that are compliant with the architecture, but architecture
does not define an implementation. [“Documenting Software Architectures”, Paul Clements and others.]

59 Test case. A set of input values, execution preconditions, expected results and execution postconditions, developed for a particular

objective or test condition, such as to exercise a particular program path or to verify compliance with a specific requirement.
[ISTQB Glossary]

60 Test suite. A set of several test cases for a component or system under test, where the post condition of one test is often used as

the precondition for the next one. [ISTQB Glossary]
61 Technical specifications. Scripts, source code, data definition language, etc. [PMBOK, 3rd edition] See also “Specification”.
62 Project documentation. Other expectations and deliverables that are not a part of the software the team implements, but that are

necessary to the successful completion of the project as a whole. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy
Beatty]

63 User documentation. User documentation refers to the documentation for a product or service provided to the end users. The

user documentation is designed to assist end users to use the product or service. This is often referred to as user assistance.
The user documentation is a part of the overall product delivered to the customer. [Based on doc-department.com]

64 Market requirements document, MRD. An MRD goes into details about the target market segments and the issues that pertain

to commercial success. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

http://doc-department.com/

The importance of requirements

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 35/278

In some of the classifications, part of the product documentation may be listed in
the project documentation — this is completely appropriate, as the concept of project
documentation is, by definition, broader. Since there are many questions and misunder-
standings about this classification, let us reflect it again — graphically (see figure 2.2.c)
— and recollect that we have agreed to classify documentation according to where (why)
it is most needed.

Figure 2.2.c — Relationship between
“product documentation” and “project documentation”

The importance and depth of testing a particular type of documentation or even a
single document depends on numerous factors, but the general principle remains the
same: everything we create during project development (even whiteboard sketches, even
letters, even some instant messaging) can be considered documentation and can be sub-
jected to testing in one way or another (for example, proofreading an e-mail before send-
ing it is also a kind of documentation testing).

Product

documentation

Project documentation

Ways of requirements gathering

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 36/278

2.2.3. Ways of requirements gathering

 Requirements begin their existence on the customer’s side. Their gathering and
elicitation are carried out using the following basic techniques65 (figure 2.2.d).

Interview. The most common way of identifying requirements is through commu-
nication between a project specialist (usually a business analyst) and a customer repre-
sentative (or expert, user, etc.). The interview may take place in the classical sense of
the word (as a question-and-answer session), in the form of correspondence, etc. The
important thing here is that the key players are two — the interviewee and the interviewer
(although this does not exclude the presence of an “audience of listeners”, for example,
in the form of persons in the correspondence CC).

Work with focus groups. Can stand for “extended interviews”, where the source
of information is not one person but a group of people (usually representing the target
audience, and/or those with important information for the project, and/or those authorized
to make important decisions for the project).

Figure 2.2.d — Ways of requirements gathering

Questioning. This type of requirement elicitation is highly controversial because,
if implemented incorrectly, it can lead to zero results at a high cost. At the same time, if
properly organized, questionnaires can automatically collect and process a huge number
of responses from a large number of respondents. The key to success is the right design
of the questionnaire, the right choice of audience and the right presentation of the ques-
tionnaire.

Meetings and brainstorming. Meetings and workshops allow a group of people
to exchange information rapidly (and visualize certain ideas) and they also can be com-
bined well with interviews, questionnaires, prototyping and modelling — including for dis-
cussing results and forming conclusions and decisions. Brainstorming can be done as
part of a workshop or as a separate activity. It allows a large number of ideas to be gen-
erated in a minimum amount of time, which can then be considered without haste in terms
of their use in developing the project.

65 See some additional details here: “Requirements Gathering vs. Elicitation” (Laura Brandenburg): http://www.bridging-the-

gap.com/requirements-gathering-vs-elicitation/

Interview
Work with Focus

Groups
Questioning

Meetings and

Brainstorming
Observation Prototyping

Documentation

Analysis
Modeling Self-(re)writing

http://www.bridging-the-gap.com/requirements-gathering-vs-elicitation/
http://www.bridging-the-gap.com/requirements-gathering-vs-elicitation/

Ways of requirements gathering

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 37/278

Observation. It can be either the literal observation of some processes or the in-
clusion of the project specialist as a participant in these processes. On the one hand,
observation allows us to see what (for quite different reasons) interviewees, respondents
and focus group representatives may possibly remain silent about, but on the other hand,
it is very time-consuming and most often allows us to see only part of the processes.

Prototyping. It consists of demonstration and discussion of intermediate versions
of the product (for example, the design of web pages can first be presented in the form of
images and only then be finalized). This is one of the best ways to ensure a common
understanding and clarification of requirements, but it can lead to serious additional costs
in the absence of specific tools (that allow rapid prototyping) and too early application
(when the requirements are not stable yet, and it is highly likely to create a prototype that
has little in common with the customer’s wishes).

Documentation analysis. It works well when subject area experts are (temporar-
ily) unavailable and in subject areas that already have generally accepted, well-estab-
lished regulatory documentation. This technique also includes simply studying the docu-
ments regulating the business processes in the customer’s subject area or in a particular
entity, which allows us to acquire the knowledge necessary to understand the project
better.

Modeling. Can be applied to both “business processes and interactions” (e.g.: “a
purchase contract is generated by the purchasing department, approved by the account-
ing and legal departments...”) and “technical processes and interactions” (e.g.: “the pay-
ment order is generated by the Accounting module, encrypted by the Security module
and transferred for storage to the Storage module”). This technique requires a highly
skilled business analyst, as it involves processing a large amount of complex (and often
poorly structured) information.

Self-(re)writing. It is not so much a technique for elicitation requirements as a
technique for their fixation and formalization. It is very difficult (and even impossible!) to
try to “think up requirements for the customer”, but in peace of mind it is possible to pro-
cess the collected information on your own and formalize it carefully for further discussion
and refinement.

Business analysts often come to their profession from testing. If you are inter-
ested in this area, the following books are worth reading:

• “Business Analysis Techniques. 72 Essential Tools for Success” (James
Cadle, Debra Paul, Paul Turner).

• “Business Analysis (Second Edition)” (Debra Paul, Donald Yeates, James
Cadle).

Requirements levels and types

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 38/278

2.2.4. Requirements levels and types

 The presentation, level of detail and list of useful features of the requirements de-
pend on the levels and types of requirements, as shown schematically in figure 2.2.e66.

Business requirements67 express the purpose for which the product is being de-
veloped (why the product is needed at all, what benefits are expected from it, how the
customer can make a profit with it). The output of the requirements definition at this level
is the vision and scope68, a document which is typically drawn up in plain text and spread-
sheets. It does not include details on system implementation and other technical specifi-
cations, but it may well define priorities for the business tasks to be performed, risks, etc.

A few simple examples of business requirements isolated from context and from
each other:

• There is a need for a tool that displays in real time the most favorable exchange
rate for buying and selling a currency.

• There needs to be a two- or three-fold increase in the number of orders processed
by one operator per shift.

• There is a need to automate the process of issuing waybills based on contracts.

Figure 2.2.e — Requirements levels and types

66 Based on ideas from “Software Requirements (3rd edition)” (by Karl Wiegers and Joy Beatty).
67 Business requirement. Anything that describes the financial, marketplace, or other business benefit that either customers or the

developing organization wish to gain from the product. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]
68 Vision and scope. The vision and scope document collects the business requirements into a single deliverable that sets the stage

for the subsequent development work. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

Business

Requirements

User Requirements

Business Rules

Quality Attributes

Constraints

Data Requirements

Functional

Requirements

Non-Functional

Requirements

Interface Requirements

Project Vision (and

limitations)

Use-cases (or user

stories)

Requirements

Specification

Business

Requirements Level

User Requirements

Level

Product

Requirements Level

Requirements levels and types

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 39/278

User requirements69 describe the tasks that the user can perform with the system
being developed (reaction of the system to user actions, user scenarios). As the system
behavior is being described here, the requirements at this level can be used to estimate
the scope of work, project cost, development time, etc. User requirements are formalized
as use cases70, user stories71, and user scenarios72. (See also “creating user scenar-
ios”{137}).

A few simple examples of user requirements, isolated from context and from each
other:

• The first time a user logs on to the system, the license agreement should be dis-
played.

• The administrator should be able to view a list of all users currently working on the
system.

• The first time a new article is saved, the system should prompt to save as a draft
or publish.

Business rules73 describe the specifics of the subject area (and/or those adopted
directly by the customer) processes, constraints and other rules. These rules may relate
to business processes, personnel rules, the details of software operation, etc.

A few simple examples of business rules isolated from context and from each
other:

• No document that has been viewed at least once by visitors to this website can be
edited or deleted.

• An article can only be published after approval by the editor-in-chief.

• Connection to the system from outside the office is forbidden during non-working
hours.

Quality attributes74 extend non-functional requirements and can be described as
project-specific quality attributes (product properties that are not related to functionality,
but are important for achieving product goals — performance, scalability, recoverability).
There are many quality attributes75, but only some subset is really important for any pro-
ject.

A few simple examples of quality attributes isolated from context and from each
other:

• The maximum time for the system to be ready to execute a new command after a
previous command has been cancelled cannot exceed one second.

• Changes made to the text of an article must not be lost when the connection be-
tween the client and the server is broken.

• The application must support the addition of any number of non-hieroglyphic inter-
face languages.

69 User requirement. User requirements are general statements of user goals or business tasks that users need to perform. [“Soft-

ware Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]
70 Use case. A sequence of transactions in a dialogue between an actor and a component or system with a tangible result, where an

actor can be a user or anything that can exchange information with the system. [ISTQB Glossary]
71 User story. A high-level user or business requirement commonly used in agile software development, typically consisting of one

or more sentences in the everyday or business language capturing what functionality a user needs, any non-functional criteria,
and also includes acceptance criteria. [ISTQB Glossary]

72 A scenario is a hypothetical story, used to help a person think through a complex problem or system. “An Introduction to Scenario

Testing”, Cem Kaner. [http://kaner.com/pdfs/ScenarioIntroVer4.pdf]
73 Business rule. A business rule is a statement that defines or constrains some aspect of the business. It is intended to assert

business structure or to control or influence the behavior of the business. A business rule expresses specific constraints on the
creation, updating, and removal of persistent data in an information system. [“Defining Business Rules — What Are They Really”,
David Hay and others.]

74 Quality attribute. A feature or characteristic that affects an item’s quality. [ISTQB Glossary]
75 Even the Wikipedia provides a huge list: http://en.wikipedia.org/wiki/List_of_system_quality_attributes

http://kaner.com/pdfs/ScenarioIntroVer4.pdf
http://en.wikipedia.org/wiki/List_of_system_quality_attributes

Requirements levels and types

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 40/278

Functional requirements76 describe the behavior of the system, i.e., its activities
(calculations, transformations, checks, processing, etc.) In the planning context, the func-
tional requirements mainly influence the system design.

It is worth remembering that system behavior refers not only to what the system
should do, but also to what it should not do (e.g.: “the application should not dump
background documents from RAM within 30 minutes of the last operation on them”).

A few simple examples of functional requirements, isolated from context and from
each other:

• During installation, the application should check the remaining free space on the
target drive.

• The system shall automatically back up the data daily at the specified time.

• The user’s e-mail address entered during registration must be verified to comply
with RFC822.

Non-functional requirements77 describe the properties of the system (usability,
security, reliability, scalability, etc.) that it must have when implementing its behavior.
Here you can find a more technical and detailed description of the quality attributes. In
the design context, the non-functional requirements have a major influence on the system
architecture.

A few simple examples of non-functional requirements, isolated from context and
from each other:

• If 1,000 users are operating the system simultaneously, the minimum time between
failures must be more than or equal to 100 hours.

• Under no circumstances may the total amount of memory used by the application
exceed 2 GB.

• The font size for any screen text shall support a setting range of 5 to 15 points.

The following requirements can generally be categorized as non-functional re-
quirements, but they are often put in separate subgroups (for simplicity only three such
subgroups are considered here, but there may be many more; they generally arise from
quality attributes, but a high level of detail allows them to be put at the product require-
ment level).

Limitations or constraints78 are factors that limit the choice of ways and means
(including tools) to develop a product.

A few simple examples of limitations isolated from context and from each other:

• All interface elements should be displayed without scrolling at screen resolutions
from 800x600 to 1920x1080.

• Flash must not be used in the client-side implementation of the application.

• The application must retain the ability to implement functions with the “critical” level
of importance if the client does not support JavaScript.

76 Functional requirement. A requirement that specifies a function that a component or system must perform. [ISTQB Glossary]

Functional requirements describe the observable behaviors the system will exhibit under certain conditions and the actions the
system will let users take. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

77 Non-functional requirement. A requirement that does not relate to functionality, but to attributes such as reliability, efficiency,

usability, maintainability and portability. [ISTQB Glossary]
78 Limitation, constraint. Design and implementation constraints legitimately restrict the options available to the developer. [“Soft-

ware Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

Requirements levels and types

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 41/278

External interfaces requirements79 describe the interaction of the system under
development with other systems and the operating environment.

A few simple examples of interface requirements, isolated from context and from
each other:

• Background AJAX data exchange between the client and the server should be
implemented in JSON format.

• Event logging must be maintained in the operating system event log.

• Connection to the mail server must be in accordance with RFC3207 (“SMTP over
TLS”).

Data requirements80 describe the data structures (and the data itself) that are an
integral part of the system under development. This often includes a description of the
database and the features of its use.

A few simple examples of data requirements isolated from context and from each
other:

• All system data, except for user documents, should be stored in a database man-
aged by MySQL; user documents should be stored in a database managed by
MongoDB.

• Information about cash transactions during the current month should be stored in
an operational table and transferred to an archive table at the end of the month.

• Full-text indexes on the corresponding table fields should be provided to speed up
text search operations on articles and reviews.

Software requirements specification (SRS81) summarizes all product-level re-
quirements and can be a very lengthy document (hundreds or thousands of pages).

As there can be so many requirements, and as they not only have to be written
and agreed upon once, but also constantly updated, the work of the project team in re-
quirements management is greatly facilitated by suitable requirements management
tools82, 83.

For a more comprehensive understanding of how to create, organize and use
a set of requirements it is advisable to read Karl Wiegers’ seminal work “Soft-
ware Requirements (3rd Edition) (Developer Best Practices)” (Karl Wiegers, Joy
Beatty). In the same book (in the appendices) there is a highly visual tutorial of
examples of documents describing different levels of requirements.

79 External interface requirements. Requirements in this category describe the connections between the system and the rest of the

universe. They include interfaces to users, hardware, and other software systems. [“Software Requirements (3rd edition)”, Karl
Wiegers and Joy Beatty]

80 Data requirements. Data requirement describe the format, data type, allowed values, or default value for a data element; the

composition of a complex business data structure; or a report to be generated. [“Software Requirements (3rd edition)”, Karl
Wiegers and Joy Beatty]

81 Software requirements specification, SRS. SRS describes as fully as necessary the expected behavior of the software system.

The SRS is used in development, testing, quality assurance, project management, and related project functions. People call this
deliverable by many different names, including business requirements document, functional spec, requirements document, and
others. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

82 Requirements management tool. A tool that supports the recording of requirements, requirements attributes (e.g., priority,

knowledge responsible) and annotation, and facilitates traceability through layers of requirements and requirements change
management. Some requirements management tools also provide facilities for static analysis, such as consistency checking and
violations to predefined requirements rules. [ISTQB Glossary]

83 An extensive list of requirements management tools can be found at: http://makingofsoftware.com/resources/list-of-rm-tools

http://makingofsoftware.com/resources/list-of-rm-tools

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 42/278

2.2.5. Good requirements properties

 During testing, the requirements are checked against a certain set of properties
(figure 2.2.f).

Figure 2.2.f — Good requirements properties

Completeness84. The requirement is complete and final in the sense of providing
all the necessary information, nothing is omitted for the reason of “it is obvious to every-
one”.

Typical completeness problems:

• There are no non-functional requirements or references to relevant non-functional
requirements (e.g.: “passwords must be encrypted” — what is the encryption algo-
rithm?)

• Only a part of some enumeration is specified (e.g.: “export to PDF, PNG, etc.” —
what does “etc.” mean here?)

• The references given are ambiguous (e.g.: “see above” instead of “see section
123.45.b”).

Ways of detecting problems Ways of fixing problems

Almost all requirements testing techniques
are applicable{49}, but asking questions and
using a graphical representation of the sys-
tem being developed helps the most. It also
helps to have an in-depth knowledge of the
subject area so that missing pieces of infor-
mation can be noticed.

Once it has been discovered that
something is missing, the missing
information should be retrieved
and added to the requirements.
The requirements may need to be
revised slightly.

84 Each requirement must contain all the information necessary for the reader to understand it. In the case of functional requirements,

this means providing the information the developer needs to be able to implement it correctly. No requirement or necessary
information should be absent. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

Correctness and

verifiability

Ranked for

Importance Stability Priority

Modifiability

Traceability

Obligation Up-to-date

Feasibility
Unambiguousness

Consistency

Atomicity

Completeness

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 43/278

Atomicity85. A requirement is atomic if it cannot be split into separate requirements
without loss of completeness, and describes the one and only situation.

Typical atomicity problems:

• In fact, one requirement contains several independent requirements (e.g.: “the ‘Re-
start’ button should not be displayed when the service is stopped, the ‘Log’ window
should contain at least 20 records of the user’s recent actions” — here, for some
reason, completely different interface elements in completely different contexts are
described in the same sentence).

• The requirement is subject to variation due to grammatical features of the language
(e.g., “if the user confirms an order and edits or postpones the order, a request for
payment should be issued” — this describes three different cases and should be
split into three separate paragraphs to avoid confusion). Such problems with ato-
micity often lead to inconsistency.

• A single requirement combines the description of several independent situations
(e.g., “when the user logs in, a greeting should be displayed; when the user has
logged in, the username should be displayed; when the user logs out, a farewell
message should be displayed” — all three of these situations are worthy of being
described in separate and far more detailed requirements).

Ways of detecting problems Ways of fixing problems

Thinking, discussion with colleagues
and common sense: if we think a cer-
tain section of requirements is over-
loaded and needs to be decomposed,
it is probably so.

Rework and/or restructuring of the re-
quirements: dividing them into sec-
tions, subsections, paragraphs, sub-
paragraphs, etc.

Consistency86. The requirement must not be internally inconsistent or in conflict
with other requirements and documents.

Typical consistency problems:

• Inconsistencies within a single requirement (e.g.: “after successful login of a user
who does not have the right to log in...” — How did the user successfully log in if
he had no such permissions?)

• Inconsistencies within two or more requirements, between a table and a text, a
figure and a text, a requirement and a prototype, etc. (e.g.: “712.a: The ‘Close’
button is always red” and “36452.x: The ‘Close’ button is always blue” — so is it
red or blue?)

• The use of incorrect terminology or the use of different terms for the same object
or phenomenon (e.g.: “if the resolution of the window is less than 800x600...” —
the screen has a resolution, the window has a size).

Ways of detecting problems Ways of fixing problems

The best way to detect inconsistencies is to
have good memory ☺, but even then, a
graphical representation of the system under
development is an indispensable tool to pre-
sent all the key information in a single coher-
ent diagram (where inconsistencies are
clearly visible).

Once the inconsistency has
been identified, the situation
should be clarified with the cus-
tomer and the necessary
changes should be made to the
requirements.

85 Each requirement you write represents a single market need that you either satisfy or fail to satisfy. A well written requirement is

independently deliverable and represents an incremental increase in the value of your software. [“Writing Good Requirements
— The Big Ten Rules”, Tyner Blain: http://tynerblain.com/blog/2006/05/25/writing-good-requirements-the-big-ten-rules/]

86 Consistent requirements don’t conflict with other requirements of the same type or with higher-level business, user, or system

requirements. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

http://tynerblain.com/blog/2006/05/25/writing-good-requirements-the-big-ten-rules/

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 44/278

Unambiguousness87 (clearness). The requirement should be described without
the use of slang, non-obvious acronyms and vague language, should allow only an un-
ambiguous objective understanding and should be atomic in that no combination of indi-
vidual phrases can be interpreted differently.

Typical unambiguousness problems:

• The use of subjective terms or phrases (e.g., “the application should support the
transfer of large amounts of data” — how much is “large”?) Here is just a small list
of words and phrases that can be considered valid signs of ambiguity: adequate,
be able to, easy, provide for, as a minimum, be capable of, effectively, timely, as
applicable, if possible, to be determined, TBD, as appropriate, if practical, but not
limited to, to be capable of, capability to, normal, minimize, maximize, optimize,
rapid, user-friendly, simple, often, usual, large, flexible, robust, state-of-the-art, im-
proved, efficient. This is an exaggerated example of a requirement, which sounds
very nice but is totally unrealistic and difficult to understand: “If large file transfer
optimization is required, the system should effectively use a minimum of memory,
if possible”.

• The use of non-obvious or ambiguous acronyms without deciphering (e.g.: “FS is
accessed by via transparent encryption system” and “FS provides the ability to
record messages in their current state along with the history of all changes” —
does FS mean a “file system” here? Does it? Not some kind of “File Searcher” or
“Fixation Service”?

• The wording of the requirements assumes that something should be obvious to
everyone (e.g., “The system converts a PDF input file to a PNG output file” — and
the author thinks it’s perfectly obvious that the system gets the file names from the
command line, while a multipage PDF is converted into several PNG files with
“page-1”, “page-2”, etc. added to the file names). This problem also echoes the
incorrectness.

Ways of detecting problems Ways of fixing problems

The above-mentioned indicator words
are a good way to see ambiguity in a
requirement. It’s just as effective to
think of checks (tests): it’s quite compli-
cated to come up with an objective
check for a requirement that is ambig-
uous.

The greatest enemies of ambiguity are
numbers and formulas: if something
can be expressed in formulaic or nu-
meric form (instead of verbal descrip-
tion), it is worth doing so. If this is not
possible, you should at least use the
most precise technical terms, refer-
ences to standards, etc.

Feasibility88. The requirement should be technologically feasible and implementa-
ble within the budget and project development timeframe.

Typical feasibility problems:

• So-called “gold plating” — requirements which are extremely long and/or expen-
sive to implement and yet practically useless for end-users (e.g.: “parameters set-
tings for connecting to a database must support character recognition from ges-
tures received from the 3D input device”).

87 Natural language is prone to two types of ambiguity. One type I can spot myself, when I can think of more than one way to interpret

a given requirement. The other type of ambiguity is harder to catch. That’s when different people read the requirement and come
up with different interpretations of it. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

88 It must be possible to implement each requirement within the known capabilities and limitations of the system and its operating

environment, as well as within project constraints of time, budget, and staff. [“Software Requirements (3rd edition)”, Karl Wiegers
and Joy Beatty]

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 45/278

• Technically infeasible requirements at the current level of technology (e.g., “con-
tract analysis should be performed by an artificial intelligence that makes an un-
ambiguous and correct judgement on the extent of the benefit of the contract”).

• Fundamentally unrealistic requirements (e.g.: “the search engine should predict all
possible search options and cache their results”).

Ways of detecting problems Ways of fixing problems

Alas, there is only one way to go here:
maximize experience and build on it. It
is impossible to realize that a certain
requirement “costs” too much or is not
feasible at all if there is no understand-
ing of the software development pro-
cess, no understanding of the subject
area and no other related knowledge.

If a requirement is found to be infeasi-
ble, there is no other option than to dis-
cuss the situation in detail with the cus-
tomer and/or to change the require-
ment (maybe even to remove it), or to
revise the terms of the project (ena-
bling the requirement to be imple-
mented).

Obligatoriness89 and up-to-date state. If a requirement is not mandatory, it should
simply be excluded from the set of requirements. If a requirement is necessary but “not
very important”, a priority ranking should be used to indicate this fact (see “ranking for...”).
Requirements that are no longer relevant should also be excluded (or revised).

Typical obligatoriness and up-to-date state problems:

• The requirement was added “just in case” even though there was no real need for
it.

• Requirement is not correctly ranked according to the importance and/or priority
criteria.

• The requirement is obsolete, but has not been revised or removed.

Ways of detecting problems Ways of fixing problems

A continuous (periodic) review of the
requirements (preferably with the cus-
tomer participation) makes it possible
to identify those parts that are no
longer relevant or have become of low
priority.

Redrafting the requirements (eliminat-
ing the parts that are no longer rele-
vant) and redrafting the parts that have
changed priority (often the change in
priority also leads to a change in the
wording of the requirement).

Traceability90, 91. There are vertical traceability92 and horizontal traceability93. Ver-
tical traceability enables the correlation of requirements at different levels of require-
ments, while horizontal traceability enables the correlation of a requirement with the test
plan, test cases, architectural solutions, etc.

89 Each requirement should describe a capability that provides stakeholders with the anticipated business value, differentiates the

product in the marketplace, or is required for conformance to an external standard, policy, or regulation. Every requirement
should originate from a source that has the authority to provide requirements. [“Software Requirements (3rd edition)”, Karl Wieg-
ers and Joy Beatty]

90 Traceability. The ability to identify related items in documentation and software, such as requirements with associated tests.

[ISTQB Glossary]
91 A traceable requirement can be linked both backward to its origin and forward to derived requirements, design elements, code that

implements it, and tests that verify its implementation. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]
92 Vertical traceability. The tracing of requirements through the layers of development documentation to components. [ISTQB Glos-

sary]
93 Horizontal traceability. The tracing of requirements for a test level through the layers of test documentation (e.g., test plan, test

design specification, test case specification and test procedure specification or test script). [ISTQB Glossary]

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 46/278

Special requirements management tools94 and/or traceability matrices95 are often
used to ensure traceability.

 Typical traceability problems:

• Requirements are not numbered, not structured, have no table of contents, no
working cross-references.

• Requirements management tools and techniques have not been used in require-
ments development.

• The set of requirements is incomplete, sketchy, with obvious “gaps”.

Ways of detecting problems Ways of fixing problems

Traceability failures become apparent
in the requirements processing as
soon as we have the unanswered
questions like “where did this require-
ment come from?”, “where are the as-
sociated (related) requirements de-
scribed?”, “what does it affect?”

Reworking the requirements. It may
even be necessary to change the struc-
ture of the requirements set, but we will
definitely start with a lot of cross-refer-
encing to allow fast and transparent
navigation through the requirements
set.

Modifiability96. This property describes the ease of modifying individual require-
ments or a set of requirements. Modifiability can be considered present if, when the re-
quirements are revised, the information sought is easy to find and its modification does
not violate any of the other properties described in this list.

Typical modifiability problems:

• The requirements are neither atomic (see “atomicity”) nor traceable (see “tracea-
bility”), so changing them is very likely to produce inconsistency (see “con-
sistency”).

• The requirements are initially inconsistent (see “consistency”). In such a situation,
changes (not related to the elimination of inconsistency) only exacerbate the situ-
ation increasing inconsistency and reducing traceability.

• The requirements are presented in an uncomfortable form (e.g., no requirements
management tools are used, and the team ends up having to work with dozens of
huge text documents).

Ways of detecting problems Ways of fixing problems

If, when making changes to a set of re-
quirements, we are faced with prob-
lems typical of a loss of traceability sit-
uation, then we have found a problem
with modifiability. Also, modifiability is
impaired whenever almost any of the
requirements’ problems discussed in
this section are present.

Reworking the requirements with the
primary aim of improving their tracea-
bility. At the same time, other identified
problems can be rectified.

94 Requirements management tool. A tool that supports the recording of requirements, requirements attributes (e.g., priority,

knowledge responsible) and annotation, and facilitates traceability through layers of requirements and requirements change
management. Some requirements management tools also provide facilities for static analysis, such as consistency checking and
violations to predefined requirements rules. [ISTQB Glossary]

95 Traceability matrix. A two-dimensional table, which correlates two entities (e.g., requirements and test cases). The table allows

tracing back and forth the links of one entity to the other, thus enabling the determination of coverage achieved and the assess-
ment of impact of proposed changes. [ISTQB Glossary]

96 To facilitate modifiability, avoid stating requirements redundantly. Repeating a requirement in multiple places where it logically

belongs makes the document easier to read but harder to maintain. The multiple instances of the requirement all have to be
modified at the same time to avoid generating inconsistencies. Cross-reference related items in the SRS to help keep them
synchronized when making changes. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 47/278

Ranked97 for importance, stability, priority. Importance describes the depend-
ence of the success of the project on the success of the requirement implementation.
Stability describes the likelihood that no changes will be made to the requirement in the
foreseeable future. Priority determines the allocation of the project team’s efforts in time
to implement a requirement.

Typical problems with ranking consist of a lack of ranking or incorrect ranking with
the following consequences.

• Problems with ranking for importance increase the risk of misallocation of the pro-
ject team’s efforts, of directing efforts towards secondary tasks and of eventual
project failure due to the product’s inability to perform key tasks in compliance with
key conditions.

• Problems with ranking for stability increase the risk of doing pointless work to im-
prove, implement and test requirements that may soon undergo drastic changes
(up to becoming completely irrelevant).

• Problems with ranking for priority increase the risk of disrupting the customer’s
desired sequence of functionality implementation and usage.

Ways of detecting problems Ways of fixing problems

As in the case of up-to-date state and oblig-
atoriness of the requirements, the best way
to detect deficiencies is to review the re-
quirements on an ongoing (periodic) basis
(preferably with the customer participation),
which may reveal incorrect values for the
priority, importance and stability of the re-
quirements under discussion.

Right in the course of discussing
the requirements with the cus-
tomer (during the reworking of the
requirements), it is worth making
adjustments to the priority, im-
portance and stability of the re-
quirements under discussion.

Correctness98 and verifiability99. In fact, these properties are derived from com-
pliance with all of the above (or it can be said that they are not met if at least one of the
above is violated). In addition, verifiability implies the ability to create objective test
case(s) which unambiguously show that the requirement is implemented correctly and
that the behavior of the application exactly meets the requirement.

Typical problems with correctness also include:

• Misprints (misprints in acronyms are especially risky, transforming one meaningful
acronym into another meaningful but irrelevant to some context; they are extremely
difficult to spot).

• Presence of unreasoned design and architectural requirements.

• Poor layout of the text and accompanying graphics; grammar, punctuation and
other mistakes in the text.

• Incorrect detailing level (e.g., too much details at the business requirement level
or insufficient details at the product requirement level).

• Requirements for the user, not the application (e.g.: “user must be able to send a
message” — alas, we cannot influence the user’s condition).

97 Prioritize business requirements according to which are most important to achieving the desired value. Assign an implementation

priority to each functional requirement, user requirement, use case flow, or feature to indicate how essential it is to a particular
product release. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]

98 Each requirement must accurately describe a capability that will meet some stakeholder’s need and must clearly describe the

functionality to be built. [“Software Requirements (3rd edition)”, Karl Wiegers and Joy Beatty]
99 If a requirement isn’t verifiable, deciding whether it was correctly implemented becomes a matter of opinion, not objective analysis.

Requirements that are incomplete, inconsistent, infeasible, or ambiguous are also unverifiable. [“Software Requirements (3rd
edition)”, Karl Wiegers and Joy Beatty]

Good requirements properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 48/278

Ways of detecting problems Ways of fixing problems

Since here we are dealing with an “in-
tegral” problem, it is usually detected
using the previously described meth-
ods. There are no separate unique
techniques.

Making the necessary changes to the
requirements — from a simple correc-
tion of a detected typo, to a global re-
design of the entire set of require-
ments.

A good quick guide to writing good requirements is given in “Writing Good Re-
quirements — The Big Ten Rules”100 article.

100 “Writing Good Requirements — The Big Ten Rules”, Tyner Blain [http://tynerblain.com/blog/2006/05/25/writing-good-require-

ments-the-big-ten-rules/]

http://tynerblain.com/blog/2006/05/25/writing-good-requirements-the-big-ten-rules/
http://tynerblain.com/blog/2006/05/25/writing-good-requirements-the-big-ten-rules/

Requirements testing techniques

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 49/278

2.2.6. Requirements testing techniques

 Documentation and requirements testing is categorized as non-functional test-
ing101. The basic techniques of such testing in terms of requirements are as follows.

Peer review102. Peer review is one of the most widely used techniques in require-
ments testing and can take one of the following three forms (as its complexity and cost
increase):

• Walkthrough103 can take the form of an author showing their work to colleagues
in order to build a shared understanding and to obtain feedback, or it can take the
form of a simple exchange of results between two or more authors for a colleague
to ask questions or make comments. It is the fastest, cheapest and most frequently
used form of review.
To remember: the equivalent of a walkthrough is when you and your classmates
at school used to check each other’s essays before handing them in, to look for
typos and mistakes.

• Technical review104 is carried out by a team of experts. Ideally, each reviewer
should represent their area of expertise. The product under test cannot be consid-
ered to be of sufficient quality as long as at least one reviewer has reservations.
To remember: the equivalent of a technical review is a situation where a contract
is reviewed by the legal department, accounting department, etc.

• Inspection105 is a structured, systematic and documented approach to documen-
tation review. It involves a large number of specialists and is quite time-consuming,
which is why this review option is rarely used (generally, when a project previously
developed by another company is received for maintenance and revision).
To remember: the analogue of a formal inspection is the situation of a general
cleaning of a flat (including the contents of all cabinets, refrigerators, storerooms
etc.)

Questions. The next obvious technique for testing and improving the quality of the
requirements is the (repeated) use of requirements elicitation techniques, and (as a sep-
arate activity) asking questions. If there is anything in the requirements that makes you
unclear or suspicious, ask questions. You can ask the customer’s representatives, or you
can refer to background information. For many issues you can ask your more experienced
colleagues if they have the relevant information from the customer. The important thing
is to formulate your question in such a way that the answer can improve the requirements.

Since entry-level testers make a lot of mistakes here, let’s take a closer look. Table
2.2.a shows some poorly worded requirements, as well as examples of good and bad
questions. Bad questions provoke thoughtless answers with no useful information.

101 Non-functional testing. Testing the attributes of a component or system that do not relate to functionality, e.g., reliability, effi-

ciency, usability, maintainability and portability. [ISTQB Glossary]
102 Peer review. A review of a software work product by colleagues of the producer of the product for the purpose of identifying

defects and improvements. Examples are inspection, technical review and walkthrough. [ISTQB Glossary]
103 Walkthrough. A step-by-step presentation by the author of a document in order to gather information and to establish a common

understanding of its content. [ISTQB Glossary]
104 Technical review. A peer group discussion activity that focuses on achieving consensus on the technical approach to be taken.

[ISTQB Glossary]
105 Inspection. A type of peer review that relies on visual examination of documents to detect defects, e.g., violations of development

standards and non-conformance to higher level documentation. The most formal review technique and therefore always based
on a documented procedure. [ISTQB Glossary]

Requirements testing techniques

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 50/278

Table 2.2.a — Example of bad and good questions for requirements

Poor requirement Bad questions Good questions
“The application has to start

quickly”

“How quickly?” (You risk getting an-

swers like “very quickly”, “as

quickly as possible”, “well... just

quickly”).

“What if it’s not fast?” (You risk just

surprising or even angering the

customer.)

“Always?” (“Yes, always.” Hmm.

Did you expect a different answer?)

“What is the maximum permissible

start-up time for the application, on

what hardware and with what load

on that hardware with the operating

system and other applications?

What objectives are influenced by

the start-up speed of the applica-

tion? Are some components al-

lowed to be loaded in the back-

ground? What is the criterion that

the application has finished starting

up?”

“Optionally, export of docu-

ments to PDF format should

be supported.”

“Any documents?” (Answering

“yes, any” or “no, only open ones”

won’t help you anyway.)

“Which PDF version should a doc-

ument be exported to?” (The ques-

tion itself is good, but it doesn’t

make it clear what “optional”

meant.)

“Why?” (“It’s just necessary!” is

what one wants to answer if the

question is not fully clarified.)

“How important is the ability to ex-

port to PDF? How often, by whom

and for what purpose will it be

used? Is PDF the only acceptable

format for this purpose or are there

alternatives? Is it acceptable to use

external utilities (e.g., virtual PDF

printers) to export documents to

PDF?”

“If no event date is specified,

it is selected automatically”.

“And if it’s specified?” (It is speci-

fied. Makes sense, doesn’t it?)

“What if the date cannot be se-

lected automatically?” (The ques-

tion itself is interesting, but without

explaining why it cannot be se-

lected, it sounds like a mockery.)

“What if the event has no date?”

(Here the author of the question

probably wanted to clarify whether

this field is mandatory. But from the

requirement itself, it is obligatory: if

it is not filled in by a person, the

computer must fill it in.)

“Did you mean that the date is au-

tomatically generated rather than

selected? If so, what is the algo-

rithm used to generate it? If not,

from which set is the date selected

and how is this set generated? P.S.

Perhaps the current date should be

used?”

 Test cases and checklists. We remember that a good requirement is testable,
so there must be objective ways of determining whether a requirement has been imple-
mented correctly. Thinking about checklists or even comprehensive test cases as we an-
alyze the requirements allows us to determine whether or not the requirement is testable.
If you can quickly come up with a few items on a checklist, it still does not mean that the
requirement is fine (for example, it may conflict with some other requirement). But if you
can’t think of any ideas for testing the requirement, this is a red flag.

It is advisable to start by making sure you understand the requirement (including
reading neighboring requirements, asking questions of colleagues, etc.). You could also
postpone working on this particular requirement for a while and come back to it later —
perhaps an analysis of other requirements will give you a better understanding of this
particular one as well. But if nothing helps, there is probably something wrong with the
requirement.

Requirements testing techniques

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 51/278

It is fair to say that this is very common at the beginning of the requirements pro-
cessing — the requirements are very superficial, vague and obviously in need of improve-
ment, i.e., there is no need for a complex analysis to establish that the requirement is not
testable.

At the stage where the requirements are already well formulated and tested, you
can continue to use this technique, combining test case development and additional re-
quirements testing.

 Researching system behavior. This technique logically follows from the previous
one (thinking of test cases and checklists), but differs in the fact that in this case, as a
rule, not a single requirement, but a whole set is tested. Tester mentally simulates how
the user works with the system created according to tested requirements and look for
ambiguous or at all undescribed variants of system behavior. This approach is complex,
it requires considerable qualification of the tester, but it reveals non-trivial defects that are
almost impossible to notice while testing the requirements separately.

 Figures (graphical representation). Figures, diagrams, mind-maps106, charts, etc.
are very useful to see the whole picture of the requirements. Graphical representation is
convenient both because of its clarity and brevity (for example, UML-schema of a data-
base, in one screen, can be described by several dozens of pages of text).

It is pretty easy to see in the figure that some elements “don’t fit together”, that
something is missing somewhere, etc. If you use a generally accepted notation (such as
the already mentioned UML) for graphical representation of requirements, you will get
additional benefits: your schema can be easily understood and modified by colleagues,
and the result can be a good complement to the text form of requirements representation.

Prototyping. Prototyping is often the consequence of creating a graphical repre-
sentation and analyzing the system behavior. Using special tools, you can quickly sketch
user interfaces, evaluate the applicability of a solution, and even create not just a “proto-
type for prototype’s sake”, but a template for further development, if it turns out that the
implemented prototype (with minor modifications, perhaps) suits the customer.

106 “Mind map” [http://en.wikipedia.org/wiki/Mind_map]

http://en.wikipedia.org/wiki/Mind_map

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 52/278

2.2.7. Examples of requirements analysis and testing

Since our aim is to build an understanding of the logic of requirements analysis
and testing, we will consider a very brief and simple set of them.

An excellent detailed example of requirements can be found in the annexes of
Karl Wiegers’ book “Software Requirements (3rd Edition) (Developer Best
Practices)”, Karl Wiegers, Joy Beatty.

 Let’s imagine that a customer has a problem: their employees receive a huge num-
ber of text files in different encodings, and the employees spend a lot of time recoding
them (with “manual file encoding detection”). Consequently, the customer would like to
have a tool to automatically convert all text files into a certain encoding. Hence, a project
codenamed “File Converter” is born.

Business requirements level. Business requirements (see “Requirements levels
and types”{38} chapter) may originally be as follows: “We need a tool to automatically con-
vert text documents to the same encoding”.

There are plenty of questions we can ask here. For ease of reference, here are
both the questions themselves and the customer’s expected answers.

Task 2.2.b: before reading the list of questions below, formulate your own one,
write it down.

• What formats are text documents in (plain text, HTML, MD, something else)? (I
have no idea, I’m not good at it.)

• What encodings do the source documents come in? (Different encodings.)

• Which encoding should the documents be converted to? (To the most convenient
and universal one.)

• In which languages is the text in the documents written? (English and Russian.)

• Where and how do text documents come from (by e-mail, from websites, over the
network, some other way)? (It doesn’t matter. They come from everywhere, but we
put them in one folder on the drive because it is convenient for us.)

• What is the maximum length of a document? (A couple of dozen pages.)

• How often do new documents appear (e.g., what is the maximum number of doc-
uments that can be received in an hour)? (200–300 per hour.)

• What do employees use to review documents? (Notepad++.)

Even these questions and answers are enough to reformulate the business re-
quirements as follows (note that many questions have been asked for the future and have
not resulted in unnecessary technical detail in the business requirements).

 Project scope: development of a tool to eliminate encoding multiplicity in text doc-
uments stored locally.

 Main goals:

• Eliminate the necessity for manual detection and conversion of encoding in text
documents.

• Decrease document-processing time by the amount needed for manual encoding
detection and conversion.

Criteria for main goals achievement:

• Full automation of encoding detection and conversion.

• Document-processing time reduction by 1–2 minutes (average) due to elimination
the necessity for manual encoding detection and conversion.

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 53/278

Risks:

• High complexity of accurate detection of text document initial encoding.

Why did we decide that the average time to detect an encoding is 1–2 minutes?
We made an observation. We also remember the customer’s answers to questions about
source document formats, source and destination encodings (the customer honestly said
they did not know the answer), so we asked them to give us access to the document
repository and found out the following:

• Source formats: plain text, HTML, MD.

• Source encodings: CP1251, UTF8, CP866, KOI8R.

• Target encoding: UTF8.

At this stage we may reasonably decide that it is worth going into the detail of the
requirements at lower levels, as the issues there will allow us to go back to the business
requirements and improve them, should this become necessary.

User requirements level. Now it is time to deal with the user requirements level
(see “Requirements levels and types”{38} chapter). The project is somewhat specific — a
large number of people will use the results of the software, but they will not use the soft-
ware itself (it will just do its job “by itself” — running on a server with a document reposi-
tory). The end-user is therefore the person who configures the application on the server.

 To begin, we will create the small use case diagram shown in figure 2.2.g (yes,
sometimes this is created after the textual description of the requirements, but sometimes
before — it is more convenient to do it first for now). In real projects, such diagrams can
be far more complex and require more detail for each use case. Our project is a miniature
one, so the scheme is elementary and we go straight to describing the requirements.

 Attention! These are BAD requirements. And we will improve them further.

 System characteristics

• SC-1: The application is a console one.

• SC-2: The application uses a PHP interpreter to run.

• SC-3: The application is a cross-platform one.

 User requirements

• Also see the use case diagram.

• UR-1: Starting and stopping the application.
o UR-1.1: The application is started from the command line with the command

“PHP converter.php parameters”.
o UR-1.2: The application is stopped by executing Ctrl+C command.

• UR-2: Configuring the application.
o UR-2.1: Configuring the application is simply a matter of specifying paths in

the file system.
o UR-2.2: The target encoding is UTF8.

• UR-3: Viewing the application log.
o UR-3.1: While running, the application should output a log of its work to the

console and a log file.
o UR-3.2: The first time the application is started the log file is created and

the next time it is appended.

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 54/278

Figure 2.2.g — Use case diagram

Business rules

• BR-1: Files sourse107 and destination.
o BR-1.1: The source and destination directories of the final files must not be

the same.
o BR-1.2: The destination directory cannot be a source directory’s subdirec-

tory.

Quality attributes

• QA-1: Performance.
o QA-1.1: The application must provide a data processing capacity of 5

MB/sec.

• QA-2: Resilience to input data.
o QA-2.1: The application must handle input files of up to and including 50

MB in size.
o QA-2.2: If the input file is not a text file, the application must perform pro-

cessing.

107 Yes, it’s a typo. It is here for a reason ☺.

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 55/278

As will be covered in “Common mistakes in requirements analysis and testing”{61}
chapter, it is not a good idea to change the original file format and formatting of the doc-
ument, so we use the built-in Word tools to track changes and add comments. An exam-
ple of the result is shown in figure 2.2.h.

Figure 2.2.h — Using Word tools to deal with requirements

 Unfortunately, we can’t use these tools in this text (the result won’t be displayed
correctly, as you’re probably reading this text as a non-DOCX document), so we’ll use
the second classic method of putting our questions and comments directly into the text of
the requirements.

The issue areas of the requirements are underlined, our questions are italicized,
and the expected responses of the customer (even more precisely, the customer’s tech-
nician) are in bold. During the analysis the text of the requirements turns out like this.

Task 2.2.c: analyze the proposed set of requirements in terms of good require-
ments{42}, formulate your questions to the customer to improve this set of re-
quirements.

 System characteristics

• SC-1: The application is a console one.

• SC-2: The application uses a PHP interpreter to run.
o What is the minimum version of the PHP interpreter supported by the appli-

cation? (5.5.x)
o Are there any specifics about configuring PHP interpreter for the correct

operation of the application? (Probably mbstring should be enabled.)
o Do you insist on implementing the application in PHP? If so, why? (Yes,

PHP only. We have an employee who knows it.)
o Should the user manual describe how to install and configure the PHP in-

terpreter? (No.)

• SC-3: The application is a cross-platform one.
o Which operation systems should be supported? (Any OS PHP supports.)
o What is the purpose of being cross-platform? (We don’t yet know what OS

the server will run on.)

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 56/278

 User requirements

• Also see the use case diagram.

• UR-1: Starting and stopping the application.
o UR-1.1: The application is started from the command line with the command

“PHP (There may be a typo: it should be php (lower case)) (Yes, OK.) con-
verter.php parameters”.

▪ What parameters are passed to the application when it starts? (Di-
rectory with source files, directory with destination files.)

▪ What is the application reaction to:

• Lack of parameters. (Shows help.)

• Wrong number of parameters. (Shows help and explains
what’s wrong.)

• Invalid values of each of the parameters. (Shows help and
explains what’s wrong.)

o UR-1.2: The application is stopped by executing Ctrl+C command (Suggest
adding “in the console window which holds the running application” to this
phrase) (OK, agree.).

• UR-2: Configuring the application.
o UR-2.1: Configuring the application is simply a matter of specifying paths in

the file system.
▪ Paths to what objects? (Directory with source files, directory with

destination files.)
o UR-2.2: The target encoding is UTF8.

▪ Is a different target encoding to be specified, or is UTF8 always used
as the target? (UTF8 only, no others.)

• UR-3: Viewing the application log.
o UR-3.1: While running, the application should output a log of its work to the

console and a log file.
▪ What is the log format? (Date and time, what was done and with

what, what was accomplished. Look in the “Apache httpd” log,
it’s fine there.)

▪ Are log formats different for console and log file? (No.)
▪ How is the name of the log file determined? (The third parameter

at startup. If not specified, make it converter.log next to the php
script.)

o UR-3.2: The first time the application is started the log file is created and
the next time it is appended.

▪ How does the application distinguish between its first and subse-
quent starts? (It doesn’t.)

▪ What is the reaction of the application to the absence of a log file in
case it is not the first run? (It creates one. The idea is that it doesn’t
overwrite the old log — that’s all.)

Business rules

• BR-1: Files source and destination.
o BR-1.1: The sourse (a typo, source) (Yes) and destination directories of the

final files must not be the same.
▪ What is the reaction of the application when these directories are the

same? (Shows help and explains what’s wrong.)
o BR-1.2: The destination directory cannot be a source directory’s subdirec-

tory. (Suggest replacing the words “source directory’s subdirectory” with
“subdirectory of the directory that is the source of the source files”). (OK, let
it be so.)

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 57/278

Quality attributes

• QA-1: Performance.
o QA-1.1: The application must provide a data processing capacity of 5

MB/sec.
▪ At what hardware specifications? (i7, 4GB RAM)

• QA-2: Resilience to input data.
o QA-2.1: The application must handle input files of up to and including 50

MB in size.
▪ How does the application react to files larger than 50MB? (It doesn’t

touch them.)
o QA-2.2: If the input file is not a text file, the application must perform pro-

cessing.
▪ What should the application process? (This file. It doesn’t matter

what happens to the file as long as the script doesn’t crash.)

There are some important points to pay attention to in this case:

• The customer’s answers may be less structured and consistent than our questions.
This is fine. They can afford it, we can’t.

• The customer’s answers may be inconsistent (in our case, the customer first wrote
that the parameters sent from the command line are only two directory names, and
then mentioned that the name of the log file is also specified there). This is also
normal, as the customer could have forgotten or confused something. Our task is
to reconcile these contradictory data (if possible) and ask clarifying questions (if
necessary).

• If we are talking to a technician, technical jargon (like “shows help” in our example)
may well slip into their answers. We don’t need to ask them what they mean if the
jargon has an unambiguous, generally accepted meaning, but when refining the
text, our job is to write the same thing in strictly technical language. If the jargon is
still incomprehensible — then it is better to ask (thus, “shows help” is just a short
usage message output by console applications as a hint on how to use them).

Product requirements level (see “Requirements levels and types”{38} chapter).
Let’s apply the so-called “self-writing” (see “Ways of requirements gathering”{36} chapter)
and improve the requirements.

Since we have already received a lot of specific technical information, it is possible
to write a full requirements specification in the meantime. In many cases where plain text
is used for the requirements, a single document that integrates both user requirements
and detailed specifications is formed for convenience.

Now the requirements will turn as follows.

 System characteristics

• SC-1: The application should be a console one.

• SC-2: The application should be developed using PHP (see L-1 for the explana-
tion; PHP-related details are described in DS-1).

• SC-3: The application should be a multi-platform one (taking into account L-4).

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 58/278

 User requirements

• See also the use cases diagram below for details.

• UR-1: Start and stop of the application.
o UR-1.1: The application start should be performed by the following console

command: “php converter.phar SOURCE_DIR DESTINATION_DIR
[LOG_FILE_NAME]” (see DS-2.1 for parameters description, see DS-2.2,
DS-2.3, and DS-2.4 for error messages on any misconfiguration situation).

o UR-1.2: The application stop (shutdown) should be performed by applying
Ctrl+C to the console window, which holds the running application.

• UR-2: Configuration of the application.
o UR-2.1: The only configuration available is through command line parame-

ters (see DS-2).
o UR-2.2: Target encoding for text file conversion is UTF8 (see also L-5).

• UR-3: Application log.
o UR-3.1: The application should output its log both to the console and to a

log-file (see DS-4). Log file name should comply with the rules described in
DS-2.1.

o UR-3.2: Log contents and format are described in DS-4.1, the application
reaction to log file presence/absence is described in DS-4.2 and DS-4.3
accordingly.

Business rules

• BR-1: The source directory and the destination directory.
o BR-1.1: The source directory and the destination directory may NOT be the

same directory (see also DS-2.1 and DS-3.2).
o BR-1.2: The destination directory may NOT by inside the source directory

or any its subdirectories (see also DS-2.1 and DS-3.2).

Quality attributes

• QA-1: Performance.
o QA-1.1: The application should provide the processing speed of at least 5

MB/sec with the following (or equivalent) hardware: CPU i7, RAM 4 GB,
average disc read/write speed 30 MB/sec. See also L-6.

• QA-2: Resilience to input data.
o QA-2.1: See DS-5.1 for the requirements to input file formats.
o QA-2.2: See DS-5.2 for the requirements to input file size.
o QA-2.3: See DS-5.3 for the details on application reaction on incorrect input

file format.

Limitations

• L-1: The application should be developed using PHP as the customer is going to
support the application with their own IT-department.

• L-2: See DS-1 for PHP version and configuration details.

• L-3: PHP setup and configuration process are out of this project scope and there-
fore are NOT described in any product/project documentation.

• L-4: Multi-platform capabilities of the application are the next: it should work with
Windows and Linux assuming that proper PHP version (see DS-1.1) works there.

• L-5: The target encoding (UTF8) is fixed. There is no option to change it.

• L-6: The QA-1.1 may be violated in case of objective reasons (e.g., system over-
load, low-performing hardware and so on).

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 59/278

The Detailed specifications created on the basis of such user requirements are as
follows.

Detailed specifications
DS-1: PHP interpreter
DS-1.1: The minimum version is 5.5.
DS-1.2: The mbstring extension should be installed and enabled.

DS-2: Command line parameters
DS-2.1: The application receives three command line parameters during the start

process:
SOURCE_DIR — mandatory parameter, points to the directory with files to
be processed;
DESTINATION_DIR — mandatory parameter, points to the directory to
store converted files (see also BR-1.1 and BR-1.2));
LOG_FILE_NAME — optional parameter, points to the log file (if omitted,
“converter.log” file should be created in the same directory where “con-
verter.phar” is located);

 DS-2.2: If some mandatory command line parameter is omitted, the application
should shut down displaying standard usage message (see DS-3.1).
 DS-2.3: If more than three command line parameters are passed to the application,
it should ignore any parameter except listed in DS-2.1.
 DS-2.4: If the value of any command line parameter is incorrect, the application
should shut down displaying standard usage-message (see DS-3.1) and incorrect param-
eter name, value, and proper error message (see DS-3.2).

 DS-3: Messages
 DS-3.1: Usage message: “USAGE converter.phar SOURCE_DIR DESTINA-
TION_DIR [LOG_FILE_NAME]”.
 DS-3.2: Error messages:
 Directory not exists or inaccessible.
 Destination dir may not reside within source dir tree.
 Wrong file name or inaccessible path.

 DS-4: Log
 DS-4.1: The log format is the same for the console and the log file: YYYY-MM-DD
HH:II:SS operation_name operation_parameters operation_result.
 DS-4.2: If the log file is missing, a new empty one should be created.
 DS-4.3: If the log file exists, the application should append new records to its tail.

 DS-5: File format and size
 DS-5.1: The application should process input files in English and Russian lan-
guages with the following encodings: WIN1251, CP866, and KOI8R.

Supported file formats (defined by extension) are:
 Plain Text (TXT);
 Hyper Text Markup Language Document (HTML);
 Mark Down Document (MD).
 DS-5.2: The application should process files up to 50 MB (inclusive), the applica-
tion should ignore any file with the size larger than 50 MB.
 DS-5.3: If a file with supported format (see DS-5.1) contains format-incompatible
data, such data may be damaged during file processing, and this situation should be
treated as correct application work.

Examples of requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 60/278

Task 2.2.d: did you notice that the use case diagram (as well as the corre-
sponding reference to it) was “lost” in the revised version of the requirements?
(Just a test of attentiveness, nothing more.)

 So, we have a set of requirements that we can work with. It’s not perfect (and you’ll
never find perfect requirements), but it’s good enough for developers to implement the
application and for testers to test it.

Task 2.2.e: test this set of requirements and find at least 3–5 mistakes and
inaccuracies, and formulate the relevant questions to the customer.

Common mistakes in requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 61/278

2.2.8. Common mistakes in requirements analysis and testing

 For better understanding and memorization, let’s look at common mistakes made
during requirements analysis and testing.

 Changing the file format and the document. For some unknown reason a lot of
novice testers tend to completely destroy the original document, replacing text with tables
(or vice versa), moving data from Word to Excel, etc. There is only one way to do it: you
have a prior agreement with the author of the document about such changes. Otherwise,
you may be destroying someone else’s work, making further development of the docu-
ment very difficult.

The worst thing you can do with a document is to save it in a format that is intended
more for reading rather than editing (PDF, picture set, etc.).

If the requirements are initially created in some kind of requirements management
system, this issue is irrelevant, but most customers are used to seeing high-level require-
ments in a standard DOCX document, and Word provides excellent document handling
features such as changes tracking (see figure 2.2.i) and comments (see figure 2.2.j).

Figure 2.2.i — Changes tracking activation in Word

The result is as shown in figure 2.2.j: the original layout is preserved (and the au-
thor is used to it), all changes are clearly visible and can be accepted or rejected in a
couple of mouse clicks, and typical frequently asked questions can be put in a separate
list and placed in the same document in addition to the instructions in the comments.

Figure 2.2.j — Properly looking document with changes

 And two more slight but unpleasant things about the tables:

• Centre alignment of ALL text in the table is terrible. Yes, center alignment looks
good in headings and cells with a couple or three words, but if the whole text is
aligned this way, it becomes difficult to read.

• Disabling cell borders makes a table much less readable.

 A note indicating that there is nothing wrong with the requirement. If you have
no questions and/or reservations about a requirement, you don’t need to write about it.
Any notes in the document are subconsciously perceived as an indication of a problem
and this “requirements endorsement” is irritating and makes working with the document
more difficult — it makes it harder to see the notes that are relevant to the problem.

Enable!

Common mistakes in requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 62/278

 Description of the same problem in several places. Remember that your notes,
comments, observations and questions should also have the properties of good require-
ments (as far as they apply to them). If you write the same thing about the same thing
many times in different places, you are violating at least the property of modifiability. In
such a case try to put your text at the end of the document, indicate at the beginning of
that text the list of requirements that are descripted, and simply refer to that text in your
commentary on the requirements.

 Writing questions and comments without specifying the place of the require-
ment to which they relate. If your requirements management tool allows you to specify
the part of the text to which you are writing a question or comment, do so (for example,
Word allows you to select any part of the text — even a single character — for comment-
ing). If this is not possible, quote the relevant part of the text. Otherwise, you will create
ambiguity or make your comment meaningless, because it becomes impossible to under-
stand what you are talking about.

 Asking poorly worded questions. This mistake has been discussed in detail
above (see table 2.2.a{50} in “Requirements testing techniques”{49} chapter). However, we
should mention that there are three other types of bad questions:

• The first kind occurs because the questioner does not know the common terminol-
ogy or typical behavior of standard interface elements (e.g., “what is a checkbox?”,
“how can I select several items in a list?”, “how can a tooltip bubble up?”).

• The second kind of bad question is similar to the first because of the wording:
instead of writing “what do you mean by {something}?”, the questioner writes “what
is {something}?” So instead of a perfectly logical clarification, we get a situation
very similar to the one discussed in the previous paragraph.

• The third type is difficult to relate to the cause, but the idea is that an incorrect
and/or unfeasible requirement is asked a question such as “what happens if we do
it?” Nothing will happen, because we certainly won’t do it. And the question should
be completely different (which one — depends on the specific situation, but defi-
nitely different).

And once again, a reminder of the accuracy of wording: sometimes one or two
words can ruin a great idea, turning a good question into a bad one. Compare: “What is
a default date format?” and “What default date format should be used?” The first simply
shows the incompetence of the questioner, whereas the second provides useful infor-
mation.

This is also a problem of not understanding the context. You will often see ques-
tions such as “what application do you mean?”, “what is the system?” and so on. Most of
the time, the author of such questions has simply pulled the requirement out of context,
where it was perfectly clear what the issue was.

 Writing very long comments and/or questions. History knows of cases where
one page of initial requirements has turned into 20–30 pages of analysis and questions.
This is not a good approach. All the same thoughts can be expressed much more suc-
cinctly, saving both your time and that of the author of the source document. Moreover, it
is worth bearing in mind that in the early stages of working with requirements they are
very unstable and it may happen that your 5–10 pages of comments relate to a require-
ment that will simply be deleted or changed beyond recognition.

 Criticizing the text or even its author. Remember that your task is to make the
requirements better, not to show their imperfections (or the author’s ones). So, comments
such as “bad requirement”, “don’t you see how stupid that sounds”, “need to reword” are
inappropriate and unacceptable.

Common mistakes in requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 63/278

 Strong statements without justification. As an extension of the “criticizing the
text or even its author” mistake, we would like to mention some categorical statements
such as “it can’t be done”, “we won’t do it”, “it’s not necessary”. Even if you realize that
the requirement makes no sense or is unfeasible, it is worth formulating the message
correctly and supplementing it with questions that allow the author to make the final de-
cision themselves. For example, “it is not necessary” can be reworded as, “We have
doubts that this feature will be popular with users. What is the importance of this require-
ment? Are you sure it is necessary?”

Specifying a problem with requirements without explaining what it is. Re-
member that the author of the source document may not be an expert in testing or busi-
ness analysis. So simply stating “incomplete”, “ambiguous”, etc. may not tell him anything.
Make your point clear.

This also includes a small but unfortunate flaw relating to inconsistency: if you find
something inconsistent, make a note of all the inconsistencies, not just one of them. For
example, you may find that Requirement 20 conflicts with Requirement 30. Then mark in
Requirement 20 that it conflicts with Requirement 30, and vice versa. And explain the
nature of the contradiction.

Poor question and comment layout. Try to make your questions and comments
as easy to understand as possible. Remember not only to keep the wording short, but
also the layout of the text (see for example how in figure 2.2.j the questions are structured
as a list — this structure is much more readable than solid text). Rewrite your text, correct
typos, grammatical and punctuation mistakes, etc.

 Describing a problem in the wrong place. A classic example would be an inac-
curacy in a footnote, an appendix or a figure, which for some reason is not described
where it is, but in the text referring to the relevant item. An exception to this would be an
inconsistency where the problem needs to be described in both places.

 Misconception of a requirement as a “requirement for the user”. Previously
(see “Correctness” in “Good Requirements Properties”) we said that the requirements like
“the user must be able to send the e-mail” are incorrect. And this is true. But there are
situations where the problem is much less serious and only the wording is the problem.
For example, phrases like “the user can click any of the buttons” and “the user must be
able to see the main menu” really mean “all displayed buttons must be clickable” and “the
main menu must be visible”. Yes, this flaw should also be corrected, but it should not be
marked as a critical problem.

Hidden requirement editing. This mistake is considered to be one of the most
dangerous. Its essence is that the tester makes some arbitrary changes to the require-
ments without noting this fact in any way. So, the author of the document most likely won’t
notice such changes, and then they will be very surprised when something in the product
will be implemented in a quite different way than it was described in the requirements at
that moment. Therefore, a simple recommendation: if you do something, do mark it (by
means of your tool or just explicitly in the text). It is even better to mark a change as a
suggestion for change rather than as a fait accompli, because the author of the original
document may have a completely different view of the situation.

Common mistakes in requirements analysis and testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 64/278

 Analysis that does not meet the level of requirements. When testing require-
ments, always remember which level they belong to, otherwise the following typical errors
will occur:

• Adding minor technical details to the business requirements.

• Duplicating some of the business requirements at the user requirements level (if
you want to increase the traceability of a set of requirements, it makes sense to
just use links).

• Lack of detail in product requirements (general phrases that are acceptable, e.g.,
at the business requirement level, must be very detailed, structured and supple-
mented by detailed technical information).

Software testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 65/278

2.3. Software testing classification

2.3.1. Simplified testing classification

Testing can be classified in a large number of ways, and in almost every solid book
on testing the author shows their own (certainly legitimate) view of the issue.

The relevant material is quite extensive and complex, and a deep understanding
of each item in the classification requires a certain experience, so we will divide this topic
into two: now we look at the simplest, the minimum set of information necessary for the
beginner tester, and in the next chapter will give a detailed classification.
 Use the list below as a very brief “cheat sheet to remember”. So, testing can be
categorized as:

Figure 2.3.a — Simplified testing classification

• By code execution:
o Static testing — without running the code.
o Dynamic testing — with running the code.

• By access to application code and architecture:
o White box method — there is access to the code.
o Black box method — there is no access to the code.
o Gray box method — some of the code is accessible, some of it is not.

• By automation level:
o Manual testing — test cases are performed by a person.
o Automated testing — test cases are partially or fully performed by a special

testing tool.

• By specification level (by testing level):
o Unit testing — individual small parts of an application are tested.
o Integration testing — the interaction between several parts of the applica-

tion is tested.
o System testing — the application is tested as a whole.

• By functions under test importance (decreasingly) (by functional testing level):
o Smoke testing (be sure to study the etymology of the term — at least on

Wikipedia108) — testing of the most important, most crucial functionality, the
failure of which renders the very idea of using the application meaningless.

o Critical path testing — testing the functionality used by typical users in typ-
ical daily activities.

o Extended testing — testing all (remaining) functionality stated in the require-
ments.

108 “Smoke test”, Wikipedia [http://en.wikipedia.org/wiki/Smoke_testing_(electrical)]

Static testing Dynamic testing

By code execution

White box

method

By access to application code and architecture

Black box

method

Gray box

method

Unit testing
Integration

testing

By specification level

(by testing level)

System testing

Manual testing
Automated

(+ automatic) testing

By automation level

By functions under test importance (decreasingly)

(by functional testing level)

Smoke testing
Critical path

testing
Extended testing

Simplified testing classification

Positive testing Negative testing

By ways of dealing with application

http://en.wikipedia.org/wiki/Smoke_testing_(electrical)

Simplified testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 66/278

• By ways of dealing with application:
o Positive testing — all actions with the application are performed strictly ac-

cording to the instructions without any unacceptable actions, incorrect data,
etc. You can figuratively say that the application is tested in “greenhouse
conditions”.

o Negative testing — when working with the application, operations (including
incorrect ones) are performed and data are used that potentially lead to
errors (a classic of the genre — division by zero).

Attention: a very frequent mistake! Negative tests do NOT im-
ply an error in the application. On the contrary, they assume that
a correctly working application will behave correctly even in a crit-
ical situation (in the example with division by zero, for example,
the message “Division by zero is forbidden” is displayed).

The question often arises about the difference between “testing type”, “testing
kind”, “testing method”, “testing approach”, etc. If you are interested in a strict formal an-
swer, then look in such things as “taxonomy109” and “taxon110”, because the question itself
goes beyond testing as such and belongs already to the field of science.

But historically, at a minimum, “testing type” and “testing kind” have long been
synonymous (and even more — in English “testing type” is the prevailing unified term).

109 “Taxonomy”, Wikipedia https://en.wikipedia.org/wiki/Taxonomy]
110 “Taxon”, Wikipedia [https://en.wikipedia.org/wiki/Taxon]

https://en.wikipedia.org/wiki/Taxonomy
https://en.wikipedia.org/wiki/Taxon

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 67/278

2.3.2. Detailed testing classification

2.3.2.1. Testing classification scheme

Here we will consider the classification of testing in as much detail as possible. It
is highly recommended that you read not only the text of this chapter, but also all the
additional sources that will be referred to.

Figure 2.3.b shows a diagram in which all classification approaches are shown
simultaneously. Many authors who have created such classifications have used mind-
maps, but this technique does not fully reflect the fact that classification methods overlap
(i.e., some types of testing can be classified in different ways). In figure 2.3.b, the most
striking cases of such overlap are marked in color (see full-size electronic view of figure113)
and the block border as a set of dots. If you see such a block in the diagram — look for a
block of the same name somewhere in another type of classification.

In addition to the material in this chapter, it is highly recommended that you
read:
• Lee Copeland’s classic book “A Practitioner’s Guide to Software Test De-

sign”.
• A very interesting article “Types of Software Testing: List of 100 Different

Testing Types”111.

 Why do we need a testing classification at all? It streamlines knowledge and
greatly speeds up the process of test planning and test case development, and optimizes
workload so that the tester does not have to reinvent the wheel.
 However, there is nothing to prevent you from creating your own classifications,
either from scratch or as a combination or modification of the classifications presented
below.

If you are interested in some kind of “etalon classification”, then... there is no
such a thing. The ISTQB materials112 provide the most generalized and ac-
cepted view on the issue, but there is no single scheme that unites all classifi-
cations.

So, if (during an interview) you are asked to talk about the classification of test-
ing, it is worth specifying according to which author or source they expect to
hear your answer.

 You are now going to study one of the most difficult sections of this book. If you
already have a fair amount of experience in testing, you can build on the diagram to sys-
tematize and expand your knowledge. If you begin with testing, it is recommended that
you first read the text that follows the diagram.

111 “Types of Software Testing: List of 100 Different Testing Types” [http://www.guru99.com/types-of-software-testing.html]
112 International Software Testing Qualifications Board, Downloads. [http://www.istqb.org/downloads.html]

http://www.guru99.com/types-of-software-testing.html
http://www.istqb.org/downloads.html

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 68/278

In relation to the diagram, you are about to see in figure 2.3.b, there are often
questions as to why functional and non-functional testing are not linked to their
respective sub-types. There are two reasons for this:
1) Although it is common to categorize certain types of testing as functional or

non-functional, they still contain both components (both functional and non-
functional), albeit in different proportions. Moreover: it is often impossible to
test the non-functional component until the corresponding functional com-
ponent has been completed.

2) The diagram would have become an impenetrable web of lines.

Therefore, we decided to leave figure 2.3.b as shown on the next page. A full-
size version of this figure can be downloaded here113.

So, testing can be classified by…

113 Full-size version of figure 2.3.b [https://svyatoslav.biz/wp-pics/software_testing_classification_en.png]

https://svyatoslav.biz/wp-pics/software_testing_classification_en.png

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 69/278

Figure 2.3.b — Detailed testing classification

Static testing Dynamic testing

By code execution

White box

method

By access to application code and architecture

Black box

method

Gray box

method

Unit testing
Integration

testing

By specification level

(by testing level)

System testing
Web app

testing

Mobile app

testing

By application nature

Desktop app

testing
...

By architecture tier

Presentation tier

testing

Business-logic

tier testing
Data tier testing

By formalization level

Test case based Exploratory Ad hoc

Manual
Automated

(+ automatic)

By automation level

Alpha testing Beta testing

By end users participation

By functions under test importance (decreasingly)

(by functional testing level)

Smoke testing
Critical path

testing
Extended testing

By aims and goals

Regression testing

Re-testing

Acceptance testing

Positive testing

Negative testing

Functional testing

Nonfunctional testing

Installation testing

Performance testing

Load testing

(Capacity testing)

Scalability testing

Volume testing

Stress testing

Reliability testing

Accessibility testing

Interface testing

Security testing

Internationalization testing

Localization testing

Compatibility testing

Data quality testing and

Database integrity testing

By techniques and approaches

By chronology

Based on tester’s experience, scenarios,

checklists

Exploratory Ad hoc

By input data selection techniques

Equivalence partitioning

Boundary value analysis

Domain testing

Pairwise testing

By code

Control flow testing

Data flow testing

State transition testing

By error source (knowledge)

Error guessing

Mutation testing

By operational environment

Operational testing

Decision table testing

By application behavior (models)

Specification-based testing

Model-based testing

State transition testing

Positive

(simple)

Negative

(simple)

Positive testing Negative testing

Positive

(complex)

Negative

(complex)

Smoke testing

Critical path

testing

Extended testing

Typical scenario 1 Typical scenario 2

Unit testing

Integration

testing

System testing

Typical scenario 3

Software testing classification

General chronology

General typical scenarios

Orthogonal array testing

Comparison testing

Error seeding

Heuristic evaluation

Use case testing

Hybrid

testing

Qualification testing

Exhaustive testing

Resource utilization testing

By intrusion to application work process

Intrusive testing Nonintrusive testing

Code review

By code structures

Statement

testing

Decision testing

Condition testing

Multiple

condition testing

Parallel testing

Configuration

testing

Cross-browser

testing

Gamma testing

Alpha testing
Beta testing

Gamma testing

Acceptance testing

Operational testing

Branch testing

Modified

condition

decision testing

Path testing

Usability testing

Recoverability testing

Failover testing

Random testing

Development testing

A / B testing

Concurrency testing

By component hierarchy

Bottom-up

testing

Top-down

testing

Hybrid

testing

By automation

techniques

Data-driven

testing

Keyword-driven

testing

By attention to requirements and requirements’ components

Requirements

testing

Functional

components testing

Nonfunctional

components testing

By ways of dealing with

application

Behavior-driven

testing

Operational testing

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 70/278

2.3.2.2. Classification by code execution

 It is not always the case that all testing involves interaction with a running applica-
tion. For this reason, this classification includes:

• Static testing114 — testing without code execution. Under this approach, the fol-
lowing objects can be tested:

o Documents (requirements, test cases, application architecture descriptions,
database schemas, etc.)

o Graphic prototypes (e.g., sketches of the user interface).
o Application code (which is often done by the programmers themselves as

part of code review115), which is a specific variation of peer review{49} (as
applied to source code). The application code can also be tested using code
structure-based testing techniques{95}.

o Application runtime environment settings.
o Prepared testing data.

• Dynamic testing116 — testing with code execution. There may be execution of the
entire application code (system testing{75}), of several related parts (integration test-
ing{75}), of individual parts (unit or component testing{75}) or even of individual code
sections. The basic idea behind this type of testing is that the actual behavior of
the application (its parts) is tested.

114 Static testing. Testing of a software development artifact, e.g., requirements, design or code, without execution of these artifacts,

e.g., reviews or static analysis. [ISTQB Glossary]
115 Jason Cohen, “Best Kept Secrets of Peer Code Review (Modern Approach. Practical Advice.)” [https://static1.smartbear.co/smart-

bear/media/pdfs/best-kept-secrets-of-peer-code-review_redirected.pdf]
116 Dynamic testing. Testing that involves the execution of the software of a component or system. [ISTQB Glossary]

https://static1.smartbear.co/smartbear/media/pdfs/best-kept-secrets-of-peer-code-review_redirected.pdf
https://static1.smartbear.co/smartbear/media/pdfs/best-kept-secrets-of-peer-code-review_redirected.pdf

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 71/278

2.3.2.3. Classification by access to application code and architecture

• White box testing117 (open box testing, clear box testing, glass box testing) — the
tester has access to the internal structure and application code, and has sufficient
knowledge to understand what they see. In addition to white box testing, there is
even an accompanying global technique called design-based testing118). To get a
deeper insight into the white box method, we recommend becoming familiar with
control-flow{94} or data-flow{94}, and using state-transition diagrams{94}. Some authors
tend to rigidly link this method to static testing, but nothing prevents the tester from
executing the code and accessing it periodically (while unit testing{75} even envis-
ages executing the code itself and not the “whole application”).

• Black box testing119 (closed box testing, specification-based testing) — the tester
either does not have access to the internal structure and the application code, or
does not have enough knowledge to understand them, or does not deliberately
address them in the testing process. At the same time, the vast majority of the
types of testing described in figure 2.3.b operate on a black box basis, the idea of
which in an alternative definition may be formulated as follows: the tester influ-
ences the application (and checks its response) in the same way that users or
other applications would influence the application in its real operation. The main
sources of information for creating test cases in black box testing are documenta-
tion (especially — requirements (requirements-based testing120)) and general com-
mon sense (for cases where the application behavior in some situation is not ex-
plicitly regulated; this is sometimes called “implicit requirements-based testing”,
but there is no native definition of this approach).

• Gray box testing121 — is a combination of white box and black box methods, which
means that the tester has access to some of the code and architecture, but not to
others. In figure 2.3.b this method is shown with a special dashed frame and col-
ored gray because it is very rarely mentioned explicitly: usually people speak of
white box or black box methods when applied to different parts of an application
and realize that the whole application is tested using the gray box method.

Important! Some authors122 define the gray box method as an opposition
to white box and black box methods, emphasizing that the internal struc-
ture of the tested object is partially known in the gray box method and is
being revealed together with the process of research. This approach, un-
doubtedly, has the right to exist, but in its utmost case it falls back to a
situation “we know some part of a system, we do not know some other
part of it”, i.e., to all the same combination of white and black boxes.

If we compare the main advantages and disadvantages of these methods, we
come up with the following situation (see table 2.3.a).

117 White box testing. Testing based on an analysis of the internal structure of the component or system. [ISTQB Glossary]
118 Design-based Testing. An approach to testing in which test cases are designed based on the architecture and/or detailed design

of a component or system (e.g., tests of interfaces between components or systems). [ISTQB Glossary]
119 Black box testing. Testing, either functional or non-functional, without reference to the internal structure of the component or

system. [ISTQB Glossary]
120 Requirements-based Testing. An approach to testing in which test cases are designed based on test objectives and test condi-

tions derived from requirements, e.g., tests that exercise specific functions or probe non-functional attributes such as reliability
or usability. [ISTQB Glossary]

121 Gray box testing is a software testing method, which is a combination of Black Box Testing method and White Box Testing

method. … In Gray Box Testing, the internal structure is partially known. This involves having access to internal data structures
and algorithms for purposes of designing the test cases, but testing at the user, or black-box level. [“Gray Box Testing Funda-
mentals”, http://softwaretestingfundamentals.com/gray-box-testing].

122 “Gray box testing (gray box) definition”, Margaret Rouse [http://searchsoftwarequality.techtarget.com/definition/gray-box]

http://softwaretestingfundamentals.com/gray-box-testing
http://searchsoftwarequality.techtarget.com/definition/gray-box

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 72/278

The white box and black box methods are not opposing or mutually exclusive —
on the contrary, they complement each other harmoniously, thus compensating for their
disadvantages.

Table 2.3.a — White box, black box and gray box methods pros and cons

 Advantages Disadvantages

White box method • Reveals hidden problems and

makes it easier to diagnose them.

• Allows for quite simple test cases

automation and their execution at

the earliest stages of project devel-

opment.

• Has a well-developed system of met-

rics, which can be easily automated

for collection and analysis.

• Encourages developers to write

good code.

• Many of the techniques in this

method are proven, well-established

solutions based on a rigorous tech-

nical approach.

• Cannot be performed by testers

lacking sufficient programming

knowledge.

• Testing focuses on the functionality

already implemented, which in-

creases the chance of omission of

unimplemented requirements.

• The application behavior is exam-

ined apart from the real execution

environment and does not take its

impact into account.

• The application behavior is exam-

ined in isolation from real user sce-

narios{137}.

Black box method • There is no need for the tester to

have (in-depth) knowledge of pro-

gramming.

• The application behavior is exam-

ined in the context of the actual

runtime environment and its impact

is taken into account.

• The application behavior is exam-

ined in the context of real user sce-

narios{137}.

• Test cases can already be created at

the emergence of stable require-

ments.

• The test case creation process al-

lows to identify requirements de-

fects.

• Allows for the creation of test cases

that can be used repeatedly on dif-

ferent projects.

• It is likely to repeat some of the test

cases that have already been carried

out by the developers.

• It is highly likely that some of the

possible application behavior will re-

main untested.

• Proper documentation is essential

for the development of effective and

efficient test cases.

• The diagnosis of detected defects is

more complex compared to white

box method.

• The wide range of techniques and

approaches makes it harder to plan

and estimate the workload.

• In the case of automation, complex

and expensive tools may be re-

quired.

Gray box method Combines the advantages and disadvantages

of white box and black box methods.

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 73/278

2.3.2.4. Classification by automation level

• Manual testing123 — testing, where test cases are performed manually by a hu-
man being without the use of automation. Although it sounds very simple, a tester
sometimes needs such qualities as patience, observation, creativity, the ability to
conduct non-standard experiments, and the ability to see and understand what is
happening “inside the system”, i.e., how the external impacts on the application
are transformed into its internal processes.

• Automated testing (test automation124) — a set of techniques, approaches and
tools that allow a person to be excluded from some tasks in the testing process.
Test cases are partially or fully performed by a special tool, but test case develop-
ment, data preparation, performance evaluation, defect reporting — all this and
much more is still done by a human.

Some authors speak separately about “semi-automated” testing as a var-
iant of manual testing with partial use of automation tools, and separately
about “automated” testing (referring to areas of testing in which a com-
puter performs a significantly high percentage of tasks). But since none
of these types of testing can be done without human involvement, we will
not complicate the set of terms and limit ourselves to the single concept
of “automated testing”.

Automated testing has many advantages and disadvantages (see table 2.3.b).

Table 2.3.b — Automated testing pros and cons

Advantages Disadvantages

• The speed of test cases execution can exceed

human capabilities by orders of magnitude.

• No human factor influences the test cases (like

fatigue, inattention, etc.)

• The costs of repeated test case execution are

minimized (as human involvement is only re-

quired occasionally).

• Automation tools are able to perform test cases

that are just beyond human capabilities due to

their complexity, speed or other factors.

• Automation tools are able to gather, store, ana-

lyze, aggregate and present enormous amounts

of data in a human-readable form.

• Automation tools are able to perform low-level

actions on the application, operating system,

data transfer channels, etc.

• Highly qualified personnel are needed due to

the fact that automation is a “project within a

project” (with its own requirements, plans, code,

etc.)

• The costs of automation increase the costs of

overall project (due to spendings on complex

automation tools, test case code development

and maintenance).

• Automation requires more careful planning and

risk management, as otherwise the project

could be severely damaged.

• There are too many automation tools to choose

from, which makes the choice of one tool or an-

other difficult and can entail financial costs (and

risks), the need to train the staff (or look for spe-

cialists).

• When requirements change significantly, or the

technology domain changes, or interfaces (both

user and software) are redesigned, many test

cases become hopelessly obsolete and need to

be re-created.

123 Manual testing is performed by the tester who carries out all the actions on the tested application manually, step by step and

indicates whether a particular step was accomplished successfully or whether it failed. Manual testing is always a part of any
testing effort. It is especially useful in the initial phase of software development, when the software and its user interface are not
stable enough, and beginning the automation does not make sense. (SmartBear TestComplete user manual, https://sup-
port.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html)

124 Test automation is the use of software to control the execution of tests, the comparison of actual outcomes to predicted outcomes,

the setting up of test preconditions, and other test control and test reporting functions. Commonly, test automation involves
automating a manual process already in place that uses a formalized testing process. (Ravinder Veer Hooda, “An Automation of
Software Testing: A Foundation for the Future”)

https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html
https://support.smartbear.com/testcomplete/docs/testing-with/deprecated/manual/index.html

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 74/278

 If we put all the advantages and disadvantages of testing automation into a single
phrase, we can say that automation allows a significant increase in test coverage125, but
also a significant increase in risk.

Task 2.3.a: create a similar table with the advantages and disadvantages of
manual testing. Hint: it is not enough to simply swap the column headings with
the advantages and disadvantages of test automation.

125 Coverage, Test coverage. The degree, expressed as a percentage, to which a specified coverage item has been exercised by a

test suite. [ISTQB Glossary]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 75/278

2.3.2.5. Classification by specification level (by testing level)

Warning! There may be confusion due to the fact that there is no single univer-
sally accepted set of classifications, and two of them have very similar names:

• “By testing level” = “by specification level”.

• “By functional testing level” = “by functions under test importance (decreas-
ingly)”.

• Unit testing (module testing, component testing126) is aimed at testing individual
small parts of an application which (usually) can be tested in isolation from other
small parts. Individual functions or class methods, classes themselves, class inter-
actions, small libraries, or parts of an application may be tested. This type of testing
is often implemented using special technologies and test automation{73} tools, that
simplify and accelerate the development of test cases.

• Integration testing127 (component integration testing128, pairwise integration test-
ing129, system integration testing130, incremental testing131, interface testing132,
thread testing133) is aimed at testing the interaction between several parts of an
application (each of the parts, in turn, is tested separately in the unit testing phase).
Unfortunately, even when we are dealing with very high quality individual compo-
nents there are often problems at the joint between them. That’s what integration
testing reveals. (See also bottom-up, top-down and hybrid testing techniques in
chronological classification by component hierarchy{98}.)

• System testing134 is aimed at checking the entire application as a whole, assem-
bled from the parts tested in the previous two stages. It not only identifies defects
at the junctions between components, but also provides an opportunity to fully in-
teract with the application from the end-user’s point of view, applying many of the
other types of testing listed in this chapter.

There is an unfortunate fact about the classification by specification level: if the
previous stage detected problems, then the next stage is sure to have problems; if the
previous stage detected no problems, this does not protect us from problems in the next
stage.
 To help you remember the level of detail in unit, integration and system testing is
shown schematically in figure 2.3.c.

126 Module testing, Unit testing, Component testing. The testing of individual software components. [ISTQB Glossary]
127 Integration testing. Testing performed to expose defects in the interfaces and in the interactions between integrated components

or systems. [ISTQB Glossary]
128 Component integration testing. Testing performed to expose defects in the interfaces and interaction between integrated com-

ponents. [ISTQB Glossary]
129 Pairwise integration testing. A form of integration testing that targets pairs of components that work together, as shown in a call

graph. [ISTQB Glossary]
130 System integration testing. Testing the integration of systems and packages; testing interfaces to external organizations (e.g.,

Electronic Data Interchange, Internet). [ISTQB Glossary]
131 Incremental testing. Testing where components or systems are integrated and tested one or some at a time, until all the compo-

nents or systems are integrated and tested. [ISTQB Glossary]
132 Interface testing. An integration test type that is concerned with testing the interfaces between components or systems. [ISTQB

Glossary]
133 Thread testing. An approach to component integration testing where the progressive integration of components follows the im-

plementation of subsets of the requirements, as opposed to the integration of components by levels of a hierarchy. [ISTQB
Glossary]

134 System testing. The process of testing an integrated system to verify that it meets specified requirements. [ISTQB Glossary]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 76/278

Figure 2.3.c — Scheme of testing classification by specification level

 If we refer to the ISTQB Dictionary and read the definition of test level135, we see
that a similar division into unit, integration and system testing, to which acceptance test-
ing{86} is also added, is used in the context of dividing areas of responsibility on a project.
But this classification relates more to project management issues than to testing in its
pure form, and is therefore outside the scope of the issues we are considering.

For the most comprehensive classification of testing by test level, see the article
“What are Software Testing Levels?136”. To make it easier to remember, let’s
reflect this idea in figure 2.3.d., but note that this is mostly a general theoretical
view.

Figure 2.3.d — The most comprehensive classification of testing by testing
level

135 Test level. A group of test activities that are organized and managed together. A test level is linked to the responsibilities in a

project. Examples of test levels are component test, integration test, system test and acceptance test. [ISTQB Glossary]
136 “What are Software Testing Levels?” [http://istqbexamcertification.com/what-are-software-testing-levels/]

Unit testing

Integration testing

System testing

Unit testing

Integration testing

Component testing

Component integration testing

System integration testing

System testing

Acceptance testing

Alfa-testing

Beta-testing

T
e
s
ti
n
g

 l
e
v
e
l

Gamma-testing

http://istqbexamcertification.com/what-are-software-testing-levels/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 77/278

2.3.2.6. Classification by functions under test importance (decreasingly) (by
functional testing level)

 Some sources also refer to this type of classification as “by testing depth
classification”.

Warning! There may be confusion due to the fact that there is no single univer-
sally accepted set of classifications, and two of them have very similar names:

• “By testing level” = “by specification level”.

• “By functional testing level” = “by functions under test importance (decreas-
ingly)”.

• Smoke test137 (intake test138, build verification test139) is aimed at testing the most
basic, most important, most key functionality, the failure of which renders the very
idea of using an application (or other object under testing) meaningless.

Smoke test is performed after the release of a new build to determine the overall
quality level of the application and to decide whether it is (un)advisable to perform
the critical path test and the extended test. Because smoke test cases are rela-
tively few in number, and because they are relatively simple yet frequently repeti-
tive, they are good candidates for automation. Because of the high importance of
test cases at this level, the threshold value of their passing metric is often set at or
close to 100 %.

It is very common to hear the question of “What is the difference between ‘smoke
test’ and ‘sanity test’?”. The ISTQB glossary says simply: “sanity test: See smoke
test”. But some authors argue140 that there is a difference141, and it can be ex-
pressed in the following diagram (figure 2.3.e):

Figure 2.3.e — The difference between smoke test and sanity test

137 Smoke test, Confidence test, Sanity test. A subset of all defined/planned test cases that cover the main functionality of a

component or system, to ascertaining that the most crucial functions of a program work, but not bothering with finer details.
[ISTQB Glossary]

138 Intake test. A special instance of a smoke test to decide if the component or system is ready for detailed and further testing. An

intake test is typically carried out at the start of the test execution phase. [ISTQB Glossary]
139 Build verification test. A set of automated tests which validates the integrity of each new build and verifies its key/core function-

ality, stability and testability. It is an industry practice when a high frequency of build releases occurs (e.g., agile projects) and it
is run on every new build before the build is released for further testing. [ISTQB Glossary]

140 “Smoke Vs Sanity Testing — Introduction and Differences” [http://www.guru99.com/smoke-sanity-testing.html]
141 “Smoke testing and sanity testing — Quick and simple differences” [http://www.softwaretestinghelp.com/smoke-testing-and-sanity-

testing-difference/]

Build 1

Smoke TestBuild 2

Build 3

Build 30

Build 31

Build 32

Is test

passed?

Sanity Test

Further testing

Early, relatively

unstable builds

Near-release,

relatively stable

builds

http://www.guru99.com/smoke-sanity-testing.html
http://www.softwaretestinghelp.com/smoke-testing-and-sanity-testing-difference/
http://www.softwaretestinghelp.com/smoke-testing-and-sanity-testing-difference/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 78/278

• Critical path142 test is aimed at examining the functionality used by typical users
in a typical day-to-day activity. As can be seen from the definition in the footnote142,
the idea itself is borrowed from project management and transformed in the context
of testing to the following: there are most users who most often use some subset
of application functions (see figure 2.3.f). Those are exactly the functions that need
to be tested, once we have ensured that the application “generally works” (the
smoke test was successful). If for some reason the application does not perform
these functions, or performs them incorrectly, a great many users will not be able
to achieve many of their goals. The threshold for a successful “critical path test”
metric is already slightly lower than for the smoke test, but still quite high (typically
around 70–80–90 % — depending on the nature of the project).

Figure 2.3.f — The essence of critical path test

• Extended test143 focuses on all of the functionality stated in the requirements, even
those that are ranked low in terms of importance. However, it also takes into ac-
count which functionality is more important and which is less important. But with
sufficient time and other resources, test cases at this level can address even the
lowest-priority requirements.

Another research area within this functional testing level is atypical, unlikely, exotic
cases and scenarios of use of application features and properties touched upon in
the previous levels. The threshold of the metric for success in extended test is
significantly lower than in critical path test (sometimes you even see values in the
30–50 % range, as the vast majority of defects found here do not threaten the
usability of the application for the vast majority of users).

Unfortunately, it is often thought that test cases at smoke test, critical
path test and extended test are directly related to positive{80} testing and
negative{80} testing, and that the negative only appears at the critical path
test level. This is not the case. Both positive and negative test cases can
(and sometimes must) occur at all these levels. For example, dividing by
zero in a calculator should clearly be in a smoke test, although this is a
prime example of a negative test case.

142 Critical path. Longest sequence of activities in a project plan which must be completed on time for the project to complete on due

date. An activity on the critical path cannot be started until its predecessor activity is complete; if it is delayed for a day, the entire
project will be delayed for a day unless the activity following the delayed activity is completed a day earlier. [https://ever-
hour.com/blog/how-to-calculate-critical-path/]

143 Extended test. The idea is to develop a comprehensive application system test suite by modeling essential capabilities as ex-

tended use cases. [By “Extended Use Case Test Design Pattern”, Rob Kuijt]

Users Application functions

Usage time

Critical path test

https://everhour.com/blog/how-to-calculate-critical-path/
https://everhour.com/blog/how-to-calculate-critical-path/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 79/278

In order to make it easier to remember, we will illustrate this classification in a
diagram:

Figure 2.3.g — Testing classification by functions under test importance (decreasingly)
(by functional testing level)

Smoke test

Extended test

Critical path test

F
u

n
c
ti

o
n

a
l
te

s
ti

n
g

 l
e
v

e
l

F
u
n
c
ti
o

n
s
 u

n
d
e
r

te
s
t
im

p
o
rt

a
n

c
e

High importance

Medium importance

Low importance

T
h
e
 d

e
p
th

 o
f
a
p
p
lic

a
ti
o
n
 a

n
a
ly

s
is

1

2

3

S
e
q

u
e
n
c
e
 o

f
e
x
e
c
u
ti
o
n

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 80/278

2.3.2.7. Classification by ways of dealing with application

• Positive testing144 examines the application in a situation where all activities are
carried out strictly as instructed, with no errors, deviations, incorrect data input etc.
If positive test cases end with errors, this is a red flag — the application is not
working properly even under ideal conditions (and can be expected to work even
worse under non-ideal conditions). To speed up testing, several positive test cases
can be combined (e.g., “before submitting, fill in all form fields with correct values”).
This can sometimes make defect diagnosis more difficult, but the significant reduc-
tion in time will compensate for this risk.

• Negative testing145 (invalid testing146) is aimed at testing the application in situa-
tions when whether operations (sometimes incorrect ones) performed or data used
may potentially lead to errors. (Classic of the genre — division by zero). As in real
life there are much more such situations (users make mistakes, intruders deliber-
ately “break” the application, problems arise in the application environment, etc.),
negative test cases turn out to be significantly more numerous than positive ones
(sometimes by times or even orders of magnitude). Unlike positive test cases, neg-
ative ones should not be combined because such an approach may lead to an
incorrect interpretation of application behavior and omission (non-detection) of de-
fects.

144 Positive testing is testing process where the system validated against the valid input data. In this testing tester always check for

only valid set of values and check if application behaves as expected with its expected inputs. The main intention of this testing
is to check whether software application not showing error when not supposed to & showing error when supposed to. Such
testing is to be carried out keeping positive point of view & only execute the positive scenario. Positive Testing always tries to
prove that a given product and project always meets the requirements and specifications. [http://www.softwaretest-
ingclass.com/positive-and-negative-testing-in-software-testing/]

145 Negative testing. Tests aimed at showing that a component or system does not work. Negative testing is related to the testers’

attitude rather than a specific test approach or test design technique, e.g., testing with invalid input values or exceptions. [ISTQB
Glossary]

146 Invalid testing. Testing using input values that should be rejected by the component or system. [ISTQB Glossary]

http://www.softwaretestingclass.com/positive-and-negative-testing-in-software-testing/
http://www.softwaretestingclass.com/positive-and-negative-testing-in-software-testing/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 81/278

2.3.2.8. Classification by application nature

This type of classification is artificial, since within there will be described the same
types of testing, differing from each other in this context only in the focus on the relevant
functions and features of the application, the use of specific tools and individual tech-
niques.

• Web-applications testing involves intensive activities in the area of compatibility
testing{88} (cross-browser testing{88} in particular), performance testing{90}, testing au-
tomation using a wide range of tools.

• Mobile applications testing also requires increased attention to compatibility
testing{88}, performance optimization{90} (including client-side power consumption re-
duction), testing automation using mobile device emulators.

• Desktop applications testing is the most basic of the listed categories, and its
features depend on the subject area of the application, architectural nuances, key
quality indicators, etc.

This classification can go on forever. For example, you could consider console
applications testing and GUI applications testing, server applications testing and
client applications testing, etc.

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 82/278

2.3.2.9. Classification by architecture tier

This type of classification, like the previous one, is also artificial and represents
only a concentration on a single part of the application.

• Presentation tier testing focuses on the part of the application which is respon-
sible for the interaction with the “outer world” (both users and applications). Usa-
bility, responsiveness, compatibility with browsers, and correctness of interfaces
are tested here.

• Business logic tier testing is required to test a key set of application functions
and is based on key application requirements, business rules and general func-
tionality testing.

• Data tier testing focuses on the part of the application that is responsible for stor-
ing and certain processing of data (usually in a database or other storage). Of
particular interest here is data testing, checking that business rules are complied
with, and performance testing.

If you’re not familiar with the concept of multi-tier application architecture, at
least look it up on Wikipedia147.

147 “Multitier architecture”, Wikipedia [http://en.wikipedia.org/wiki/Multitier_architecture]

http://en.wikipedia.org/wiki/Multitier_architecture

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 83/278

2.3.2.10. Classification by end-user participation

All three of the following types of testing belong to operational testing{86}.

• Alpha testing148 is performed within a development organisation with possible par-
tial involvement of end-users. It may be a form of internal acceptance testing{86}.
Some sources note that this testing should be done without a development team,
but other sources do not make such a requirement. Briefly, the essence of this
testing type: the product can already be presented periodically to external users,
but it’s still quite “raw”, so the main testing is performed by the development or-
ganisation.

• Beta testing149 is performed outside the development organisation with the active
involvement of end-users and/or customers. It may be a form of external ac-
ceptance testing{86}. The essence of this testing type in brief: the product can al-
ready be openly presented to external users, it is already stable enough, but there
may still be problems and development organisation needs feedback from real
users to identify those problems.

• Gamma testing150 is the final stage of testing before a product is released, aimed
at fixing minor defects discovered in beta testing. Usually, it is also performed with
maximum end-user and/or customer involvement. It may be a form of external ac-
ceptance testing{86}. The essence of this testing type in brief: the product is almost
ready, and now feedback from real users is being used to fix the latest imperfec-
tions.

148 Alpha testing. Simulated or actual operational testing by potential users/customers or an independent test team at the developers’

site, but outside the development organization. Alpha testing is often employed for off-the-shelf software as a form of internal
acceptance testing. [ISTQB Glossary]

149 Beta testing. Operational testing by potential and/or existing users/customers at an external site not otherwise involved with the

developers, to determine whether or not a component or system satisfies the user/customer needs and fits within the business
processes. Beta testing is often employed as a form of external acceptance testing for off-the-shelf software in order to acquire
feedback from the market. [ISTQB Glossary]

150 Gamma testing is done when software is ready for release with specified requirements, this testing done directly by skipping all

the in-house testing activities. The software is almost ready for final release. No feature development or enhancement of the
software is undertaken and tightly scoped bug fixes are the only code. Gamma check is performed when the application is ready
for release to the specified requirements and this check is performed directly without going through all the testing activities at
home. [http://www.360logica.com/blog/2012/06/what-are-alpha-beta-and-gamma-testing.html]

http://www.360logica.com/blog/2012/06/what-are-alpha-beta-and-gamma-testing.html

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 84/278

2.3.2.11. Classification by formalization level

• Scripted testing151 (test case based testing) is a formalized approach in which
testing is performed on the basis of previously prepared test cases, test suites,
and other documentation. This is the most wide-spread method of testing, which
also allows for maximum completeness of the application research due to strict
systematization of the process, convenient metrics applying and wide set of guide-
lines developed over the decades and tested in practice.

• Exploratory testing152 is a partially formalized approach in which a tester performs
work on an application based on a selected scenario{137}, which can be further re-
fined over the course of execution to explore the application more extensively. The
key to success in exploratory testing is to follow a scenario rather than doing a
random piecemeal operation. There is even a special scenario-based approach
called session-based testing153. As an alternative to scenarios, checklists may
sometimes be used to specify application actions, and this type of testing is called
checklist-based testing154.

For more information on exploratory testing, see James Bach’s article
“What is exploratory testing?”155

• Ad hoc testing156 is a completely informalized approach in which no test cases,
checklists or scripts are expected — the tester relies entirely on their own profes-
sionalism and intuition (experience-based testing157) to spontaneously perform ac-
tions with the application that they believe can detect a defect. This type of testing
is used rarely and only as a complement to fully or partially formalized testing when
no test cases are available (yet?) to examine some aspect of application behavior.

In no way should “exploratory testing” and “ad hoc testing” be confused.
They are different application research techniques with different degrees
of formalization, different tasks and different areas of application.

151 Scripted testing. Test execution carried out by following a previously documented sequence of tests. [ISTQB Glossary]
152 Exploratory testing. An informal test design technique where the tester actively controls the design of the tests as those tests

are performed and uses information gained while testing to design new and better tests. [ISTQB Glossary]
153 Session-based Testing. An approach to testing in which test activities are planned as uninterrupted sessions of test design and

execution, often used in conjunction with exploratory testing. [ISTQB Glossary]
154 Checklist-based Testing. An experience-based test design technique whereby the experienced tester uses a high-level list of

items to be noted, checked, or remembered, or a set of rules or criteria against which a product has to be verified. [ISTQB
Glossary]

155 “What is Exploratory Testing?”, James Bach [http://www.satisfice.com/articles/what_is_et.shtml]
156 Ad hoc testing. Testing carried out informally; no formal test preparation takes place, no recognized test design technique is

used, there are no expectations for results and arbitrariness guides the test execution activity. [ISTQB Glossary]
157 Experience-based Testing. Testing based on the tester’s experience, knowledge and intuition. [ISTQB Glossary]

http://www.satisfice.com/articles/what_is_et.shtml

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 85/278

2.3.2.12. Classification by aims and goals

• Positive testing (previously discussed{80}).

• Negative testing (previously discussed{80}).

• Functional testing158 is a testing that verifies that the application functionality
works correctly (the correct implementation of functional requirements{40}). Func-
tional testing is often associated with black box testing{71}, but white box testing{71}
can also be used to verify that functionality has been implemented correctly.

The question often arises what is the difference between functional test-
ing158 and functionality testing159. For more details on functional testing,
see the article “What is Functional testing (Testing of functions) in soft-
ware?”160, and on functionality testing see the article “What is functional-
ity testing in software?”161.

In a nutshell:

• Functional testing (as an antonym for non-functional testing) aims to
verify that the functions of the application are implemented and that
they work in the correct way.

• Functionality testing is aimed at the same tasks, but the focus is
shifted to examining the application in its real-world environment, af-
ter localization and in similar situations.

• Non-functional testing162 is a testing of non-functional features of an application
(correct implementation of non-functional requirements{40}), such as usability, com-
patibility, performance, security, etc.

• Installation testing (installability testing163) is a testing aimed to identify defects
that affect the installation phase of an application. In general, it tests a variety of
scenarios and aspects of the installer in situations such as:

o a new runtime environment in which the application has not previously been
installed;

o changing the current version to a newer one (“upgrade”);
o changing the current version to an older one (“downgrade”);
o reinstalling the application in order to eliminate problems that have occurred

(“reinstallation”);
o restarting the installation after an error has resulted in the failure to continue

the installation;
o uninstalling an application;
o installing a new application from an application family;
o automatic installation without user participation.

158 Functional testing. Testing based on an analysis of the specification of the functionality of a component or system. [ISTQB

Glossary]
159 Functionality testing. The process of testing to determine the functionality of a software product (the capability of the software

product to provide functions which meet stated and implied needs when the software is used under specified conditions). [ISTQB
Glossary]

160 “What is Functional testing (Testing of functions) in software?” [http://istqbexamcertification.com/what-is-functional-testing-testing-

of-functions-in-software/]
161 “What is functionality testing in software?” [http://istqbexamcertification.com/what-is-functionality-testing-in-software/]
162 Non-functional testing. Testing the attributes of a component or system that do not relate to functionality, e.g., reliability, effi-

ciency, usability, maintainability and portability. [ISTQB Glossary]
163 Installability testing. The process of testing the installability of a software product. Installability is the capability of the software

product to be installed in a specified environment. [ISTQB Glossary]

http://istqbexamcertification.com/what-is-functional-testing-testing-of-functions-in-software/
http://istqbexamcertification.com/what-is-functional-testing-testing-of-functions-in-software/
http://istqbexamcertification.com/what-is-functionality-testing-in-software/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 86/278

• Regression testing164 is a testing aimed at verifying the fact that previously work-
ing functionality has not been affected by errors caused by changes in the appli-
cation or its environment. Frederick Brooks in his book “The Mythical Man-
Month165” wrote: “The fundamental problem with program maintenance is that fixing
a defect has a substantial (20–50 percent) chance of introducing another. (p. 122)”.
That is why regression testing is an indispensable quality assurance tool and is
actively used in almost any project.

• Re-testing166 (confirmation testing) is the execution of test cases that have previ-
ously detected defects in order to confirm that the defect has been resolved. In
fact, this type of testing boils down to actions in the final stage of the defect report
lifecycle{158} aimed at moving the defect to a “verified” and “closed” state.

• Acceptance testing167 is a formalized testing aimed at verifying an application
from the end-user and/or customer’s point of view and deciding whether the cus-
tomer accepts the work from the developer (project team). The following subtypes
of acceptance testing can be distinguished (although they are mentioned very
rarely, being mostly limited to the generic term “acceptance testing”):

o Factory acceptance testing168 is an examination of the completeness and
quality of an application’s realization in terms of its readiness to be handed
over to the customer, carried out by the project team. This type of testing is
often considered synonymous with alpha testing{83}.

o Operational acceptance testing169 (production acceptance testing) is an
operational testing{86} carried out in terms of installation performance, appli-
cation resource consumption, software and hardware compatibility, etc.

o Site acceptance testing170 is a testing by end-users (customer represent-
atives) of an application under real-life conditions to determine whether the
application requires modifications or can be accepted for use in its current
form.

• Operational testing171 is a testing carried out in a real or near-real operational
environment172 including operating system, database systems, application servers,
web servers, hardware, etc.

164 Regression testing. Testing of a previously tested program following modification to ensure that defects have not been introduced

or uncovered in unchanged areas of the software, as a result of the changes made. It is performed when the software or its
environment is changed. [ISTQB Glossary]

165 Frederick Brooks, “The Mythical Man-Month”.
166 Re-testing, Confirmation testing. Testing that runs test cases that failed the last time they were run, in order to verify the success

of corrective actions. [ISTQB Glossary]
167 Acceptance Testing. Formal testing with respect to user needs, requirements, and business processes conducted to determine

whether or not a system satisfies the acceptance criteria and to enable the user, customers or other authorized entity to determine
whether or not to accept the system. [ISTQB Glossary]

168 Factory acceptance testing. Acceptance testing conducted at the site at which the product is developed and performed by

employees of the supplier organization, to determine whether or not a component or system satisfies the requirements, normally
including hardware as well as software. [ISTQB Glossary]

169 Operational acceptance testing, Production acceptance testing. Operational testing in the acceptance test phase, typically

performed in a (simulated) operational environment by operations and/or systems administration staff focusing on operational
aspects, e.g., recoverability, resource-behavior, installability and technical compliance. [ISTQB Glossary]

170 Site acceptance testing. Acceptance testing by users/customers at their site, to determine whether or not a component or system

satisfies the user/customer needs and fits within the business processes, normally including hardware as well as software.
[ISTQB Glossary]

171 Operational testing. Testing conducted to evaluate a component or system in its operational environment. [ISTQB Glossary]
172 Operational environment. Hardware and software products installed at users’ or customers’ sites where the component or system

under test will be used. The software may include operating systems, database management systems, and other applications.
[ISTQB Glossary]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 87/278

• Usability173 testing is a testing whether the end-user understands how to use the
product (understandability174, learnability175, operability176), as well as how much the
end user enjoys using the product (attractiveness177). We did not missay — quite
often the success of a product depends on the emotions it arouses in its users.
Conducting this type of testing effectively requires a fair amount of research involv-
ing end-users, market research, etc.

Important! Usability testing173 testing and GUI testing182 are not the
same thing! For example, a properly working GUI can be uncomfortable
and a usable one can work incorrectly.

• Accessibility testing178 is a testing aimed at investigating the suitability of a prod-
uct to be used by people with disabilities (visually impaired, etc.)

• Interface testing179 is a testing aimed at checking the interfaces of an application
or its components. According to the ISTQB glossary, this type of testing refers to
integration testing{75}, and this is quite true for its variations such as API testing180
and command line interface (CLI) testing181, although the latter can also act as a
form of user interface testing if the user, and not another application, communi-
cates with the application through the command line. However, many sources sug-
gest including GUI testing182 in interface testing.

Important! Once again! Usability testing173 testing and GUI testing182
are not the same thing! For example, a properly working GUI can be
uncomfortable and a usable one can work incorrectly.

• Security testing183 is a testing of an application’s ability to withstand illicit attempts
to access data or functions that an intruder is not authorized to access.

You can read more about this type of testing in the article “What is security
testing in software testing?”184.

173 Usability. The capability of the software to be understood, learned, used and attractive to the user when used under specified

conditions. [ISTQB Glossary]
174 Understandability. The capability of the software product to enable the user to understand whether the software is suitable, and

how it can be used for particular tasks and conditions of use. [ISTQB Glossary]
175 Learnability. The capability of the software product to enable the user to learn its application. [ISTQB Glossary]
176 Operability. The capability of the software product to enable the user to operate and control it. [ISTQB Glossary]
177 Attractiveness. The capability of the software product to be attractive to the user. [ISTQB Glossary]
178 Accessibility testing. Testing to determine the ease by which users with disabilities can use a component or system. [ISTQB

Glossary]
179 Interface Testing. An integration test type that is concerned with testing the interfaces between components or systems. [ISTQB

Glossary]
180 API testing. Testing performed by submitting commands to the software under test using programming interfaces of the applica-

tion directly. [ISTQB Glossary]
181 CLI testing. Testing performed by submitting commands to the software under test using a dedicated command-line interface.

[ISTQB Glossary]
182 GUI testing. Testing performed by interacting with the software under test via the graphical user interface. [ISTQB Glossary]
183 Security testing. Testing to determine the security of the software product. [ISTQB Glossary]
184 “What is Security testing in software testing?” [http://istqbexamcertification.com/what-is-security-testing-in-software/]

http://istqbexamcertification.com/what-is-security-testing-in-software/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 88/278

• Internationalization testing (i18n testing, globalization185 testing, localizability186
testing) is a testing aimed to ensure that the product is ready to work in different
languages and with different national and cultural characteristics. This type of test-
ing does not check the quality of the adaptation (this is done by localization testing,
see the next point), but focuses on checking if the adaptation is possible (for ex-
ample: what happens if a user opens a file with a hieroglyph name; how the inter-
face works if a user switches it to Japanese; can the application look up data in
Korean text, etc.)

• Localization testing187 (l10n testing) is a testing aimed to ensure the correctness
and quality of the adaptation of the product for use in a particular language, taking
into account national and cultural characteristics. This testing follows the interna-
tionalization testing (see the previous point) and checks the correctness of the
translation and adaptation of the product rather than the product’s readiness for
such an action.

• Compatibility testing (interoperability testing188) is a testing aimed to check the
ability of an application to work in a specified environment. Here, for example, the
following can be tested:

o Compatibility with hardware platform, operating system and network infra-
structure (configuration testing189).

o Compatibility with browsers and browser versions (cross-browser test-
ing190). (See also web applications testing{81}).

o Compatibility with mobile devices (mobile testing191). (See also mobile ap-
plications testing{81}).

o And so on.

Some sources add to compatibility testing (although stressing that it is not part of
it) so-called compliance testing192 (conformance testing, regulation testing).

We recommend reading the supplementary material on mobile compati-
bility testing in the articles “What is Mobile Testing?”193 and “Beginner’s
Guide to Mobile Application Testing”194.

185 Globalization. The process of developing a program core whose features and code design are not solely based on a single

language or locale. Instead, their design is developed for the input, display, and output of a defined set of Unicode-supported
language scripts and data related to specific locales. [“Globalization Step-by-Step”, https://docs.microsoft.com/en-us/globaliza-
tion/]

186 Localizability. The design of the software code base and resources such that a program can be localized into different language

editions without any changes to the source code. [“Globalization Step-by-Step”, https://docs.microsoft.com/en-us/globalization/]
187 Localization testing checks the quality of a product’s localization for a particular target culture/locale. This test is based on the

results of globalization testing, which verifies the functional support for that particular culture/locale. Localization testing can be
executed only on the localized version of a product. [“Globalization Step-by-Step”, https://docs.microsoft.com/en-us/globaliza-
tion/]

188 Compatibility Testing, Interoperability Testing. The process of testing to determine the interoperability of a software product

(the capability to interact with one or more specified components or systems). [ISTQB Glossary]
189 Configuration Testing, Portability Testing. The process of testing to determine the portability of a software product (the ease

with which the software product can be transferred from one hardware or software environment to another). [ISTQB Glossary]
190 Cross-browser testing helps you ensure that your web site or web application functions correctly in various web browsers.

Typically, QA engineers create individual tests for each browser or create tests that use lots of conditional statements that check
the browser type used and execute browser-specific commands. [https://www.browserstack.com/cross-browser-testing]

191 Mobile testing is a testing with multiple operating systems (and different versions of each OS, especially with Android), multiple

devices (different makes and models of phones, tablets, phablets), multiple carriers (including international ones), multiple
speeds of data transference (3G, LTE, Wi-Fi), multiple screen sizes (and resolutions and aspect ratios), multiple input controls
(including BlackBerry’s eternal physical keypads), and multiple technologies — GPS, accelerometers — that web and desktop
apps almost never use. [https://www.perfecto.io/blog/mobile-testing]

192 Compliance testing, Conformance testing, Regulation testing. The process of testing to determine the compliance of the

component or system (the capability to adhere to standards, conventions or regulations in laws and similar prescriptions). [ISTQB
Glossary]

193 “What Is Mobile Testing?” [https://www.perfecto.io/blog/mobile-testing]
194 “Beginner’s Guide to Mobile Application Testing” [http://www.softwaretestinghelp.com/beginners-guide-to-mobile-application-test-

ing/]

https://docs.microsoft.com/en-us/globalization/
https://docs.microsoft.com/en-us/globalization/
https://docs.microsoft.com/en-us/globalization/
https://docs.microsoft.com/en-us/globalization/
https://docs.microsoft.com/en-us/globalization/
https://www.browserstack.com/cross-browser-testing
https://www.perfecto.io/blog/mobile-testing
https://www.perfecto.io/blog/mobile-testing
http://www.softwaretestinghelp.com/beginners-guide-to-mobile-application-testing/
http://www.softwaretestinghelp.com/beginners-guide-to-mobile-application-testing/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 89/278

• Data quality195 testing and database integrity testing196 are two closely related
types of testing aimed at examining such data characteristics as completeness,
consistency, integrity, structuredness, etc. In the context of databases, the exam-
ination may cover the adequacy of the model to the subject area, the ability of the
model to ensure the integrity and consistency of data, the correctness of triggers
and stored procedures, etc.

• Resource utilization testing197 (efficiency testing198, storage testing199) is a set of
testing techniques that verify the efficiency of an application’s utilization of the re-
sources available to it and dependencies of the application’s performance on the
resources available to it. These types of testing are often directly or indirectly re-
lated to performance testing{90} techniques.

• Comparison testing200 is a testing that is focused on comparative analysis of the
advantages and disadvantages of the product being developed in relation to its
main competitors.

• Qualification testing201 is the formal process of demonstrating the product to the
customer to confirm that it meets all the stated requirements. Unlike acceptance
testing{86} this process is more rigorous and comprehensive, but it can also be car-
ried out in the intermediate stages of product development.

• Exhaustive testing202 is a testing of an application with all possible combinations
of all possible inputs under all possible execution conditions. Not feasible for a
complex system, but can be used to test some very simple components.

• Reliability testing203 is a testing of the application’s ability to perform its functions
under specified conditions for a given time or a given number of operations.

• Recoverability testing204 is a testing of the application’s ability to restore its func-
tions and performance levels, and to recover data in the event of a critical situation
leading to a temporary (partial) loss of application operability.

195 Data quality. An attribute of data that indicates correctness with respect to some pre-defined criteria, e.g., business expectations,

requirements on data integrity, data consistency. [ISTQB Glossary]
196 Database integrity testing. Testing the methods and processes used to access and manage the data(base), to ensure access

methods, processes and data rules function as expected and that during access to the database, data is not corrupted or unex-
pectedly deleted, updated or created. [ISTQB Glossary]

197 Resource utilization testing, Storage testing. The process of testing to determine the resource-utilization of a software product.

[ISTQB Glossary]
198 Efficiency testing. The process of testing to determine the efficiency of a software product (the capability of a process to produce

the intended outcome, relative to the amount of resources used). [ISTQB Glossary]
199 Storage testing. This is a determination of whether or not certain processing conditions use more storage (memory) than esti-

mated. [“Software Testing Concepts And Tools”, Nageshwar Rao Pusuluri]
200 Comparison testing. Testing that compares software weaknesses and strengths to those of competitors’ products. [“Software

Testing and Quality Assurance”, Jyoti J. Malhotra, Bhavana S. Tiple]
201 Qualification testing. Formal testing, usually conducted by the developer for the consumer, to demonstrate that the software

meets its specified requirements. [“Software Testing Concepts And Tools”, Nageshwar Rao Pusuluri]
202 Exhaustive testing. A test approach in which the test suite comprises all combinations of input values and preconditions. [ISTQB

Glossary]
203 Reliability Testing. The process of testing to determine the reliability of a software product (the ability of the software product to

perform its required functions under stated conditions for a specified period of time, or for a specified number of operations).
[ISTQB Glossary]

204 Recoverability Testing. The process of testing to determine the recoverability of a software product (the capability of the software

product to re-establish a specified level of performance and recover the data directly affected in case of failure). [ISTQB Glossary]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 90/278

• Failover testing205 is a testing that involves emulating or actually creating critical
situations in order to test the application’s ability to engage the appropriate mech-
anisms to prevent possible degradation of availability, performance and data cor-
ruption.

• Performance testing206 is the study of an application’s responsiveness to external
stimuli under varying load types and intensities. Performance testing is divided into
the following sub-types:

o Load testing207 (capacity testing208) is an examination of the application’s
ability to maintain the specified quality characteristics under load within the
permissible limits and some exceeding of these limits (determination of the
“margin of safety”).

o Scalability testing209 is an examination of the application’s ability to in-
crease performance according to the increase in resources available to the
application.

o Volume testing210 is an examination of the application’s performance when
processing different (usually large) volumes of data.

o Stress testing211 is an examination of the application’s behavior under ab-
normal load changes that are significantly higher than expected, or in situ-
ations where a significant portion of the resources required by the applica-
tion is unavailable. Stress testing can also be done outside the context of
load testing: in this case it is usually called “destructive testing”212 and is an
extreme form of negative testing{80}.

o Concurrency testing213 is an examination of the application’s behavior in a
situation where it has to process a large number of simultaneously incoming
requests, which causes competition between the requests for resources
(database, memory, data transfer channel, disk subsystem, etc.). Some-
times concurrency testing is understood as an examination of multithreaded
applications and correctness of synchronization of actions performed in dif-
ferent threads.

As separate or auxiliary techniques, performance testing may include resource
utilization testing{89}, reliability testing{89}, recoverability testing{89}, failover testing{90},
etc.

205 Failover Testing. Testing by simulating failure modes or actually causing failures in a controlled environment. Following a failure,

the failover mechanism is tested to ensure that data is not lost or corrupted and that any agreed service levels are maintained
(e.g., function availability or response times). [ISTQB Glossary]

206 Performance Testing. The process of testing to determine the performance of a software product. [ISTQB Glossary]
207 Load Testing. A type of performance testing conducted to evaluate the behavior of a component or system with increasing load,

e.g., numbers of parallel users and/or numbers of transactions, to determine what load can be handled by the component or
system. [ISTQB Glossary]

208 Capacity Testing. Testing to determine how many users and/or transactions a given system will support and still meet perfor-

mance goals. [https://msdn.microsoft.com/en-us/library/bb924357.aspx]
209 Scalability Testing. Testing to determine the scalability of the software product (the capability of the software product to be

upgraded to accommodate increased loads). [ISTQB Glossary]
210 Volume Testing. Testing where the system is subjected to large volumes of data. [ISTQB Glossary]
211 Stress testing. A type of performance testing conducted to evaluate a system or component at or beyond the limits of its antici-

pated or specified workloads, or with reduced availability of resources such as access to memory or servers. [ISTQB Glossary]
212 Destructive software testing assures proper or predictable software behavior when the software is subject to improper usage or

improper input, attempts to crash a software product, tries to crack or break a software product, checks the robustness of a
software product. [“Towards Destructive Software Testing”, Kiumi Akingbehin]

213 Concurrency testing. Testing to determine how the occurrence of two or more activities within the same interval of time, achieved

either by interleaving the activities or by simultaneous execution, is handled by the component or system. [ISTQB Glossary]

https://msdn.microsoft.com/en-us/library/bb924357.aspx

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 91/278

2.3.2.13. Classification by techniques and approaches

• Positive testing (previously discussed{80}).

• Negative testing (previously discussed{80}).

• Testing based on tester’s experience, scenarios, checklists:
o Exploratory testing (previously discussed{84}).
o Ad hoc testing (previously discussed{84}).

• Classification by intrusion to application’s work process:
o Intrusive testing214 is a testing, the execution of which may affect the ap-

plication’s functionality due to the operation of the testing tools (e.g., perfor-
mance indicators may become distorted) or due to intrusion (level of intru-
sion215) into the application code itself (e.g., additional logging may be added
to analyze the application’s performance, debugging information may be
output, etc.). Some sources consider216 intrusive testing as a form of nega-
tive{80} or even stress testing{90}.

o Nonintrusive testing217 is a testing that is invisible to the application and
does not affect its normal operation.

• Classification by automation techniques:
o Data-driven testing218 is a way of automated test case development where

the input data and expected results are taken outside the test case and
stored outside it — in a file, database, etc.

o Keyword-driven testing219 is a way of automated test case development
where not only the input data and expected results are taken outside the
test case but also the logic of the test case behavior, which is described by
keywords (commands).

o Behavior-driven testing220 is a way of automated test case development
where the focus is on the correctness of business scenarios rather than on
individual details of application functioning.

214 Intrusive testing. Testing that collects timing and processing information during program execution that may change the behavior

of the software from its behavior in a real environment. Intrusive testing usually involves additional code embedded in the software
being tested or additional processes running concurrently with software being tested on the same processor. [http://encyclope-
dia2.thefreedictionary.com/intrusive+testing]

215 Level of intrusion. The level to which a test object is modified by adjusting it for testability. [ISTQB Glossary]
216 Intrusive testing can be considered a type of interrupt testing, which is used to test how well a system reacts to intrusions and

interrupts to its normal workflow. [http://www.techopedia.com/definition/7802/intrusive-testing]
217 Nonintrusive Testing. Testing that is transparent to the software under test, i.e., does not change its timing or processing char-

acteristics. Nonintrusive testing usually involves additional hardware that collects timing or processing information and processes
that information on another platform. [http://encyclopedia2.thefreedictionary.com/nonintrusive+testing]

218 Data-driven Testing (DDT). A scripting technique that stores test input and expected results in a table or spreadsheet, so that a

single control script can execute all of the tests in the table. Data-driven testing is often used to support the application of test
execution tools such as capture/playback tools. [ISTQB Glossary]

219 Keyword-driven Testing (KDT). A scripting technique that uses data files to contain not only test data and expected results, but

also keywords related to the application being tested. The keywords are interpreted by special supporting scripts that are called
by the control script or the test. [ISTQB Glossary]

220 Behavior-driven Testing (BDT). Behavior-driven Tests focuses on the behavior rather than the technical implementation of the

software. If you want to emphasize on business point of view and requirements then BDT is the way to go. BDT are Given-when-
then style tests written in natural language which are easily understandable to non-technical individuals. Hence these tests allow
business analysts and management people to actively participate in test creation and review process. [Jyothi Rangaiah,
http://www.womentesters.com/behaviour-driven-testing-an-introduction/]

http://encyclopedia2.thefreedictionary.com/intrusive+testing
http://encyclopedia2.thefreedictionary.com/intrusive+testing
http://www.techopedia.com/definition/7802/intrusive-testing
http://encyclopedia2.thefreedictionary.com/nonintrusive+testing
http://www.womentesters.com/behaviour-driven-testing-an-introduction/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 92/278

• Classification by error source (knowledge):
o Error guessing221 is a testing technique where tests are developed based

on the tester’s experience and knowledge of what defects are typical in cer-
tain components or functionality areas of an application. It can be combined
with so-called failure-directed testing222, where new tests are developed
based on information about previously discovered problems in an applica-
tion.

o Heuristic evaluation223 is a usability testing technique{87}, aimed at finding
problems in the user interface that constitute deviations from generally ac-
cepted norms.

o Mutation testing224 is a testing technique that compares the behavior of
several versions of the same component, some of which may be specially
designed with the addition of defects (this allows us to evaluate the effec-
tiveness of test cases — good tests will detect these specially added de-
fects). It can be combined with the next type of testing in this list — error
seeding.

o Error seeding225 is a testing technique where pre-known, specially de-
signed errors are specifically added to an application in order to monitor
their detection and elimination and thus form a more accurate assessment
of the testing process performance. It can be combined with the previous
type of testing in this list (mutation testing).

• Classification by input data selection techniques:
o Equivalence partitioning226 is a testing technique aimed at reducing the

number of test cases developed and executed while maintaining sufficient
test coverage. The essence of this technique is to identify equivalent test
suites (each testing the same application behavior) and to select from such
suites a small subset of test cases that are most likely to detect the problem.

o Boundary value analysis227 an instrumental technique of testing based on
equivalence classes, which makes it possible to identify specific values of
the parameters under study that belong to the boundaries of equivalence
classes. This technique makes it much easier to identify sets of equivalent
test cases and to select those test cases that detect the problem with the
highest probability.

221 Error Guessing. A test design technique where the experience of the tester is used to anticipate what defects might be present

in the component or system under test as a result of errors made, and to design tests specifically to expose them. [ISTQB
Glossary]

222 Failure-directed Testing. Software testing based on the knowledge of the types of errors made in the past that are likely for the

system under test. [https://www.techopedia.com/definition/7129/failure-directed-testing].
223 Heuristic Evaluation. A usability review technique that targets usability problems in the user interface or user interface design.

With this technique, the reviewers examine the interface and judge its compliance with recognized usability principles (the “heu-
ristics”). [ISTQB Glossary]

224 Mutation Testing, Back-to-Back Testing. Testing in which two or more variants of a component or system are executed with the

same inputs, the outputs compared, and analyzed in cases of discrepancies. [ISTQB Glossary]
225 Error seeding. The process of intentionally adding known faults to those already in a computer program for the purpose of

monitoring the rate of detection and removal, and estimating the number of faults remaining in the program. [ISTQB Glossary]
226 Equivalence partitioning. A black box test design technique in which test cases are designed to execute representatives from

equivalence partitions. In principle test cases are designed to cover each partition at least once. [ISTQB Glossary]
227 Boundary value analysis. A black box test design technique in which test cases are designed based on boundary values (input

values or output values which are on the edge of an equivalence partition or at the smallest incremental distance on either side
of an edge, for example the minimum or maximum value of a range). [ISTQB Glossary]

https://www.techopedia.com/definition/7129/failure-directed-testing

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 93/278

o Domain analysis228 (domain testing) is a testing technique based on equiv-
alence classes and boundary conditions that allows us to develop test cases
efficiently by taking into account several parameters (variables) simultane-
ously (including the interdependence of these parameters). This technique
also describes approaches to choosing the minimal set of test cases from
the whole set of possible test cases.

o Pairwise testing229 is a testing technique in which test cases are built on
the principle of testing pairs of values of parameters (variables) instead of
trying to test all possible combinations of all values of all parameters. This
technique is a special case of n-wise testing230 allows to significantly reduce
the testing effort (and sometimes even to make testing possible when the
number of “all combinations of all values of all parameters” is measured in
billions).

Pairwise testing229 and pair testing231 are NOT the same thing! It may
sound similar but has nothing in common!

o Orthogonal array testing232 is an instrumental technique of pairwise and
n-wise testing based on the use of so-called “orthogonal arrays” (two-di-
mensional arrays with the following property: if you take any two columns
of such an array, the resulting “sub-array” will contain all possible pairwise
combinations of values presented in the original array).

Orthogonal arrays are NOT orthogonal matrices! These are completely
different terms! Compare their descriptions in the articles “Orthogonal
array”233 and “Orthogonal matrix”234.

Also see combinatorial testing techniques{102}, which extend and comple-
ment the list of input-based types of testing just discussed.

An extremely detailed description of some of the types of testing that
fall under this classification can be found in Lee Copeland’s book “A
Practitioner’s Guide to Software Test Design”, in particular:

• Chapter 3 — Equivalence Class Testing.

• Chapter 4 — Boundary Value Testing.

• Chapter 8 — Domain Analysis Testing.

• Chapter 6 — Pairwise and orthogonal array testing.

Most of these techniques are part of “Any tester’s gentleman’s kit”, so
understanding and being able to apply them can be considered a must.

228 Domain analysis. A black box test design technique that is used to identify efficient and effective test cases when multiple varia-

bles can or should be tested together. It builds on and generalizes equivalence partitioning and boundary values analysis. [ISTQB
Glossary]

229 Pairwise testing. A black box test design technique in which test cases are designed to execute all possible discrete combinations

of each pair of input parameters. [ISTQB Glossary]
230 N-wise testing. A black box test design technique in which test cases are designed to execute all possible discrete combinations

of any set of n input parameters. [ISTQB Glossary]
231 Pair testing. Two persons, e.g., two testers, a developer and a tester, or an end-user and a tester, working together to find defects.

Typically, they share one computer and trade control of it while testing. [ISTQB Glossary]
232 Orthogonal array testing. A systematic way of testing all-pair combinations of variables using orthogonal arrays. It significantly

reduces the number of all combinations of variables to test all pair combinations. See also combinatorial testing, n-wise testing,
pairwise testing. [ISTQB Glossary]

233 “Orthogonal array”, Wikipedia. [http://en.wikipedia.org/wiki/Orthogonal_array]
234 “Orthogonal matrix”, Wikipedia. [http://en.wikipedia.org/wiki/Orthogonal_matrix]

http://en.wikipedia.org/wiki/Orthogonal_array
http://en.wikipedia.org/wiki/Orthogonal_matrix

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 94/278

• Classification by operational environment:
o Development testing235 is a testing performed directly during the develop-

ment of an application and/or in a runtime environment other than that in
which the application is actually used. Typically carried out by the develop-
ers themselves.

o Operational testing (previously discussed{86}).

• Code based testing. Various sources refer to this technique in different ways
(most commonly as structure-based testing, whereas some authors mix control
flow and data-flow testing into one set, and others strictly separate these strate-
gies). Subtypes of this technique can also be organized in various combinations,
but most universally they can be categorized as follows:

o Control flow testing236 is a family of testing techniques in which test cases
are developed to activate and verify the execution of different event se-
quences, which are determined through analysis of the application source
code. For a further detailed explanation, see structure-based testing{95} later
in this section.

o Data-flow testing237 is a family of testing techniques based on selecting
individual paths from the control flow in order to investigate events associ-
ated with changes in the state of variables. For a further detailed explana-
tion see the part where data-flow testing is explained in terms of
ISO/IEC/IEEE 29119-4{102} later in this section.

o State transition testing238 is a testing technique in which test cases are
developed to test application transitions from one state to another. The
states can be described by state diagram239 or state table240.

A good detailed explanation of this type of testing can be found in
the “What is State transition testing in software testing?”241 article.

This testing technique is sometimes also called “finite state machine242 test-
ing”. An important advantage of this technique is its applicability of finite
state machine theory (which is well formalized) and the ability to use auto-
mation to generate combinations of input data.

235 Development testing. Formal or informal testing conducted during the implementation of a component or system, usually in the

development environment by developers. [ISTQB Glossary]
236 Control Flow Testing. An approach to structure-based testing in which test cases are designed to execute specific sequences of

events. Various techniques exist for control flow testing, e.g., decision testing, condition testing, and path testing, that each have
their specific approach and level of control flow coverage. [ISTQB Glossary]

237 Data Flow Testing. A white box test design technique in which test cases are designed to execute definition-use pairs of variables.

[ISTQB Glossary]
238 State Transition Testing. A black box test design technique in which test cases are designed to execute valid and invalid state

transitions. [ISTQB Glossary]
239 State Diagram. A diagram that depicts the states that a component or system can assume, and shows the events or circumstances

that cause and/or result from a change from one state to another. [ISTQB Glossary]
240 State Table. A grid showing the resulting transitions for each state combined with each possible event, showing both valid and

invalid transitions. [ISTQB Glossary]
241 “What is State transition testing in software testing?” [http://istqbexamcertification.com/what-is-state-transition-testing-in-software-

testing/]
242 Finite State Machine. A computational model consisting of a finite number of states and transitions between those states, possibly

with accompanying actions. [ISTQB Glossary]

http://istqbexamcertification.com/what-is-state-transition-testing-in-software-testing/
http://istqbexamcertification.com/what-is-state-transition-testing-in-software-testing/

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 95/278

o Code review (code inspection243) is a family of techniques for improving
code quality by involving several people in the process of creating or im-
proving code. The degree of formalization of code review can range from a
fairly cursory peer-review to a thorough formal inspection. In contrast to
static code analysis techniques (control flow and data-flow), code review
also improves such characteristics as code comprehensibility, maintainabil-
ity, conformance with a design specification, etc. Code review is mainly per-
formed by the developers themselves.

• Structure-based techniques assume the ability to investigate the logic of code
execution depending on different situations and include:

o Statement testing244 is a white box testing technique, which checks
whether individual expressions in the code are executed correctly and the
fact of their execution itself.

o Branch testing245 is a white box testing technique which checks the execu-
tion of individual branches of code (a branch is defined as an atomic part of
code whose execution either happens or doesn’t happen depending on the
truth or falsity of some condition).

o Condition testing246 is a white box testing technique in which the execution
of a separate condition is tested (a condition is an expression that can be
evaluated to the “true” or “false” value).

o Multiple condition testing247 is a white box testing technique in which the
execution of multiple (complex) conditions is tested.

o Modified condition decision coverage testing248 is a white box testing
technique in which individual conditions within complex conditions are
tested, which alone determine the result of calculating the whole complex
condition.

o Decision testing249 is a white box testing technique in which complex
branching (with two or more possible choices) is tested. Although “two
choices” also fits here, formally this situation should be referred to condition-
based testing.

o Path testing250 is a white box testing technique in which all or some specif-
ically selected paths in the application code are tested.

243 Inspection. A type of peer review that relies on visual examination of documents to detect defects, e.g., violations of development

standards and non-conformance to higher level documentation. The most formal review technique and therefore always based
on a documented procedure. [ISTQB Glossary]

244 Statement Testing. A white box test design technique in which test cases are designed to execute statements (statement is an

entity in a programming language, which is typically the smallest indivisible unit of execution). [ISTQB Glossary]
245 Branch Testing. A white box test design technique in which test cases are designed to execute branches (branch is a basic block

that can be selected for execution based on a program construct in which one of two or more alternative program paths is
available, e.g., case, jump, go to, if-then-else.). [ISTQB Glossary]

246 Condition Testing. A white box test design technique in which test cases are designed to execute condition outcomes (condition

is a logical expression that can be evaluated as True or False, e.g. A > B). [ISTQB Glossary]
247 Multiple Condition Testing. A white box test design technique in which test cases are designed to execute combinations of single

condition outcomes (within one statement). [ISTQB Glossary]
248 Modified Condition Decision Coverage Testing. Technique to design test cases to execute branch condition outcomes that

independently affect a decision outcome and discard conditions that do not affect the final outcome. [“Guide to Advanced Soft-
ware Testing, Second Edition”, Anne Mette Hass].

249 Decision Testing. A white box test design technique in which test cases are designed to execute decision outcomes (decision is

program point at which the control flow has two or more alternative routes, e.g., a node with two or more links to separate
branches). [ISTQB Glossary]

250 Path testing. A white box test design technique in which test cases are designed to execute paths. [ISTQB Glossary]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 96/278

Strictly scientifically, the definitions of most structure-based testing
should sound a bit different, because in programming a condition is an
expression without logical operators and a solution is an expression
with logical operators. But the ISTQB glossary doesn’t focus on this
and therefore the above definitions can be considered correct. How-
ever, if you are interested, we recommend you to read “What is the
difference between a Decision and a Condition?”251.

A summary of all types of structure-based testing is shown in table 2.3.c.

 Table 2.3.c — Types of structure-based testing

Name The gist (what is being tested)

Statement testing Individual atomic parts of the code, e.g., “x = 10”

Branch testing Passing through the branches of code execution

Condition testing,

Branch Condition Testing

Individual conditional constructions, e.g., “if (a == b)”

Multiple condition testing,

Branch Condition Combi-

nation Testing

Complex conditional constructions, e.g., “if ((a == b) || (c == d))”

Modified Condition Deci-

sion Coverage Testing

Separate conditions that alone affect the result of calculating a

complex condition, for example in the condition “if ((x == y) &&

(n == m))” a false value in each of the separate conditions by it-

self results in false regardless of the result of calculating the

second condition

Decision testing Complex branching, such as the “switch” operator

Path testing All or specifically chosen paths

• Application behavior/model-based testing:
o Decision table testing252 is a black box testing technique in which test

cases are developed on the basis of a so-called decision table, in which the
input data (and combinations thereof) and impacts on the application are
recorded, as well as the corresponding output data and application re-
sponses.

o State transition testing (previously discussed{94}).
o Specification-based testing (black box testing) (previously discussed{71}).
o Model-based testing253 is a testing technique in which application investi-

gation (and test case development) is based on a particular model: decision
table{96}, state table or diagram{94}, user scenarios{137}, load model{90}, etc.

o Use case testing254 is a black box testing technique in which test cases are
developed based on use cases. The use cases serve mainly as a source of
information for test case steps, while input data sets are conveniently de-
veloped using input data selection techniques{92}. In general, the source of
information for test case development in this technique may be not only use
cases but also other user requirements{39} in any form. If the methodology of
project development implies the use of user stories, this type of testing may
be replaced by user story testing255.

251 “What is the difference between a Decision and a Condition?” [http://www-01.ibm.com/support/docview.wss?uid=swg21129252]
252 Decision Table Testing. A black box test design technique in which test cases are designed to execute the combinations of

inputs and/or stimuli (causes) shown in a decision table (a table showing combinations of inputs and/or stimuli (causes) with their
associated outputs and/or actions (effects), which can be used to design test cases). [ISTQB Glossary]

253 Model-based Testing. Testing based on a model of the component or system under test, e.g., reliability growth models, usage

models such as operational profiles or behavioral models such as decision table or state transition diagram. [ISTQB Glossary]
254 Use case testing. A black box test design technique in which test cases are designed to execute scenarios of use cases. [ISTQB

Glossary]
255 User story testing. A black box test design technique in which test cases are designed based on user stories to verify their correct

implementation. [ISTQB Glossary]

http://www-01.ibm.com/support/docview.wss?uid=swg21129252

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 97/278

o Parallel testing256 is a testing technique in which the behavior of a new (or
modified) application is compared with that of a reference application (as-
sumed to be working correctly). The term parallel testing may also be used
to refer to a way of conducting testing when several testers or automation
systems perform the work simultaneously, i.e., in parallel. Very rarely (and
incorrectly) parallel testing is understood as mutation testing{92}.

o Random testing257 is a black box testing technique in which input data, ac-
tions or even test cases themselves are selected on the basis of
(pseudo)random values so that they correspond to an operational profile258
— a subset of actions corresponding to some situation or application sce-
nario. This type of testing should not be confused with so-called “monkey
testing”259.

o A/B testing (split testing260) is a testing technique that examines the influ-
ence of a change in one of the input parameters on the result of an opera-
tion. However, more often we can see A/B testing as a usability testing tech-
nique{87}, where users are randomly offered different variants of interface
elements and then the difference in user reactions is evaluated.

An extremely detailed description of some of the types of testing that fall
under this classification can be found in Lee Copeland’s book “A Practi-
tioner’s Guide to Software Test Design”, in particular:

• Chapter 5 — Decision Table Testing.

• Chapter 7 — State-Transition Testing.

• Chapter 9 — Use Case Testing.

256 Parallel testing. Testing a new or an altered data processing system with the same source data that is used in another system.

The other system is considered as the standard of comparison. [ISPE Glossary]
257 Random testing. A black box test design technique where test cases are selected, possibly using a pseudo-random generation

algorithm, to match an operational profile. This technique can be used for testing non-functional attributes such as reliability and
performance. [ISTQB Glossary]

258 Operational profile. The representation of a distinct set of tasks performed by the component or system, possibly based on user

behavior when interacting with the component or system, and their probabilities of occurrence. A task is logical rather that physical
and can be executed over several machines or be executed in non-contiguous time segments. [ISTQB Glossary]

259 Monkey testing. Testing by means of a random selection from a large range of inputs and by randomly pushing buttons, ignorant

of how the product is being used. [ISTQB Glossary]
260 Split testing is a design for establishing a causal relationship between changes and their influence on user-observable behavior.

[“Controlled experiments on the web: survey and practical guide”, Ron Kohavi]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 98/278

2.3.2.14. Classification by execution chronology

In spite of numerous attempts by many authors to create a unified testing chronol-
ogy, it is still true that there is no universally accepted solution that would be equally
suitable for any project management methodology, any individual project, or any stage
thereof.

If we try to describe the chronology of testing in one general phrase, we can say
that there is a gradual increase in the complexity of the test cases themselves and in the
complexity of their selection logic.

• The general universal logic of the test sequence is to start each task with simple
positive test cases, to which negative (but also reasonably simple) test cases are
gradually added. Only when the most typical situations are covered by simple test
cases should we move on to more complex ones (again, starting with positive
ones). This isn’t a dogma, but it’s worth taking heed of, because delving too deeply
into negative (and also complicated) test cases in the early stages can lead to a
situation where the application handles a lot of troubles perfectly but fails on the
most basic, everyday tasks. Once again, the essence of universal consistency:

1) simple positive testing;
2) simple negative testing;
3) complex positive testing;
4) complex negative testing.

• Testing chronology based on component hierarchy:
o Bottom-up testing261 is an incremental approach to integration testing{75},

in which low-level components are tested first, after which the process
moves on to higher and higher-level components.

o Top-down testing262 is an incremental approach to integration testing{75}, in
which high-level components are tested first, after which the process moves
on to increasingly lower-level components.

o Hybrid testing263 is a combination of bottom-up and top-down testing, al-
lowing for simpler and quicker results of the evaluation of the application.

Since the term “hybrid” is synonymous with “combined”, “hybrid
testing” can refer to almost any combination of two or more types,
techniques or approaches to testing. Always make it clear what
kind of hybrid test you are talking about.

261 Bottom-up testing. An incremental approach to integration testing where the lowest level components are tested first, and then

used to facilitate the testing of higher-level components. This process is repeated until the component at the top of the hierarchy
is tested. [ISTQB Glossary]

262 Top-down testing. An incremental approach to integration testing where the component at the top of the component hierarchy is

tested first, with lower-level components being simulated by stubs. Tested components are then used to test lower-level compo-
nents. The process is repeated until the lowest level components have been tested. [ISTQB Glossary]

263 Hybrid testing, Sandwich testing. First, the inputs for functions are integrated in the bottom-up pattern discussed above. The

outputs for each function are then integrated in the top-down manner. The primary advantage of this approach is the degree of
support for early release of limited functionality. [“Integration testing techniques”, Kratika Parmar]

Detailed testing classification

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 99/278

• Testing chronology based on attention to requirements and requirements’ compo-
nents:

1) Requirements testing, which can range from a cursory assessment like
“we understand everything” to a very formal approach, is in any case
primary to testing how the requirements are implemented.

2) It is logical to test the implementation of functional requirements before
testing the implementation of non-functional requirements, because if
something simply doesn’t work, then testing performance, security, us-
ability and other non-functional requirements is meaningless, and often
impossible.

3) Testing the implementation of the non-functional requirements’ compo-
nents is often the logical conclusion to testing the requirements’ imple-
mentation.

• Typical generic scenarios are used when there are no explicit prerequisites for
implementing a different strategy. Such scenarios can be modified and combined
(e.g., the whole “typical generic scenario 1” can be repeated in all steps of “typical
generic scenario 2”).

o Typical generic scenario 1:
1) Smoke testing{77}.
2) Critical path testing{78}.
3) Extended testing{78}.

o Typical generic scenario 2:
1) Unit testing{75}.
2) Integration testing{75}.
3) System testing{75}.

o Typical generic scenario 3:
1) Alpha testing{83}.
2) Beta testing{83}.
3) Gamma testing{83}.

In conclusion, it should be reiterated that the testing classifications discussed here

are not canonical and immutable. They are merely intended to organize the vast amount
of information about the various activities of testers and to make it easier to remember
the relevant facts.

Alternative and additional testing classifications

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 100/278

2.3.3. Alternative and additional testing classifications

To complete the picture, it only remains to show alternative views on the testing
classification. One of them (figure 2.3.h) represents no more than a different combination
of the types and techniques previously discussed. The second one (figure 2.3.i) contains
many new definitions, but it is beyond the scope of this book to explore them in detail,
and therefore only brief explanations will be given (if necessary, you can consult the orig-
inal sources, which are indicated for each definition in a footnote).

Once again, these are only definitions. There are tens or hundreds of pages
devoted to the relevant types and techniques of testing in primary sources.
Please do not expect detailed explanations from this section, there will be none,
as it is “very supplementary” material.

Figure 2.3.h — Testing classification according to the “Foundations of Software Testing:
ISTQB Certification” (Erik Van Veenendaal, Isabel Evans)

Testing Techniques

Static Dynamic

Informal Review

Walkthrough

Technical Review

Inspection

Static Analysis

Control Flow

Data Flow

Experience-based

Error Guessing

Exploratory Testing

Structure-based

Statement

Decision

Condition

Multiple Condition

Specification-based

Equivalence

Partitioning

Boundary Value

Analisys

Use Case Testing

Decision Tables

State Transition

Alternative and additional testing classifications

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 101/278

 In the following classification, both the items already considered and the ones not
considered previously (indicated by the dotted line) are found. Brief definitions of the types
of testing not considered previously are presented after figures 2.3.h and 2.3.i.

Figure 2.3.i — ISO/IEC/IEEE 29119-4 testing classification

Alternative and additional testing classifications

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 102/278

• Classification tree264 method265 is a black box testing technique in which test
cases are created from hierarchically organized sets of equivalent input and output
data.

• Syntax testing266 is a black box testing technique in which test cases are created
based on the determination of input and output data sets.

• Combinatorial testing267 is a way to select an appropriate set of test data combi-
nations to achieve a certain level of test coverage when it is not possible to test all
possible sets of test data values in the time available. There are the following com-
binatorial techniques:

o All combinations testing268 is a testing of all possible combinations of all
values of all test data (e.g., all function parameters).

o Pairwise testing (previously discussed{93}).
o Each choice testing269 is a testing where one value from each test data set

has to be used in at least one test case.
o Base choice testing270 is a testing where a set of values (base set) is allo-

cated and used for testing first, and then test cases are built based on the
selection of all but one of the base values, which is replaced by a value that
is not in the base set.

Also see the classification of testing based on input data selection{92}, which
extends and supplements this list.

• Cause-effect graphing271 is a black box testing technique in which test cases are
developed based on a cause-effect graph (a graphical representation of inputs and
effects with associated outputs and effects).

• Data-flow testing272 is a family of testing techniques based on selecting individual
paths from the control flow in order to investigate events associated with changes
in the state of variables. These techniques detect situations such as: a variable is
defined but not used anywhere; a variable is used but not defined; a variable is
defined several times before it is used; a variable is killed before it was last used.

264 Classification tree. A tree showing equivalence partitions hierarchically ordered, which is used to design test cases in the classi-

fication tree method. [ISTQB Glossary]
265 Classification tree method. A black box test design technique in which test cases, described by means of a classification tree,

are designed to execute combinations of representatives of input and/or output domains. [ISTQB Glossary]
266 Syntax testing. A black box test design technique in which test cases are designed based upon the definition of the input domain

and/or output domain. [ISTQB Glossary]
267 Combinatorial testing. A means to identify a suitable subset of test combinations to achieve a predetermined level of coverage

when testing an object with multiple parameters and where those parameters themselves each have several values, which gives
rise to more combinations than are feasible to test in the time allowed. [ISTQB Glossary]

268 All combinations testing. Testing of all possible combinations of all values for all parameters. [“Guide to advanced software

testing, 2nd edition”, Anne Matte Hass].
269 Each choice testing. One value from each block for each partition must be used in at least one test case. [“Introduction to

Software Testing. Chapter 4. Input Space Partition Testing”, Paul Ammann & Jeff Offutt]
270 Base choice testing. A base choice block is chosen for each partition, and a base test is formed by using the base choice for

each partition. Subsequent tests are chosen by holding all but one base choice constant and using each non-base choice in
each other parameter. [“Introduction to Software Testing. Chapter 4. Input Space Partition Testing”, Paul Ammann & Jeff Offutt]

271 Cause-effect graphing. A black box test design technique in which test cases are designed from cause-effect graphs (a graphical

representation of inputs and/or stimuli (causes) with their associated outputs (effects), which can be used to design test cases).
[ISTQB Glossary]

272 Data flow testing. A white box test design technique in which test cases are designed to execute definition-use pairs of variables.

[ISTQB Glossary]

Alternative and additional testing classifications

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 103/278

Here we have to delve a bit deeper into the theory. In general, a variable can be
manipulated in several ways (let’s take the variable x as an example):

• declaration: int x;
• definition, d-use: x = 99;
• computation use, c-use: z = x + 1;
• predicate use, p-use: if (x > 17) { … };
• kill, k-use: x = null;

We can now consider data-flow based testing techniques. These are described in
great detail in Section 3.3 of Chapter 5 of Boris Beizer’s book “Software Testing
Techniques, Second Edition”:

o All-definitions testing273 — the test set checks that for each variable there
is a path from its definition to its use in computations or predications.

o All-c-uses testing274 — the test set checks that for each variable there is a
path from its definition to its use in computations.

o All-p-uses testing275 — the test set checks that for each variable there is a
path from its definition to its use in predications.

o All-uses testing276 — the test set checks that for each variable there is at
least one path from each of its definitions to each of its uses in computations
and predications.

o All-du-paths testing277 — for each variable, the test suite checks all paths
from each variable definition to each use of the variable in computations
and predications (the most powerful strategy, which at the same time re-
quires the greatest number of test cases).

For better understanding and memorability, here is the original diagram
from Boris Beizer’s book (referred to there as “Figure 5.7. Relative Strength of
Structural Test Strategies”), showing the correlation of data-flow based test strat-
egies (figure 2.3.j).

273 All-definitions strategy. Test set requires that every definition of every variable is covered by at least one use of that variable (c-

use or p-use). [“Software Testing Techniques, Second Edition”, Boris Beizer]
274 All-computation-uses strategy. For every variable and every definition of that variable, include at least one definition-free path

from the definition to every computation use. [“Software Testing Techniques, Second Edition”, Boris Beizer]
275 All-predicate-uses strategy. For every variable and every definition of that variable, include at least one definition-free path from

the definition to every predicate use. [“Software Testing Techniques, Second Edition”, Boris Beizer]
276 All-uses strategy. Test set includes at least one path segment from every definition to every use that can be reached by that

definition. [“Software Testing Techniques, Second Edition”, Boris Beizer]
277 All-DU-path strategy. Test set includes every du path from every definition of every variable to every use of that definition.

[“Software Testing Techniques, Second Edition”, Boris Beizer]

Alternative and additional testing classifications

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 104/278

Figure 2.3.j — The correlation and relative strength of data-flow based testing strategies
(from Boris Beizer’s book “Software Testing Techniques”)

All-Paths

All-DU-Paths

All-Uses

All-C-Uses/Some-P-Uses All-P-Uses/Some-C-Uses

All-C-Uses All-Defs All-P-Uses

Branch

Statement

Classification by reference to white box and black box testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 105/278

2.3.4. Classification by reference to white box and black box testing

The most typical interview question for beginning testers is to ask them to list white
box and black box testing techniques. Table 2.3.d is provided below, in which all of the
above types of testing are related to the appropriate method. This table can also be used
as a guide to types of testing (they are presented in the same order as described in this
chapter).

Important! In such sources as the ISTQB-Glossary, many types and techniques
of testing are strictly related to white box or black box methods. This does not
mean that they cannot be applied to another, unspecified method. For example,
equivalence partitioning is black box testing, but it’s also suitable for creating
unit test cases, which are the brightest representatives of white box testing.

Take the data in the table below not as “this type of testing can only be used
for...”, but as “most often this type of testing is used for...”.

Table 2.3.d — Testing types and techniques in the context of white box and black box
methods

Testing type White box Black box

Static testing{70} Yes No

Dynamic testing{70} Occasionally Yes

Manual testing{73} Seldom Yes

Automated testing{73} Yes Yes

Unit testing, Module testing, Component testing{75} Yes No

Integration testing{75} Yes Yes

System testing{75} Seldom Yes

Smoke test, Intake test, Build verification test{77} Seldom Yes

Critical path test{78} Seldom Yes

Extended test{78} Seldom Yes

Positive testing{80} Yes Yes

Negative testing, Invalid testing{80} Yes Yes

Web-applications testing{81} Yes Yes

Mobile applications testing{81} Yes Yes

Desktop applications testing{81} Yes Yes

Presentation tier testing{82} Seldom Yes

Business logic tier testing{82} Yes Yes

Data tier testing{82} Yes Seldom

Alpha testing{83} Seldom Yes

Beta testing{83} Almost never Yes

Gamma testing{83} Almost never Yes

Scripted testing, Test case based testing{84} Yes Yes

Exploratory testing{84} No Yes

Ad hoc testing{84} No Yes

Functional testing{85} Yes Yes

Non-functional testing{85} Yes Yes

Installation testing{85} Occasionally Yes

Classification by reference to white box and black box testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 106/278

Regression testing{86} Yes Yes

Re-testing, Confirmation testing{86} Yes Yes

Acceptance testing{86} Extremely rare Yes

Operational testing{86} Extremely rare Yes

Usability testing{87} Extremely rare Yes

Accessibility testing{87} Extremely rare Yes

Interface testing{87} Yes Yes

Security testing{87} Yes Yes

Internationalization testing{88} Seldom Yes

Localization testing{88} Seldom Yes

Compatibility testing{88} Seldom Yes

Configuration testing{88} Seldom Yes

Cross-browser testing{88} Seldom Yes

Data quality testing and Data-base integrity testing{89} Yes Seldom

Resource utilization testing{89} Extremely rare Yes

Comparison testing{89} No Yes

Qualification testing{89} No Yes

Exhaustive testing{89} Extremely rare No

Reliability testing{89} Extremely rare Yes

Recoverability testing{89} Extremely rare Yes

Failover testing{90} Extremely rare Yes

Performance testing{90} Extremely rare Yes

Load testing, Capacity testing{90} Extremely rare Yes

Scalability testing{90} Extremely rare Yes

Volume testing{90} Extremely rare Yes

Stress testing{90} Extremely rare Yes

Concurrency testing{90} Extremely rare Yes

Intrusive testing{91} Yes Yes

Nonintrusive testing{91} Yes Yes

Data-driven testing{91} Yes Yes

Keyword-driven testing{91} Yes Yes

Error guessing{92} Extremely rare Yes

Heuristic evaluation{92} No Yes

Mutation testing{92} Yes Yes

Error seeding{92} Yes Yes

Equivalence partitioning{92} Yes Yes

Boundary value analysis{92} Yes Yes

Domain testing, Domain analysis{93} Yes Yes

Pairwise testing{93} Yes Yes

Orthogonal array testing{93} Yes Yes

Development testing{94} Yes Yes

Control flow testing{94} Yes No

Data flow testing{94} Yes No

Classification by reference to white box and black box testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 107/278

State transition testing{94} Occasionally Yes

Code review, code inspection{95} Yes No

Statement testing{95} Yes No

Branch testing{95} Yes No

Condition testing{95} Yes No

Multiple condition testing{95} Yes No

Modified condition decision coverage testing{95} Yes No

Decision testing{95} Yes No

Path testing{95} Yes No

Decision table testing{96} Yes Yes

Model-based testing{96} Yes Yes

Use case testing{96} Yes Yes

Parallel testing{97} Yes Yes

Random testing{97} Yes Yes

A/B testing, Split testing{97} No Yes

Bottom-up testing{98} Yes Yes

Top-down testing{98} Yes Yes

Hybrid testing{98} Yes Yes

Classification tree method{102} Yes Yes

Syntax testing{102} Yes Yes

Combinatorial testing{102} Yes Yes

All combinations testing{102} Yes No

Each choice testing{102} Yes No

Base choice testing{102} Yes No

Cause-effect graphing{102} Seldom Yes

All-definitions testing{103} Yes No

All-c-uses testing{103} Yes No

All-p-uses testing{103} Yes No

All-uses testing{103} Yes No

All-du-paths testing{103} Yes No

Checklists, test cases, test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 108/278

2.4. Checklists, test cases, test suites

2.4.1. Checklist

As can be easily understood from the previous chapters, the tester has to work
with a huge amount of information, choose from a variety of solutions to problems and
invent new ones. It is objectively impossible to keep all thoughts in one’s head during this
activity, so it is advisable to use “checklists” to think through and develop test cases.

Checklist278 is a set of ideas [for test cases]. The last phrase is bracketed279, for
a reason, because in general a checklist is just a collection of ideas: ideas for
testing, ideas for development, ideas for planning and management — in other
words, a collection of any ideas.

A checklist is most often a simple and familiar list:

• where the sequence of items is not important (e.g., a list of values for a field);

• where the sequence of items is important (e.g., steps in a brief instruction);

• a structured (multi-level) list that reflects a hierarchy of ideas.

It is important to understand that there are not and cannot be any prohibitions or
limitations when developing checklists — the main thing is that they are helpful in the
work. Sometimes checklists can even be expressed graphically (e.g., using mind maps280
or concept maps281), although traditionally they are made as multi-level lists.

Since there are many similar tasks in different projects, well-designed and accu-
rate checklists can be used repeatedly, thus saving time and effort.

Attention! A very common question is whether the checklist should include
expected results. Not in the classic sense of a checklist (although it is not for-
bidden), because a checklist is a set of ideas and their detailing in the form of
steps and expected results will be in the test cases. But expected results can
be added, for example, in the following cases:

• a particular item on the checklist deals with special, non-trivial application
behavior or a complex check, the result of which is important to note now,
so as not to forget;

• due to tight deadlines and/or lack of other resources, testing is done directly
from checklists without test cases.

278 The concept of a “checklist” is not tied to testing as such — it is a completely universal technique that can be used in any area of

life without exception.
279 If you’re wondering “why square brackets are used here”, check out the syntax of the “Extended Backus-Naur form”, which is the

de facto standard for describing expressions in IT. See “Extended Backus-Naur form”, Wikipedia. [https://en.wikipe-
dia.org/wiki/Extended_Backus%E2%80%93Naur_form]

280 “Mind map”, Wikipedia. [http://en.wikipedia.org/wiki/Mind_map]
281 “Concept map”, Wikipedia. [http://en.wikipedia.org/wiki/Concept_map]

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
http://en.wikipedia.org/wiki/Mind_map
http://en.wikipedia.org/wiki/Concept_map

Checklist

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 109/278

For a checklist to be a truly useful tool, it should have a number of important fea-
tures.

Logicality. The checklist is not written “just for fun”, but on the basis of goals and
to help achieve those goals. Unfortunately, one of the most common and dangerous mis-
takes in writing a checklist is to turn it into a pile of thoughts that are not connected to
each other in any way.

Consistency and structure. Structuring is quite simple — it is achieved by de-
signing the checklist as a multi-level list. As for consistency, even when the checklist items
do not describe a chain of actions, it is still easier for a person to perceive information in
the form of small groups of ideas, the transition between which is clear and obvious (for
example, you can first write ideas of simple positive test cases{80}, then ideas of simple
negative test cases, then gradually increase the complexity of test cases, but do not write
these ideas in a jumble).

Completeness and non-redundancy. A checklist should be a neat summary of
ideas that do not overlap (often due to different formulations of the same idea) and at the
same time do not leave out anything important.

It also helps to think of checklists not only as a repository of sets of ideas but also
as “requirements for making test cases”. This idea leads to a reconsideration and rethink-
ing of good requirements properties (see “Good requirements properties”{42} chapter) as
applied to checklists.

Task 2.4.a: reread “Good requirements properties”{42} chapter and consider
which good requirements properties can also be considered properties of good
checklists.

 So, let’s look at the process of creating a checklist. In “Examples of requirements
analysis and testing”{52} chapter there is an example of a final version of requirements{57},
which we will use.
 Since we cannot “test the whole application” at once (it is too huge a task to be
done in one go), we already need to choose some logic for building checklists — yes,
there will be several (eventually they can be structurally combined into one, but this is not
necessary).

Typical variations of this logic are the creation of separate checklists for:

• typical user scenarios{137};

• different levels of functional testing{77};

• separate application parts (modules and submodules{118});

• separate requirements, groups of requirements, levels and types{38} of require-
ments;

• the parts or functions of the application that are most at risk.

This list can be expanded and supplemented, and items can be combined to pro-
duce, for example, checklists for checking the most common scenarios affecting a part of
an application.

To illustrate the principles of checklists, we will use the logic of dividing application
functions by their importance into three categories (see classification by functions under
test importance{77}):

• Basic functions without which the existence of the application becomes meaning-
less (i.e. the most important ones — what the application was created for), or
whose failure causes objectively serious problems for the runtime environment
(see “Smoke test”{77}).

Checklist

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 110/278

• Functions demanded by most users in their daily work (see “Critical path test”{78}).

• The rest of the features (various “little things”, problems with which will not affect
the value of the application to the end-user very much) (see “Extended test”{78}).

Functions without which the existence of an application becomes
meaningless

 Let’s first give the whole checklist for smoke testing, and then we’ll go through it in
more detail.

• Configuration and start-up.

• File processing:

 Input file formats

 TXT HTML MD

Input file en-
codings

WIN1251 + + +

CP866 + + +

KOI8R + + +

• Stopping.

Yes, and that’s it. All the key functions of the app are listed here.

 Configuration and start-up. If an application cannot be configured to run in a user
environment, it is useless. If the application cannot be started, it is useless. If problems
arise during the start-up phase, they can affect the functioning of the application and
therefore also deserve close attention.

Note: this is a rather atypical case of an application being configured with com-
mand line parameters and therefore it is not possible to separate the “configuration” and
“start-up” operations; in real life, the vast majority of applications perform these operations
separately.

 File processing. This is what the application is all about, so even at the checklist
stage we took the trouble to create a matrix showing all possible combinations of accepta-
ble input file formats and encodings, so as not to forget anything and to emphasize the
importance of the relevant tests.

 Stopping. It may not seem that important from a user’s point of view, but stopping
(and starting) any application involves a lot of system operations, problems with which
can lead to many serious consequences (up to the inability to restart the application or
the crash of the operating system).

Checklist

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 111/278

Functions demanded by most users

 The next step will be to test how the application behaves in normal everyday life,
avoiding exotic situations for now. A very common question is whether it is OK to duplicate
checks at different levels of functional testing{77}. There is both a “no” and a “yes”. “No” in
the sense that it is not acceptable (makes no sense) to duplicate the same tests that have
just been done. “Yes”, in the sense that any test can be detailed and supplemented with
additional elements.

• Configuration and start-up:
o With correct parameters:

▪ SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME values are
entered and contain spaces and Cyrillic characters (repeat for path
formats in Windows and *nix file systems, note logical drive names
and directory name separators (“/” and “\”)).

▪ LOG_FILE_NAME value is not passed.
o Without parameters.
o With a lack of parameters.
o With incorrect parameters:

▪ Invalid SOURCE_DIR path.
▪ Invalid DESTINATION_DIR path.
▪ Invalid LOG_FILE_NAME value.
▪ DESTINATION_DIR is a subdirectory of SOURCE_DIR.
▪ DESTINATION_DIR and SOURCE_DIR are the same.

• File processing:
o Different formats, encodings and sizes:

 Input file formats
 TXT HTML MD

Input file en-
codings

WIN1251 100 KB 50 MB 10 MB
CP866 10 MB 100 KB 50 MB
KOI8R 50 MB 10 MB 100 KB

Any 0 bytes
Any 50 MB + 1 B 50 MB + 1 B 50 MB + 1 B

- Any unacceptable format
Any Acceptable format, damaged file

o Inaccessible input files:
▪ No access permission.
▪ File is open and locked.
▪ File with read-only attribute.

• Stopping:
o By closing the console window.

• Application log:
o Automatic creation (in the absence of a log file).
o Continuing (appending the log) on restarts.

• Performance:
o Elementary test with raw assessment.

Note that the checklist can contain not only “very brief bullet points” but also quite
detailed comments, if necessary — it is better to explain the idea in more detail than to
guess later what was meant.

Also note that many of the checklist items are very high-level, which is fine. For
example, “acceptable format, damaged file” (see matrix with encodings, formats and
sizes) sounds vague, but this deficiency will be corrected at the level of proper test cases.

Checklist

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 112/278

Other functions and special scenarios

 It is time to pay attention to the various little things and tricky nuances, problems
with which are unlikely to be of great concern to the user, but still formally count as de-
fects.

• Configuration and start-up:
o SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME values:

▪ In different styles (Windows paths + *nix paths) — one in one style,
the other in another.

▪ Using UNC names.
▪ LOG_FILE_NAME inside the SOURCE_DIR.
▪ LOG_FILE_NAME inside the DESTINATION_DIR.

o Size of LOG_FILE_NAME at the start-up:
▪ 2–4 GB.
▪ 4+ GB.

o Running two or more copies of an application with:
▪ The same SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME

parameters.
▪ The same SOURCE_DIR and LOG_FILE_NAME, but different DES-

TINATION_DIR.
▪ The same DESTINATION_DIR and LOG_FILE_NAME, but different

SOURCE_DIR.

• File processing:
o A correct format file in which text is represented in two or more supported

encodings at the same time.
o Input file size:

▪ 2–4 GB.
▪ 4+ GB.

Task 2.4.b: you might want to change something about the above checklist and
this is perfectly normal and fair: there is no “the only perfect checklist” and your
ideas are valid, so make your own checklist or point out any shortcomings you
notice in the above checklist.

 As we will see in the next chapter, creating a good test case can require long and
tedious, fairly monotonous work, which does not require a skilled tester to make signifi-
cant intellectual efforts, and therefore switching between working on checklists (the cre-
ative component) and formulating them into test cases (the mechanical component) al-
lows one to diversify the work process and reduce fatigue. Although, of course, writing
complex and high-quality test cases may turn out to be no less creative work than thinking
through checklists.

Test case and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 113/278

2.4.2. Test case and its lifecycle

Terminology and general information

Let’s start with the terminology, as there is a lot of confusion caused by different
traditions in different countries, companies and individual teams.

At the heart of it all is the term “test”. The official definition goes like this.

Test282 is a set of one or more test cases.

As it is the easiest and fastest of all other terms to pronounce, depending on the
context, it can be understood as a single item on a checklist, a single step in a test case,
a test case itself, a test suite, and... we may go on for a long time. One thing is important:
if you hear or see the word “test” take it in context.

Now let’s look at the most important term for us — “test case”.

Test case283 is a set of input data, execution conditions and expected results
designed to test a feature or behavior of a software tool.

A test case may also be understood as an appropriate document representing
a formal record of a test case.

 We will come back to this thought{142}, but it is already critically important to under-
stand and remember: if a test case has no input data, execution conditions and expected
results, and/or the purpose of the test case is not clear, it is a bad test case (sometimes
it makes no sense, sometimes it cannot be executed at all).

The rest of the terms related to tests, test cases and test scenarios can be read
at this stage simply for familiarization purposes. If you open the ISTQB glossary
to the letter “T” you will see many terms which are closely cross-referenced with
each other: at this early stage of learning about testing there is no need to look
at them all in depth, but some are worth reading. They are presented below.

 High level test case284 is a test case without specific input data and expected
results.

Generally limited to general ideas and operations, similar in nature to the detailed
checklist item. It is quite common in integration testing{75} and system testing{75}, as well as
at the smoke test{77} level. It can serve as a starting point for exploratory testing{84} or for
creating low-level test cases.

Low level test case285 is a test case with specific inputs and expected results.
 This is a fully “ready-to-run” test case and is generally the most classic type of test
case. Beginner testers are most often taught to write this type of tests, because it is much
easier to describe all the data in detail than to understand what information can be ne-
glected without diminishing the value of the test case.

282 Test. A set of one or more test cases. [ISTQB Glossary]
283 Test case. A set of input values, execution preconditions, expected results and execution postconditions, developed for a particular

objective or test condition, such as to exercise a particular program path or to verify compliance with a specific requirement.
[ISTQB Glossary]

284 High level test case (logical test case). A test case without concrete (implementation level) values for input data and expected

results. Logical operators are used; instances of the actual values are not yet defined and/or available. [ISTQB Glossary]
285 Low level test case. A test case with concrete (implementation level) values for input data and expected results. Logical operators

from high level test cases are replaced by actual values that correspond to the objectives of the logical operators. [ISTQB Glos-
sary]

Test case and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 114/278

Test case specification286 is a document describing a test suite (including its ob-
jectives, input data, execution conditions and steps, expected results) for a test item287 or
test object288.

Test specification289 is a document consisting of test design specification290, test
case specification286 and/or test procedure specification291.

 Test scenario292 (test procedure specification, test script) is a document that de-
scribes the sequence of steps for running a test.

The purpose of writing test cases

Testing can also be done without test cases (inadvisable, but possible; yes, the
effectiveness of this approach varies very widely depending on a number of factors). Hav-
ing test cases, on the other hand, allows to:

• Structure and systematize the approach to testing (without which a major project
is almost guaranteed to fail).

• Calculate test coverage293 metrics and take measures to increase coverage (test
cases are the main source of information, without which such metrics are mean-
ingless).

• Monitor the current situation against the plan (how many test cases are needed,
how many are already in hand, how many have been completed of the number
planned at this stage, etc.)

• Clarify the understanding between customer, developers and testers (test cases
often show the application’s behavior much more clearly than is reflected in the
requirements).

• Store information of long-term use and experience exchange between staff and
teams (or at least not trying to keep hundreds of pages of text in your head).

• Perform regression testing{86} and re-testing{86} (which would not have been possi-
ble at all without the test cases).

• Improve the requirements quality (we have already discussed this: writing check-
lists and test cases is a good requirements testing technique{50}).

• quickly bring on board a new team member who has recently joined the project.

286 Test case specification. A document specifying a set of test cases (objective, inputs, test actions, expected results, and execution

preconditions) for a test item. [ISTQB Glossary]
287 Test item. The individual element to be tested. There usually is one test object and many test items. [ISTQB Glossary]
288 Test object. The component or system to be tested. [ISTQB Glossary]
289 Test specification. A document that consists of a test design specification, test case specification and/or test procedure specifi-

cation. [ISTQB Glossary]
290 Test design specification. A document specifying the test conditions (coverage items) for a test item, the detailed test approach

and identifying the associated high level test cases. [ISTQB Glossary]
291 Test procedure specification (test procedure). A document specifying a sequence of actions for the execution of a test. Also

known as test script or manual test script. [ISTQB Glossary]
292 Test scenario. A document specifying a sequence of actions for the execution of a test. Also known as test script or manual test

script. [ISTQB Glossary]
293 Coverage (test coverage). The degree, expressed as a percentage, to which a specified coverage item (an entity or property

used as a basis for test coverage, e.g., equivalence partitions or code statements) has been exercised by a test suite. [ISTQB
Glossary]

Test case and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 115/278

Test case lifecycle

Unlike a defect report, which has a full developed lifecycle{158}, for a test case it is
more a set of states (see figure 2.4.a) in which it can be (the most important states are in
bold).

Figure 2.4.a — Test case lifecycle (set of states)

• New — is the typical initial state of almost any artefact. The test case automatically
enters this state after creation.

• Planned (ready for testing) — in this state a test case is in when it is either explicitly
included in the plan for the next test iteration, or at least ready for execution.

• Not tested — in some test case management systems this state replaces the pre-
vious state (“planned”). When a test case is in this state, it means that it is ready
to run, but has not yet been executed.

• Work in progress — if a test case takes a long time to complete, it may be placed
in this state to emphasize the fact that work is in progress and results can be ex-
pected soon. If a test case does not take long to complete, this state is normally
skipped and the test case is immediately switched to one of the three following
states: “failed”, “passed”, or “blocked”.

• Skipped — there are situations where the execution of a test case is cancelled
due to the shortage of time or a change in test logic.

• Failed — this state means that a defect was detected while running a test case,
i.e., the expected result of at least one test case step does not match the actual
result. If a defect is detected “accidentally” while running a test case, which has
nothing to do with the test case steps and their expected results, the test case is
considered passed (of course a defect report is generated for the detected defect).

New

Planned

Work in progress

Passed

Closed

N
o

t
re

a
d
y

Failed Blocked

Not tested

Skipped

Test case and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 116/278

• Passed — this state means that no defects related to the discrepancy between
the expected and actual results of the test case steps have been detected during
the execution of the test case.

• Blocked — this state means that for some reason the test case cannot be exe-
cuted (usually a defect that prevents some user scenario from being implemented).

• Closed — is a very rare case, as test cases are usually left in the states Failed /
Passed / Blocked / Skipped. In some test case management systems test case is
put in this state to emphasize the fact that in the given testing iteration all opera-
tions with it are completed.

• Not ready — as can be seen from the diagram, a test case can be transferred to
(and from) this state at any time if an error is detected in it, if the requirements for
which it was written change, or if some other situation occurs that makes it impos-
sible to consider the test case suitable for execution and transition to other states.

Again, unlike the defect lifecycle, which is sufficiently standardized and formalized,
the above described for a test case is of a general advisory nature, considered as a dis-
crete set of states (rather than a strict lifecycle) and can vary greatly from company to
company (due to the traditions and/or features of test case management systems at
hand).

Test case attributes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 117/278

2.4.3. Test case attributes

As mentioned above, the term “test case” can refer to a formal record of a test
case in the form of a technical document. This record has a generally accepted structure,
the components of which are called attributes (fields) of the test case.
 Depending on the test case management tool, the appearance of the test case
record may vary slightly, some fields may be added or removed, but the concept remains
the same.

The overall view of the entire test case structure is shown in figure 2.4.b.

UG_U1.12 A R97 Gal-

lery

Uploader File upload, name with

special symbols

Preparations: create a non-

empty file named

#$%^&.jpg.

1. Click “Upload photo”.

2. Click “Choose”.

3. Select the prepared file

from the list.

4. Click “OK”.

5. Click “Add to the gal-

lery”.

1. Upload window ap-

pears.

2. Standard file selec-

tion dialog window ap-

pears.

3. Chosen file name ap-

pears in “File” field.

4. File selection dialog

window closes, “File”

field contains full path to

the selected file.

5. Uploaded file ap-

pears in the gallery con-

tents list.

Figure 2.4.b — Key test case attributes

 Now let’s consider each attribute in detail.

 Identifier is a unique value to clearly distinguish one test case from another and
is used in all kinds of references. In general, a test case identifier may simply be a unique
number, but (if the test case management tool permits) it may be much more complex: it
may include prefixes, suffixes and other meaningful components that quickly identify the
purpose of the test case and the application part (or requirements) it belongs to (for ex-
ample: UR216_S12_DB_Neg).

 Priority shows the importance of the test case. It can be expressed in letters (A,
B, C, D, E), numbers (1, 2, 3, 4, 5), words (“extremely high”, “high”, “medium”, “low”,
“extremely low”) or another convenient way. The number of grades is also not fixed, but
usually ranges from three to five.
 The priority of the test case can correlate with:

• the importance of the requirement, user scenario{137} or function to which the test
case is related;

• the potential importance of the defect{166}, that the test case aims to find;

• the level of risk associated with the test case requirement, scenario or function
being tested.
The main purpose of this attribute is to simplify the allocation of team attention and

effort (higher-priority test cases receive more of it), and to make it easier to plan and
decide what can be sacrificed in some force majeure situation that does not allow all pre-
planned test cases to be completed.

Identifier

(id)

Priority
Related requirement

Module and

submodule

Test case title

Precondition or

necessary prepara-

tions (if any)
Steps

Expected results

(for each step)

Test case attributes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 118/278

Related requirement shows the core requirement that the test case is intended
to verify (core — because a single test case may contain multiple requirements). This
field improves the traceability{134} of the test case.

Frequent questions about filling in this field are:

• Can it be left blank? Yes. The test case may have been developed outside the
direct requirements, and (yet?) the meaning of this field is difficult to determine.
Although it is not considered good, it is quite common.

• Can more than one requirement be listed in this field? Yes, but most often one tries
to choose one most important or “higher level” one (e.g., instead of listing R56.1,
R56.2, R56.3 etc. one can just write R56). Most often in test management tools,
this field is a drop-down list where only one value can be selected, and this ques-
tion becomes irrelevant. In addition, many test cases are still aimed at checking
strictly one requirement, and for them this question is also irrelevant.

Module and submodule indicate the parts of the application to which the test case
relates and allow a better understanding of its purpose.
 The idea of dividing an application into modules and submodules stems from the
fact that in complex systems it is almost impossible to look at the whole project, and the
question “how to test this application” becomes unacceptably difficult. The application is
then logically divided into components (modules), which in turn are divided into smaller
components (submodules). And it becomes much easier to come up with checklists and
create good test cases for such small parts of the application.

Generally, the hierarchy of modules and submodules is created as a single set for
the whole project team in order to avoid confusion due to different people using different
approaches to this division or even just different names for the same parts of the applica-
tion.

Now for the hard part: how modules and submodules are selected. In reality, the
easiest way to go about this is based on the architecture and design of the application.
For example, in an application that we’re already familiar with{57} there is a hierarchy of
modules and submodules:

• Start-up mechanism:
o parameter analysis mechanism;
o application build mechanism;
o error handling mechanism.

• File system interaction mechanism:
o SOURCE_DIR tree traversal mechanism;
o error handling mechanism.

• File conversion mechanism:
o encoding detection mechanism;
o encodings conversion mechanism;
o error handling mechanism.

• Logging mechanism:
o log recording mechanism;
o console logging mechanism;
o error handling mechanism.

Test case attributes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 119/278

Agree that such long names with the word “mechanism” constantly repeated are
difficult to read and remember. Let’s rewrite:

• Starter:
o parameter analyzer;
o application builder;
o error handler.

• Scanner:
o traverser;
o error handler.

• Converter:
o detector;
o converter;
o error handler.

• Logger:
o disk logger;
o console logger;
o error handler.

But what do we do if we don’t know the “guts” of an application (or if we’re not very
good at programming)? Modules and submodules can be allocated based on the graph-
ical user interface (large areas and elements within them), based on the tasks and sub-
tasks the application solves, etc. The main thing is that this logic should be applied in the
same way to the whole application.

Warning! A common mistake! A module and a submodule of an application are
NOT actions, they are just structural parts, “chunks” of the application. You
may be misled by names such as “print, printer setup” (but here we mean the
parts of the application that are responsible for printing and printer setup (and
they are named with verbal nouns) and not the printing or printer setup pro-
cess).

Compare (using a human example): “respiratory system, lungs” is a module
and submodule, but “breathing”, “sniffing”, “sneezing” are not; “head, brain” is
a module and submodule, but “nodding”, “thinking” are not.

The presence of “Module” and “Submodule” fields improves the traceability{134} of a
test case.

Title is designed to make it easier and quicker to understand the main idea (pur-
pose) of a test case without referring to its other attributes. It is this field that is most
informative when browsing the list of test cases.

 Compare.

Bad Good

Test 1 Start-up, one copy, correct parameters

Test 2 One copy start-up with invalid paths

Test 78 (improved) Start-up, multiple copies, no conflicts

Shutdown Ctrl+C shutdown

Closing Shutdown by closing the console

… …

Test case attributes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 120/278

 The title of a test case can be a full sentence, a phrase, a set of phrases — the
main thing is that the following conditions must be met:

• Informativeness.

• At least relative uniqueness (so as not to confuse different test cases).

Warning! A common mistake! If the test case management tool does not require
a title, you should write one anyway. Test cases without a title turn into a
mishmash of information, the use of which is enormously costly and completely
pointless.

 And there is one more thing that may help with title formulation. A “test case” is a
“test case” for real. So, a test case title describes that case a “test case” is designed to
check.

Precondition (preparation, initial data, setup) allows you to describe everything
that needs to be prepared before the test case can start, for example:

• Database state.

• File system and its objects state.

• Servers and network infrastructure state.

What is described in this field is prepared WITHOUT using the application under
test, so if there is a problem here, one cannot write a defect report about the application.

This point is very, very important, so let’s explain it with a simple real-life example.
Imagine that you are tasting a chocolate. In the “initial data” you can write “buy chocolate
of such and such varieties in such quantity”. If that kind of chocolate is not available, if
the shop is closed, if there is not enough money, etc. — these are NOT flavor problems,
and you cannot write a defect report like “the chocolate is tasteless because the shop is
closed”.

Some authors do not follow this logic and allow for the “preparation” section to
work with the application under test. And there is no “right way” here — it’s just
that one tradition decides one way, another decides another. In many ways, this
is also a terminological problem: “preparation”, “initial data” and “setup” are log-
ical to perform without an application under test, while “precondition” is closer
to describing the state of an application under test. In a real working environ-
ment, you only need to read a few test cases already created by your peers to
understand their views on the matter.

Steps describe the sequence of activities that need to be implemented during the

test case execution. General guidelines for writing the steps are as follows:

• start from a clear and obvious point, don’t write unnecessary initial steps (applica-
tion start-up, obvious interface operations, etc.);

• even if there is only one step in the test case, number it (otherwise there is an
increased chance of accidentally “sticking” the description of this step to the new
text in the future);

• use an impersonal form (e.g., “open”, “enter”, “add”), do not use the particle “to”
(i.e., “start application”, not “to start application”);

• relate the degree of detail of the steps and their parameters to the purpose of the
test case, its complexity, the functional testing level{77} etc. — depending on these
and many other factors, the level of detail can range from general ideas to very
clear values and guidelines;

• refer to previous steps and their ranges to reduce the length of the text (e.g., “re-
peat steps 3–5 with the value of...”);

• write the steps sequentially, without conditionalities such as “if... then...”.

Test case attributes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 121/278

Warning! A common mistake! It is strictly forbidden to refer to steps from other
test cases and to other test cases in their entirety: if those other test cases are
changed or deleted, your test case will refer to wrong data or to a void, and if
during execution those other test cases or steps cause an error you will not be
able to finish your test case.

Expected results for each test case step describe the response of the application
to the actions described in the “Steps”. The step number corresponds to the result num-
ber.

The following recommendations can be made on the writing of the expected re-
sults:

• describe the system’s behavior in a way that excludes subjective interpretation
(e.g., “the application works correctly” is bad, “a window saying … appears” is
good);

• write the expected result of all steps, without exception, if you have the slightest
doubt that the result of a step will be completely trivial and obvious (if you do omit
the expected result of a trivial action, it is better to leave a blank line in the list of
expected results — this makes it easier to read);

• write briefly, but not compromising on the informativeness;

• avoid conditionalities such as “if... then...”.

Warning! A common mistake! The expected results ALWAYS describe the
CORRECT operation of the application. There is not and cannot be an expected
result like “the application causes an error in the operating system and crashes
with loss of all user data”.

However, the correct operation of an application may well involve the display of
messages about incorrect user actions or some critical situation. For example,
the message “Unable to save file to specified path: not enough free space on
target drive” is not an application error, but it’s perfectly normal and correct op-
eration. An application error (in the same situation) would be no such message,
and/or data corruption or loss.

For a deeper understanding of test case design, we recommend reading “Typical
mistakes in writing checklists, test cases and test suites”{149} chapter right now.

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 122/278

2.4.4. Test management tools

There are a lot of test management tools294, furthermore, many companies are de-
veloping their own internal means of dealing with this task.
 There’s no point in learning how to work with test cases in a particular tool — the
principle is the same everywhere, and the relevant skills are built up in just a couple of
days. What’s important to understand is the common set of functions implemented by
such tools (of course, one or another tool may not implement some function from this list
and/or implement the functions not included in the list):

• creating test cases and test suites;

• document version control with the ability to identify who has made changes and to
undo them if necessary;

• formation and tracking of test plan implementation, collection and visualization of
a variety of metrics, generation of reports;

• integration with bug-tracking tools, capturing the relationship between test case
execution result and the defect reports generated (if any);

• integration with project management systems;

• integration with testing automation tools, managing the execution of automated
test cases.

In other words, a good test management tool takes care of all the routine technical
operations that objectively need to be performed during the implementation of the testing
lifecycle{26}. A great advantage is also the ability of such tools to track correlations between
different documents and other artefacts, correlations between artefacts and processes,
etc., making these actions subject to a system of access permissions and guaranteeing
the integrity and correctness of the information.

 For a general overview and to better consolidate the topic of test case attributes{117}
design, we will now look at a few pictures of forms from different tools.
 There is quite deliberately no comparison or detailed description given here —
there are plenty of such reviews on the Internet, and they are rapidly becoming outdated
as new versions of the products reviewed are released.
 But of interest are the individual features of the interface, which we will focus on in
each of the examples (important: if you are interested in a detailed description of each
field, its associated processes, etc., please refer to the official documentation — only the
briefest explanations will be given here).

294 Test management tool. A tool that provides support to the test management and control part of a test process. It often has several

capabilities, such as testware management, scheduling of tests, the logging of results, progress tracking, incident management
and test reporting. [ISTQB Glossary]

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 123/278

QAComplete295

Figure 2.4.c — Test case creation with QAComplete

1. “Id”, as can be seen from the relevant caption, is autogenerated.
2. “Title”, as with most systems, is mandatory.
3. “Priority offers a choice of high, medium, low by default.
4. “Folder name” is the equivalent of the fields “Module” and “Sub-module” and allows

one to select from a drop-down tree list the appropriate value describing what the
test case belongs to.

5. “Status” shows the current status of the test case: new, approved, awaiting ap-
proval, in design, outdated, rejected.

6. “Assigned to” indicates who is currently the “main workforce” for this test case (or
who should make the decision to, for example, approve the test case).

7. “Last run status” shows whether the test passed or failed.
8. “Last run configuration” shows on which hardware and software platform the test

case was last run.
9. “Avg run time” contains the automatically calculated average time required to ex-

ecute a test case.
10. “Last run test set” contains information about the test suite in which the test case

was last run.
11. “Last run release” contains information about the release (build) of the software on

which the test case was last run.

295 QAComplete [http://smartbear.com/product/test-management-tool/qacomplete/]

1 2

3

4
5

6

7

8

9

10

11
12

13

14

15

16

17

18
19

http://smartbear.com/product/test-management-tool/qacomplete/

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 124/278

12. “Description” allows one to add any useful information about the test case (includ-
ing execution details, preparation, etc.).

13. “Owner” indicates the owner of the test case (usually the author of the test case).
14. “Execution type” by default only offers manual execution, but with appropriate set-

tings and integration with other products the list can be extended (at least by add-
ing automated execution).

15. “Version” contains the information about the current version of the test case (basi-
cally it is a counter to how many times the test case has been edited). All history
of changes is stored, allowing one to return to any of the previous versions.

16. By default, the “Test type” offers options such as negative, positive, regression,
smoke test.

17. “Default host name” is mainly used in automated test cases and suggests selecting
from a list the name of the registered computer on which the special client is in-
stalled.

18. “Linked items” are links to requirements, defect reports, etc.
19. “File attachments” can contain test data, explanatory pictures, videos, etc.

For a description of the execution steps and expected results, an additional inter-
face is available after the general description of the test case has been saved:

Figure 2.4.d — Adding test case steps with QAComplete

If required, you can add and customize additional fields, greatly extending the orig-
inal capabilities of the tool.

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 125/278

TestLink296

Figure 2.4.e — Test case creation with TestLink

1. “Title” is also mandatory here.
2. “Summary” allows one to add any useful information about the test case (including

execution details, preparation, etc.).
3. “Steps” allows one to describe the execution steps.
4. “Expected results” allows one to describe the expected results related to the exe-

cution steps.
5. “Available keywords” contains a list of keywords that can be associated with a test

case to facilitate classification and search for test cases. This is another variation
on the idea of “Modules” and “Sub-modules” (some systems implement both mech-
anisms).

6. “Assigned keywords” contains a list of keywords associated with the test case.

As you can see, test case management tools can also be quite minimalistic.

296 TestLink [http://sourceforge.net/projects/testlink/]

1

2

3 4

5 6

http://sourceforge.net/projects/testlink/

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 126/278

TestRail297

Figure 2.4.f — Test case creation with TestRail

1. “Title” is also mandatory here.
2. “Section” is another variation on the “Module” and “Sub-module” topic, allowing the

creation of a hierarchy of sections in which test cases can be placed.
3. “Type” offers the following options by default: automated, functionality, perfor-

mance, regression, usability, other.
4. “Priority” is represented here by numbers with the following verbal descriptions:

must test, test if time, don’t test.
5. “Estimate” provides an estimate of the time needed to complete the test case.
6. “Milestone” allows one to specify the key point in the project by which this test case

should consistently show a positive result (i.e., to be executed successfully).

297 TestRail [http://www.gurock.com/testrail/]

1

2
3 4 5

6

7

8

9

10

http://www.gurock.com/testrail/

Test management tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 127/278

7. “References” allows one to store references to artefacts such as requirements,
user stories, defect reports and other documents (this requires additional configu-
ration).

8. “Preconditions” is a classic description of the preconditions and necessary prepa-
rations for a test case.

9. “Step description” allows one to add a description of each individual step in a test
case.

10. “Expected results” allows one to describe the expected results for each step.

Task 2.4.c: study 3–5 more test case management tools, read their documen-
tation, create some test cases with them.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 128/278

2.4.5. Good test case properties

 Even a properly designed test case can be of poor quality if one of the following
properties is defective.

 Proper technical language, accuracy and uniformity of wording. This property
applies equally to requirements, test cases, defect reports — any documentation. The
basic ideas have already been described (see “Test case attributes”{117} chapter), and of
the most general and important, let us remind and add:

• write briefly but clearly;

• be sure to use the exact labels and technically correct names of the application
elements;

• do not explain the basics of computer use (assume that your colleagues know what
a “menu item” is and how to use it, for example);

• name the same things the same way everywhere (e.g., you can’t name some ap-
plication state “graphical representation” in one test case and “visual display” in
another, because many people might think those are different things);

• follow the project’s standard for writing test cases (sometimes these standards can
be very strict, going as far as stipulating which item names should be in double
quotes and which should be in single quotes).

 Balance between specificity and generality. The more specific a test case is,
the more detailed it is about specific actions, specific values, etc., i.e., the more precise it
is. Correspondingly, a test case is considered more general the less specific it is.

Let’s consider the “steps” and “expected results” fields of the two test cases (think
about which test case you would consider good and which you would consider bad and
why):

Test Case 1:

Steps Expected Results
Conversion from all supported encodings

Preparations:

• Create the following folders: C:/A, C:/B, C:/C,

C:/D.

• Place the 1.html, 2.txt, 3.md files from the at-

tached archive in the C:/D folder.

1. Start the application by running the “php con-

verter.php c:/a c:/b c:/c/converter.log” com-

mand.

2. Copy 1.html, 2.txt, 3.md files from the C:/D

folder to the C:/A folder.

3. Stop the application by executing Ctrl+C com-

mand.

1. The application console log is displayed with

the message “current_time started, source dir

c:/a, destination dir c:/b, log file c:/c/con-

verter.log”, the converter.log file appears (in the

C:/C folder), in that log file the entry “cur-

rent_time started, source dir c:/a, destination dir

c:/b, log file c:/c/converter.log” appears.

2. 1.html, 2.txt, 3.md files appear in C:/A folder,

then disappear from there and appear in C:/B

folder. In the console log and in the C:/C/con-

verter.log file the messages (entries) “cur-

rent_time processing 1.html (KOI8-R)”, “cur-

rent_time processing 2.txt (CP-1251)”, “cur-

rent_time processing 3.md (CP-866)” appear.

3. The “current_time closed” message appears in

the C:/C/converter.log file. The application is

shut down.

Test Case 2:

Steps Expected Results
Conversion from all supported encodings

1. Convert three files of acceptable size of three

different encodings of all three acceptable for-

mats.

1. The files are moved to the destination folder

and all files are encoded to UTF-8.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 129/278

If we return to the question “which test case would you consider good and which
would you consider bad and why”, the answer is that both test cases are bad because
the first is too specific and the second too general. It could be said that the ideas of low-
level{113} and high-level{113} test cases have been taken to the point of absurdity here.

Why excessive specificity is bad (test case 1):

• when a test case is repeated, the same actions will always be performed with ex-
actly the same data, making it less likely that an error will be detected;

• the time required to write, revise or even just read the test case increases;

• in the case of trivial actions, experienced professionals spend extra thinking re-
sources trying to understand what they have overlooked, because they are used
to describing only the most complex and non-obvious situations in this way.

Why excessive generality is bad (test case 2):

• the test case is difficult for beginning testers, or even for experienced testers who
have only recently joined a project;

• unscrupulous team members tend to be negligent about such test cases;

• the tester executing the test case may understand it differently than it was intended
by the author (and end up executing actually a different test case).

The way out of this situation is to stick to the “golden mean” (although of course
some tests will be a little more specific, some a little more general). Here is an example
of this “golden mean” approach:

Test Case 3:

Steps Expected Results
Conversion from all supported encodings

Preparations:

• Create four separate folders in the root of any

drive for input files, output files, log files and

temporary storage of test files.

• Extract the contents of the attached archive to

a folder for temporary storage of test files.

1. Start the application with the relevant paths

from the test preparation in the parameters (the

name of the log file is arbitrary).

2. Copy the files from the temporary storage folder

to the input folder.

3. Stop the application.

1. The application starts and displays a start-up

message in the console and a log file.

2. Files in the input folder are moved to the output

folder and the console and log file show con-

version messages for each of the files, indicat-

ing their original encoding.

3. The app displays a shutdown message in the

log file and terminates.

This test case has everything you need to understand and execute it, but it is
shorter and easier to execute, and the lack of strictly defined values means that when a
test case is repeatedly executed (especially by different testers), specific parameters will
change their values, which increases the chance of detecting a defect.
 Once again, the main point: the specificity or generality of a test case itself is not
a bad thing, but a sharp bias in one direction or another reduces the quality of the test
case.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 130/278

Balance between simplicity and complexity. There are no academic definitions
here, but it is generally accepted that a simple test case operates with a single object (or
in which the main object is clearly visible) and contains a few trivial actions; a complex
test case operates with several equal objects and contains many non-trivial actions.

Advantages of simple test cases:

• they can be read quickly, easily understood and executed;

• they are understandable to beginning testers and new people in the project;

• they make the error evident (they usually involve the performance of everyday triv-
ial actions, problems with which can be seen with the naked eye and are not de-
batable);

• they simplify the initial diagnostics of the problem, because they narrow down the
search.

Advantages of complex test cases:

• when many objects interact, there is an increased likelihood of an error occurring;

• users tend to use complex scenarios, and therefore complex tests emulate users’
work more fully;

• developers rarely check such complex cases (and they are absolutely not obliged
to do so).

Let’s take a look at examples.

 Too simple test case:

Steps Expected Results
Starting the application

1. Start the application.

1. The application starts up.

Too complex test case:

Steps Expected Results
Reconversion

Preparations:

• Create three separate folders in the root of any

drive for input files, output files, log files.

• Prepare a set of several files of the maximum

supported size of supported formats with sup-

ported encodings, as well as several files of an

acceptable size but of an unsupported format.

1. Start the application with the relevant paths

from the test preparation in the parameters (the

name of the log file is arbitrary).

2. Copy several files of acceptable format into the

input folder.

3. Move the converted files from the output folder

to the input folder.

4. Move the converted files from the output folder

to the folder with set of files for the test.

5. Move all files from the folder with set of files for

the test to the input folder.

6. Move the converted files from the output folder

to the input folder.

2. Files are gradually moved from the input folder

to the output folder and messages indicating

successful conversion appear in the console

and in the log file.

3. Files are gradually moved from the input folder

to the output folder and messages indicating

successful conversion appear in the console

and in the log file.

5. Files are gradually moved from the input folder

to the output folder, messages indicating suc-

cessful conversion of files in an acceptable for-

mat and messages indicating that invalid files

are ignored appear in the console and in the log

file.

6. Files are gradually moved from the input folder

to the output folder, messages indicating suc-

cessful conversion of files in an acceptable for-

mat and messages indicating that invalid files

are ignored appear in the console and in the log

file.

This test case is both too complex in its redundancy of actions and in its specifica-
tion of redundant data and operations.

Task 2.4.d: rewrite this test case, eliminating its shortcomings but retaining the
overall objective (checking that previously converted files are reconverted).

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 131/278

 An example of a good simple test case is Test Case 3{129} from the point about
specificity and generality.
 An example of a good complex test case might look like this:

Steps Expected Results
Multiple copies of the application, file oper-

ations conflict

Preparations:

• Create three separate folders in the root of

any drive for input files, output files, log files.

• Prepare a set of several files of the maxi-

mum supported file sizes of supported for-

mats with supported encodings.

1. Run the first copy of the application, speci-

fying in the parameters the relevant paths

from the test preparation (log file name is ar-

bitrary).

2. Run a second copy of the application with

the same parameters (see step 1).

3. Run a third copy of the application with the

same parameters (see step 1).

4. Change the process priority of the second

(“high”) and third (“low”) copies.

5. Copy the prepared set of input files into the

folder for the input files.

3. All three application copies are started and three

application start-up records consecutively appear

in the log file.

5. The files are gradually moved from the input folder

to the output folder, the console and log file display

messages indicating successful conversion, and

(possibly) messages such as:

a. “source file inaccessible, retrying”.

b. “destination file inaccessible, retrying”.

c. “log file inaccessible, retrying”.

A key indicator of correct operation is that all files

have been successfully converted, and that the

console and log file show that each file has been

successfully converted (one to three entries per

file).

Warning messages about the unavailability of an

input file, output file or log file are also an indication

that the application is working correctly, but their

number depends on many external factors and

cannot be predicted in advance.

 Sometimes more complex test cases are also more specific, but this is only a gen-
eral trend, not a law. It is also impossible to judge uniquely by the complexity of a test
case about its priority (in our example of a good complex test case it will obviously have
a very low priority because the situation it tests is artificial and highly improbable, but
there are complex tests with the highest priority).

As with specificity and generality, simplicity or complexity of test cases is not a bad
thing in itself (in fact, it is recommended to start with simple test cases and then progress
to more and more complex ones), but excessive simplicity and excessive complexity also
reduce the quality of the test case.

 “Indicativeness” (high probability of detecting an error). Starting at the critical
path functional testing level{77}, it can be stated that the better a test case is, the more
demonstrative it is (the more likely it is to detect an error). This is why we consider too
simple test cases unsuitable — they are not indicative.

An example of not indicative (bad) test case:

Steps Expected Results
Starting and stopping an application

1. Start the application with the correct parame-

ters.

2. Terminate the application.

1. The application starts up.

2. The application terminates.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 132/278

An example of indicative (good) test case:

Steps Expected Results
Starting with incorrect parameters, non-exist-

ing paths

1. Run the application with all three parameters

(SOURCE_DIR, DESTINATION_DIR,

LOG_FILE_NAME), whose values refer to non-

existent paths in the file system (for example:

z:\src\, z:\dst\, z:\log.txt assuming the system

has no logical drive “z:”).

1. The following messages are displayed in the

console and the application is terminated

Messages:

a. Usage message.

b. SOURCE_DIR [z:\src\]: directory not exists

or inaccessible.

c. DESTINATION_DIR [z:\dst\]: directory not

exists or inaccessible.

d. LOG_FILE_NAME [z:\log.txt]: wrong file

name or inaccessible path.

 Note that the indicative test case is still fairly simple, but it tests a situation where
an error is incomparably more likely to occur than in the situation described by a bad (not
indicative) test case.
 It can also be said that indicative test cases often perform some “interesting ac-
tions”, i.e. actions which are unlikely to be performed simply in the process of working
with the application (e.g.: “save file” is a trivial action, which will obviously be performed
more than a hundred times, even by the developers themselves, but “save file to a write-
protected drive”, “save file to a drive with insufficient free space”, “save file to a folder that
cannot be accessed” are much more interesting and non-trivial actions).

Consistency of purpose. The essence of this property is that all actions in a test
case are aimed at following a single logic and achieving a single goal, and do not contain
any deviations.

The many examples of good test cases presented in this chapter are good exam-
ples of how to implement this property correctly. And an infringement might look like this:

Steps Expected Results
Conversion from all supported encodings

Preparations:

• Create four separate folders in the root of any

drive for input files, output files, log files and

temporary storage of test files.

• Extract the contents of the attached archive to

a folder for temporary storage of test files.

1. Start the application with the relevant paths

from the test preparation in the parameters (the

name of the log file is arbitrary).

2. Copy the files from the temporary storage folder

to the input folder.

3. Stop the application.

4. Delete the log file.

5. Restart the application with the same parame-

ters.

6. Stop the application.

1. The application starts and displays a start-up

message in the console and a log file.

2. Files in the input folder are moved to the output

folder and the console and log file show con-

version messages for each of the files, indicat-

ing their original encoding.

3. The app displays a shutdown message in the

log file and terminates.

5. The application starts and displays a start-up

message in the console and a newly created

log file.

6. The application displays a completion message

in the log file and terminates.

 Steps 3–5 are not in any way relevant to the purpose of the test case, which is to
verify that the conversion of input data provided in all supported encodings is correct.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 133/278

Absence of redundant actions. Usually, this property implies that there is no
need for a long, point-by-point description of what can be replaced by a single phrase in
the steps of a test case:

Bad Good
1. Specify as the first application parameter the

path to the source folder.

2. Specify as the second application parameter

the path to the destination folder.

3. Specify as the third application parameter the

path to the log file.

4. Start the application.

1. Start the application with all three correct param-

eters (e.g., c:\src\, c:\dst\, c:\log.txt provided the

corresponding folders exist and are accessible to

the application).

The second most common mistake is to start each test case by launching the ap-
plication and describing in detail how to bring it to one state or another. In our examples,
we consider each test case as existing in a single form in an isolated environment, and
therefore we have to consciously make this mistake (otherwise the test case will be in-
complete), but in real life, there will be specific tests for launching an application, and a
long path of many actions can be described as one action whose context makes it clear
how to perform that action.

The following test case example does not relate to our “File Converter”, but illus-
trates the point very well:

Bad Good
1. Start the application.

2. Select “File” from the menu.

3. Select “Open”.

4. Go to the folder containing at least one DOCX

file with three or more pages.

1. Open a DOCX file with three or more pages.

 This also includes the mistake of repeating the same preparations in multiple test
cases (yes, for the reasons described above, in the examples we are again forced to do
things that should not be done in life). It is much more convenient to combine the tests
into a suite{137} and specify the preparations once, underlining whether or not they should
be done before each test case in the suite.

The problem with preparatory (and final) actions is ideally solved in automated
unit testing298 using frameworks like JUnit or TestNG — there is a special “fixture
mechanism” which automatically performs the specified actions before or after
each individual test method (or a bunch of them).

Non-redundancy in relation to other test cases. In the process of creating mul-
tiple test cases, it is very easy to find yourself in a situation where two or more test cases
actually perform the same tests, pursue the same goals, and search for the same prob-
lems. A way to minimize the number of such test cases is described in detail in “Software
testing classification”{65} chapter (see testing techniques such as using equivalence clas-
ses{92} and border conditions{92}).

If you find several test cases duplicating each other’s tasks, it is best to either
delete all but one of the most indicative test cases, or refine this selected most indicative
test case on their basis before deleting the others.

298 Unit testing (component testing). The testing of individual software components. [ISTQB Glossary]

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 134/278

 Demonstrativeness (the ability to demonstrate a detected error in an obvious
way). The expected results should be selected and formulated in such a way that any
deviation from them is immediately apparent and it becomes obvious that an error has
occurred. Compare extracts from two test cases.

Extract from the non-demonstrative test case:

Steps Expected Results
5. Place the text “Example of a long text contain-

ing mixed Russian and English characters.” in

the KOI8-R encoding (in the word “Example”

the letter “p” is Russian).

6. Save the file as “test. txt” and send the file for

conversion.

7. Rename the file to “test.txt”.

6. Application ignores the file.

7. Text becomes correct in UTF-8 encoding, in-

cluding Russian letters.

Extract from the demonstrative test case:

Steps Expected Results
5. Place the text “Ё╥╔═┼╥ ╘┼╦╙╘┴.” (These

characters represent the word-combination

“Пример текста.” in Russian in KOI8-R, read as

CP866).

6. Send the file for conversion.

6. The text changes to: “Пример текста.” (UTF8

encoding).

 In the first case, the test case is not only bad because of the vague wording “correct
UTF-8 encoding including Russian letters”, it is also very easy to make mistakes when
executing:

• forget to manually convert the input text to KOI8-R;

• fail to notice that the first time the extension starts with a space;

• forget to replace the “p” in “Example” with the Russian letter;

• because of the vagueness of the wording of the expected outcome, it is possible
to mistake erroneous but plausible behavior for correct behavior.

The second test case is clearly focused on its purpose of testing the conversion
(without the weird check to ignore a file with an invalid extension) and is described in such
a way that its execution is straightforward, and any deviation of the actual result from the
expected one will be immediately noticeable.

 Traceability. It should be clear from the information contained in the good test
case which part of the application, which functions and which requirements it tests. This
is partly achieved by filling in the relevant fields of the test case{117} (“Reference to require-
ment”, “Module”, “Sub-module”), but also the logic of the test case itself plays a significant
role, because in the case of serious violations of this feature one may wonder for a long
time which requirement the test case refers to and try to understand how they relate to
each other.

Example of an untraceable test case:

Re-

quire-

ment

Module Sub-

module

Steps Expected results

UR-4 Applica-

tion

Encoding combination

Preparations: file with several

supported and unsupported

encodings.

1. Send the file for conversion.

1. The supported encodings are

converted correctly, the unsup-

ported ones remain unchanged.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 135/278

 Yes, this test case is bad in itself (in a good test case it is difficult to get an un-
traceable situation), but it also has specific shortcomings that make traceability difficult:

• Reference to a non-existing requirement (see for yourself, there is no UR-4 re-
quirement{57}).

• The “Module” field says “Application” (basically, you could have left it blank, it
would have been just as informative), the “Sub-module” field is empty.

• The title and steps suggest that this test case is closest to DS-5.1 and DS-5.3, but
the formulated expected result does not follow explicitly from these requirements.

Example of a traceable test case:

Requirement Module Sub-mod-

ule

Steps Expected results

DS-2.4,

DS-3.2

Starter Error han-

dler

Start-up with incor-

rect parameters, non-

existing paths

1. Run the application

with all three param-

eters whose values

indicate non-existing

paths in the file sys-

tem.

1. The following messages

are displayed in the con-

sole and the application is

terminated. Messages.

a. SOURCE_DIR [path]:

directory not exists or

inaccessible.

b. DESTINATION_DIR

[path]: directory not ex-

ists or inaccessible.

c. LOG_FILE_NAME

[name]: wrong file

name or inaccessible

path.

 One would think that this test case would cover the DS-2 and DS-3 as a whole,
but the “Requirement” field is quite specific, and the specified module, sub-module and
the logic of the test case itself remove any remaining doubts.
 Some authors also emphasize that the traceability of a test case is related to its
non-redundancy{133} in relation to other test cases (it is much easier to refer to one unique
test case than to choose from several very similar ones).

 Reusability. This property is rarely fulfilled for low-level test cases{113}, but when
creating high-level test cases{113} it is possible to achieve formulations such that:

• the test case will be usable with different settings of the application under test and
in different test environments;

• the test case can be used almost without change to test similar functionality in
other projects or other areas of the application.

 An example of a test case that is hard to reuse would be almost any test case with
high specificity.
 The following test case is not the most ideal, but a very clear example of a test
case that can easily be used in different projects:

Steps Expected Results
Start-up, all parameters are incorrect

1. Run the application with all parameters set to

intentionally invalid values.

1. The application starts, then displays a message

describing the nature of the problem with each

of the parameters and terminates.

Good test case properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 136/278

Repeatability. The test case should be formulated in such a way that it shows the
same results when repeated many times. This property can be divided into two sub-items:

• firstly, even general wording that allows for different ways of doing a test case
should outline appropriate explicit boundaries (e.g.: “enter a number” is bad, “enter
an integer between -273 and +500 inclusive” is good);

• test case actions (steps) should, as far as possible, not lead to irreversible (or
hardly reversible) consequences (e.g.: deletion of data, disruption of the environ-
ment, etc.) — we should not include such “disruptive actions” unless they are ex-
plicitly dictated by the test case objective; if the test case objective obliges us to
perform such actions, the test case should describe actions to restore the original
application (data, environment).

Compliance with accepted layout patterns and traditions. There is usually no
problem with layout templates: they are strictly defined by an existing template or gener-
ally by the on-screen form of the test case management tool. As for traditions, they differ
even between teams in the same company and there is no other advice than “read ready-
made test cases before you write your own”.

We will omit individual examples here, as there are already many correctly de-
signed test cases above, and as for violations of this feature, they are described directly
or indirectly in “Typical mistakes in writing checklists, test cases and test suites”{149} chap-
ter.

Test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 137/278

2.4.6. Test suites

Terminology and general information

Test case suite299 (test suite, test set) is a suite of test cases selected with
some common purpose or by some common feature. Sometimes the results of
completion of one test case in such a suite become the initial application state
for the next test case.

Attention! Due to the peculiarities of interpretation, it is very common to say “test
suite” instead of “test scenario”. Technically, this can be considered a mistake,
but it has become so widespread that it has become a variant of the norm.

 As we have just seen with many individual test cases, it is extremely inconvenient
(indeed, it is a mistake!) to write the same preparations and repeat the same initial steps
in each test case every time.
 It is much more convenient to combine several test cases into a suite or sequence.
This is where we come to the classification of test suites.

 In general, test suites can be divided into free (the order in which the test cases
are executed is not important) and linked (the order in which the test cases are executed
is important).

 Advantages of free suites:

• test cases can be run in any order you like, and you can also create “suites within
suites”;

• if a test case fails, this will not affect the ability to execute other test cases.

 Advantages of linked suites:

• each subsequent test case in the suite takes the result of the previous test case
as the input state, which greatly reduces the number of steps in individual test
cases;

• long sequences of actions are much better at simulating the work of real users
than single impacts on the application.

User scenarios (use scenarios)

We are NOT talking about use cases, which are a form of requirements{38}. User
scenarios as a testing technique are far less formalized, although they can be
built on a use case basis.

A separate subset of linked test suites (or even raw test case ideas, such as check-
list items) can include user scenarios300 (or use scenarios), which are a chain of actions
performed by a user in a certain situation to achieve a certain goal.

 Let’s first explain this with an example, not related to the “File Converter”. Suppose
a user wants to print a sign on the office door that says “Work in progress, no knocking!”
To do this the user has to:

1) Run a text editor.
2) Create a new document (if the text editor does not do it by itself).
3) Type text in the document.
4) Format the text properly.
5) Print the document.

299 Test case suite (test suite, test set). A set of several test cases for a component or system under test, where the post condition

of one test is often used as the precondition for the next one. [ISTQB Glossary]
300 A scenario is a hypothetical story, used to help a person think through a complex problem or system. [Cem Kaner, “An Introduction

to Scenario Testing”, http://kaner.com/pdfs/ScenarioIntroVer4.pdf]

http://kaner.com/pdfs/ScenarioIntroVer4.pdf

Test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 138/278

6) Save the document (debatable, but acceptable).
7) Close the text editor.

Here we have a user scenario, the items of which can become the basis for the
steps of a test case or a suite of individual test cases.

Scenarios can be quite long and complex, and may contain loops and conditional
branching, but they still have some very interesting advantages:

• Scenarios show real and understandable examples of how to use the product (as
opposed to extensive checklists where the meaning of individual points can get
lost).

• The scenarios are clear to end users and are well suited to discussion and im-
provement.

• Scenarios and parts of scenarios are easier to assess in terms of priority than
individual items of (especially low-level) requirements.

• Scenarios are great at showing requirements’ shortcomings (if it becomes unclear
what to do at a particular point in a scenario — there is clearly something wrong
with the requirements).

• In the extreme case (lack of time and other force majeure), scenarios may not even
be written out in detail, but simply named — and the name itself will tell an experi-
enced professional what to do.

Let’s illustrate this last point with an example. Let’s classify the potential users of
our application (recall that in our case the “user” is the administrator who configures the
application) by skill level and tendency to experiment, and then give each “type of user”
a memorable name.

Table 2.4.a — User classification

 Low qualification High qualification

Not prone to experiments “Cautious” “Conservative”

Prone to experiments “Desperate” “Sophisticated”

 Agree that already at this stage it is not difficult to imagine differences in the logic
of working with an application between, for example, “conservative” and “desperate” us-
ers.
 But we will go further and give a title for the scenarios themselves, e.g., in situa-
tions where such a user has a positive and negative attitude towards the idea of our
application usage:

Table 2.4.b — Behavioral scenarios based on user classification

 “Cautious” “Conservative” “Desperate” “Sophisticated”

Positively
“Can I do like
this?”

“Let’s start with a
manual!”

“Look what I came
up with!”

“I’m optimizing
everything!”

Negatively
“I don’t under-
stand anything.”

“You have a dis-
crepancy here...”

“I’ll break it any-
way!”

“I told you so!”

 With a little creativity, you can imagine what will happen in each of the eight situa-
tions. It takes only a few minutes to create a couple of such tables, and the effect they
produce is orders of magnitude greater than mindlessly “clicking the buttons in the hope
of finding a bug”.

For a much more comprehensive and technical explanation of what scenario
testing is, how to use it and how to do it properly, see Sam Kaner’s article “An
Introduction to Scenario Testing”301.

301 “An Introduction to Scenario Testing”, Cem Kaner [http://kaner.com/pdfs/ScenarioIntroVer4.pdf]

http://kaner.com/pdfs/ScenarioIntroVer4.pdf

Test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 139/278

Detailed classification of test suites

It is difficult to categorize the material presented here as “beginner’s material”
(and you can skip straight to “Principles for building a test suite”{141}). But if you
are more curious, take a look at the detailed classification below.

 A detailed classification of test suites can be expressed in the following table.

Table 2.4.c — Detailed classification of test suites

 By isolation of test cases from each other

 Isolated Generalized

On the formation of a

strict sequence of test

cases

Free Free isolated Free generalized

Linked
Linked isolated Linked generalized

• A free isolated test suite (figure 2.4.g): the steps in the “preparations” section must
be repeated before each test case, and the test cases themselves can be per-
formed in any order.

• A free generalized test suite (figure 2.4.h): the steps in the “preparations” section
need to be done once (and then you just do the test cases), and the test cases
themselves can be done in any order.

• A linked isolated test suite (figure 2.4.i): the steps in the “preparations” section
must be repeated before each test case, and the test cases themselves must be
carried out in a strictly defined order.

• A linked generalized test suite (figure 2.4.j): the steps in the “preparations” section
need to be done once (and then just do the test cases), and the test cases them-
selves need to be done in a strictly defined order.

The main advantage of isolation is that each test case is run in a “clean environ-
ment” and is not affected by the results of previous test cases.
 The main advantage of generalization: preparations do not have to be repeated
(saving time).
 The main advantage of a linked approach is the tangible reduction of steps in each
test case, as the result of the previous test case is the starting situation for the next one.
 The main advantage of a free approach is the ability to execute test cases in any
order, and the fact that if a test case fails (the application did not reach the expected
state), the remaining test cases can still be executed.

Figure 2.4.g — A free isolated test suite

Preparations

Test 1

Test 2

Test 3

Preparations

Preparations

Test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 140/278

Figure 2.4.h — A free generalized test suite

Figure 2.4.i — A linked isolated test suite

Figure 2.4.j — A linked generalized test suite

Preparations

Test 1

Test 2

Test 3

Preparations

Test 1

Test 2

Test 3

Preparations

Preparations

Preparations

Test 1

Test 2

Test 3

Test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 141/278

Principles for building a test suite

 Now for the most important part: how to form test suites. The correct answer is
very short: logically. And this is no joke. The only purpose of test suites is to increase
testing efficiency through speeding up and simplifying test cases, increasing the depth of
study of some application area or functionality, following typical user scenarios{137} or con-
venient sequencing of test cases, etc.

A test suite is always created for a purpose, based on some kind of logic, and by
the same principles, tests with suitable properties are included in the suite.

As for the most typical approaches to compiling a test case set, the following can
be identified:

• Based on checklists. Look closely at the examples of checklists{109} we have devel-
oped in the relevant section{108}: each checklist item can turn into several test cases
— and here we have a ready-made suite.

• Based on the division of the application into modules and submodules{118}. For each
module (or its individual submodules) a different test suite can be created.

• Based on the principle of checking the most important, less important and all other
functions of the application (this is the principle we used to compile sample check-
lists{109}).

• By grouping test cases to test a certain level or type of requirement{38}, a group of
requirements or an individual requirement.

• Based on the frequency of test cases detecting defects in the application (e.g., we
see that some test cases fail time after time, so we can combine them into a suite,
conventionally called “application problem areas”).

• By architectural principle (see “multi-tier architecture”147 yourself): suites for testing
the user interface and the entire presentation level, for testing the business logic
level, for testing the data level.

• By area of internal application operation, e.g.: “test cases involving database
work”, “test cases involving file system work”, “test cases involving network work”,
etc.

• By type of testing (see “Detailed testing classification”{67} chapter).

There is no need to memorize this list. These are just examples — bluntly speak-
ing, “the first thing that comes to mind”. The important principle is that if you see that
combining some test cases in a suite will benefit you, create such a suite.

Note: without good test case management tools, it is extremely difficult to work
with test case suites, because you have to keep track of preparations, “missing steps”,
isolation or generality, free/linked approach, etc.

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 142/278

2.4.7. The logic for creating effective checks

 Now that we have looked at the principles of creating checklists{108} and test
cases{117}, the properties of good test cases{128}, and the principles of combining test cases
into suites{141}, it’s time to get to the tricky part, the “philosophical” part, in which we will
talk not about what and how to write, but about how to think.
 It has already been said before: if a test case has no input data, execution condi-
tions and expected results, and/or the goal of the test case is not clear, it is a bad test
case. And this is where the goal is paramount. If we are clear about what we are doing
and why, we are either quick to find all the other missing information, or equally quick to
formulate the right questions and address them to the right people.

 The whole point of a tester’s work is ultimately to improve quality (of processes,
products, etc.). But what is quality? Yes, there is a short official definition302, but even it
talks about “user/customer needs and expectations”.

This is where the main idea comes in: quality is a certain value for the end user
(customer). A person pays for the use of a product anyway — with money, their time,
some effort (even if you don’t receive this “payment”, the person quite rightly believes that
they’ve already spent something on you, and they’re right). But does the person get what
they expect (assuming that their expectations are reasonable and realistic)?

If we approach testing formally, we risk getting a product which looks perfect ac-
cording to documents (metrics, etc.), but which nobody needs in reality.

As almost any modern software product is not a simple system, among the wide
variety of its features and functions there are objectively the most important, less im-
portant and completely insignificant to users.

If testers concentrate their efforts on the first and second categories (the most im-
portant and slightly less important), our chances of creating an application, satisfying the
customer, increase dramatically.

 There’s a simple logic:

• Test cases help us to find defects.

• But it’s impossible to find ALL defects.

• So, we have to find as many IMPORTANT defects as we may with the time avail-
able.

By important errors we mean here those that result in the failure of functions or
product features that are important to the user. Functions and features are not separated
by chance — safety, performance, usability, etc. are not functions, but play an equally
important role in shaping customer and end-user satisfaction.

The situation is exacerbated by the following facts:

• for many economic and technical reasons, we cannot do “all the tests we can think
of” (and do them repeatedly) — we have to choose carefully what and how we test,
bearing in mind the idea just mentioned: quality is a value for the end user (cus-
tomer);

• there will never be a “perfect and flawless set of requirements” in real life (no matter
how hard we try) — there will always be a certain number of flaws and this too
must be taken into account.

However, there is a fairly simple algorithm that allows one to create effective tests
even in such circumstances. When thinking about a checklist, test case or test suite, ask
yourself the following questions and get clear answers:

• “What is this?” If you don’t understand what you have to test, you won’t get any
further than mindless formal checks.

302 Quality. The degree to which a component, system or process meets specified requirements and/or user/customer needs and

expectations. [ISTQB Glossary]

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 143/278

• “Who needs it and what for (and how important is it)?” The answer to this question
will allow you to quickly come up with some typical user scenarios{137} for what you
are about to test.

• “What is the usage process?” It is already a scenario detail and a source of ideas
for positive testing{80} (these are conveniently described as a checklist).

• “How can something go wrong?” This also details usage scenarios, but already in
the context of negative testing{80} (these too can be conveniently described as a
checklist).

This algorithm can be supplemented by a small list of other universal guidelines to

help you do testing better:

• Start testing as early as possible — as soon as the first requirements appear, you
can start testing and improving them, you can write checklists and test cases, you
can refine the test plan, prepare the test environment, etc.

• If you have something large and complex to test, break it down into modules and
sub-modules, use functional decomposition303 — i.e., achieve a level of detail at
which you can easily keep all the information about the object under test in mind.

• Be sure to write checklists. If you think you can memorize all the ideas and then
easily reproduce them, you are wrong. There are no exceptions.

• As you create checklists, test cases, etc., put the questions that arise directly into
the text. When enough questions have accumulated, collect them separately,
specify the wording and contact someone who can answer them.

• If the tool you are using allows you to use cosmetic text layout, do so (it makes the
text easier to read), but try to follow the conventions and not paint every other word
a different color, font, size, etc.

• Use peer review techniques{49} to get feedback from colleagues and improve the
document you have created.

• Plan for time to improve test cases (to fix defects, to refine as requirements
change, etc.)

• Start with simple positive tests for the most important functionality. Then gradually
increase the complexity of tests, keeping in mind not only positive{80}, but also neg-
ative{80} tests.

• Remember that the heart of testing is the goal. If you cannot quickly and simply
define the goal of the test case you have created, you have created a bad test
case.

• Avoid redundant, overlapping test cases. The techniques of equivalence clas-
ses{92}, border conditions{92}, domain testing{93} help to eliminate such test cases.

• If the test case “Indicativeness”{131} can be increased without greatly changing its
complexity or deviating from the original objective, do so.

• Remember that far too many test cases require separate preparation, which should
be described in the relevant field of the test case.

• Several positive test cases{80} can safely be combined, but combining negative test
cases{80} is almost always forbidden.

• Think about how you can optimize the test case (test suite, etc.) you have created
in a way that reduces the workload associated with it.

• Before submitting the final version of the document you have created, reread what
you have written (in at least half the cases you will find a typo or some other flaw).

Task 2.4.e: supplement this list with ideas you have picked up from other
books, articles, etc.

303 “Functional decomposition”, Wikipedia [http://en.wikipedia.org/wiki/Functional_decomposition]

http://en.wikipedia.org/wiki/Functional_decomposition

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 144/278

 The implementation of the logic for creating effective checks

Earlier we made a detailed checklist{108} to test our “File Converter”{57}. Let’s look at
it critically and think of what can be reduced, what will be sacrificed and what will be the
gain.

Before we begin to optimize the checklist, it is important to note that the decision
on what is important and what is not important should be made on the basis of a ranking
of requirements by importance, and in agreement with the customer.

What is the MOST important thing to the user? What is the purpose of the appli-
cation? To convert files. Given the fact that the application will be set up by a qualified
technician, we can even “sideline” the application’s reaction to errors in the start-up and
shut-down phases.

 And in the first place comes the following:

• File processing, different formats, encodings and sizes:

Table 2.4.d — Formats, encodings and file sizes

 Input file formats

 TXT HTML MD

Input files en-

codings

WIN1251 100 KB 50 MB 10 MB

CP866 10 MB 100 KB 50 MB

KOI8R 50 MB 10 MB 100 KB

Any 0 bytes

Any 50 MB + 1 B 50 MB + 1 B 50 MB + 1 M

- Any unsupported format

Any Supported format, damaged file

 Is there anything we can do to speed up these checks (because there are a lot of
them)? We can. And we even have two complementary techniques:

• further classification by priority;

• test automation.

First, we divide the table into two, the slightly more important and the slightly less
important.

The “slightly more important” includes:

Table 2.4.e — Formats, encodings and file sizes

 Input file formats

 TXT HTML MD

Input files en-
codings

WIN1251 100 KB 50 MB 10 MB

CP866 10 MB 100 KB 50 MB

KOI8R 50 MB 10 MB 100 KB

 Let’s prepare 18 files — 9 source files + 9 converted (in any text editor with encod-
ing conversion function) in order to compare the results of our application work with these
references in the future.

For the “slightly less important” remain:

• The file with 0 bytes size (objectively, the “encoding” characteristic is not important
for it). Prepare one file of 0 bytes size.

• File size 50 MB + 1 B (encoding is not important for it either). Prepare one file of
size 52’428’801 bytes.

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 145/278

• Any unsupported format:
o By extension (a file with an extension other than .txt, .html, .md). Take any

arbitrary file, e.g., a picture (size from 1 to 50 MB, extension .jpg).
o By internal content (e.g. .jpg renamed to .txt). Give the copy of the file from

the previous point a .txt extension.

• Supported format, damaged file. Cross it out. At all. Even very sophisticated and
expensive editors are not always able to recover corrupted files of their formats,
while our application is just a miniature encoding conversion utility, and you should
not expect it to have the capabilities of a professional data recovery tool.

What did we end up with? We need to prepare the following 22 files (since the files
have names anyway, let’s strengthen this test data set by introducing Latin, Cyrillic and
special characters in the file names).

Table 2.4.f — Final file set for testing the application

№ Name Encoding Size

1 Small file in WIN1251.txt WIN1251 100 KB

2 Medium file in CP866.txt CP866 10 MB

3 Large file in KOI8R.txt KOI8R 50 MB

4 Large file in win-1251.html WIN1251 50 MB

5 Small file in cp-866.html CP866 100 KB

6 Medium file in koi8-r.html KOI8R 10 MB

7 Medium file in WIN_1251.md WIN1251 10 MB

8 Large file in CP_866.md CP866 50 MB

9 Small file in KOI8_R.md KOI8R 100 KB

10 Small benchmark WIN1251.txt UTF8 100 KB

11 Medium benchmark CP866.txt UTF8 10 MB

12 Large benchmark KOI8R.txt UTF8 50 MB

13 Large benchmark in win-1251.html UTF8 50 MB

14 Small benchmark in cp-866.html UTF8 100 KB

15 Medium benchmark in koi8-r.html UTF8 10 MB

16 Medium benchmark in WIN_1251.md UTF8 10 MB

17 Large benchmark in CP_866.md UTF8 50 MB

18 Small benchmark in KOI8_R.md UTF8 100 KB

19 Empty файл.md (yes, some Cyrillic letters here) - 0 B

20 Too big файл.txt (yes, some Cyrillic letters here) - 52’428’801 B

21 Картинка$.jpg (yes, some Cyrillic letters here) - ~ 1 MB

22 Picture as TXT.txt - ~ 1 MB

 And we have just mentioned — automation as a way of speeding up the execution
of test cases. In this case, we can make do with the most trivial of command files. In
“Windows and Linux batch files to automate smoke testing”{263} appendix there are scripts
that completely automate the execution of the entire smoke test level{77} of the 22 file set
presented above.

Task 2.4.f: refine the command files in the appendix{263} so that they also test
the application under test with spaces, Cyrillic characters and special charac-
ters in the input directory, output directory and log file paths. Optimize the re-
sulting command files to avoid multiple code duplications.

 If we go back to the checklist again, it appears that we have already prepared
checks for the whole smoke test level{77} and part of the critical path test level{78}.
 Let’s continue with the optimization. Most of the checks are straightforward, and
we will deal with them as we go along, but there is one item on the checklist that is par-
ticularly worrying: performance.

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 146/278

Performance testing and optimization{90} is a separate type of testing with its own
rather complex rules and approaches, and is divided into several branches. Do we need
it in our application? The customer defined in QA-1.1 the minimum performance of the
application as an ability to process input data at a minimum of 5 MB/sec. Rough experi-
ments on the hardware specified in QA-1.1 show that even much more complex opera-
tions (e.g., archiving a video file at maximum compression) perform faster (albeit slightly
faster). Conclusion? Cross it out. The probability of encountering a problem here is neg-
ligible, and the corresponding testing requires a considerable investment of effort and
time, as well as the availability of appropriate specialists.

Let’s get back to the checklist:

• Configuration and start:
o With correct parameters:

▪ SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME values are
passed and contain spaces and Cyrillic characters (repeat for path
formats in Windows and *nix file systems, note logical drive names
and directory name separators (“/” and “\”)). (Already taken into ac-
count when automating the check of the application work with
22 files.)

▪ LOG_FILE_NAME value is not passed. (Merge with checking the
log file itself.)

o Without parameters.
o With a lack of parameters.
o With incorrect parameters:

▪ Invalid SOURCE_DIR path.
▪ Invalid DESTINATION_DIR path.
▪ Invalid LOG_FILE_NAME value.
▪ DESTINATION_DIR is a subdirectory of SOURCE_DIR.
▪ DESTINATION_DIR and SOURCE_DIR are the same.

• File processing:
o Different formats, encodings and sizes. (Already done.)
o Inaccessible input files:

▪ No access permission.
▪ File is open and locked.
▪ File with read-only attribute.

• Stopping:
o By closing the console window. (Cross it out. Not that important of a

check, and if there are any problems, PHP technology will not solve
them.)

• Application log:
o Automatic creation (in the absence of a log file) the name of the log is spec-

ified explicitly.
o Continuing (appending the log) on restarts, no log name specified.

• Performance:
o Elementary test with raw assessment. (We had previously decided that

our application would clearly fit within the customer’s very democratic
requirements.)

Let’s compactly rewrite what’s left of the critical path test level{78}. Attention! This is
NOT a test case! It is just another form of writing a checklist, more convenient at this
stage.

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 147/278

Table 2.4.g — Checklist for the critical path level

The essence of the check Expected response

Start without parameters. Display of usage message.

Start with insufficient parameters. Display of usage message and indication of miss-
ing parameter names.

Start with incorrect parameters:
o Invalid SOURCE_DIR path.
o Invalid DESTINATION_DIR path.
o Invalid LOG_FILE_NAME value.
o DESTINATION_DIR is a subdirectory of

SOURCE_DIR.
o DESTINATION_DIR and SOURCE_DIR are

the same.

Display of usage message and indication of incor-
rect parameter name, incorrect parameter value
and explanation of the nature of the problem.

Inaccessible input files:
o No access permission.
o File is open and locked.
o File with read-only attribute.

Display message to console and log file, further
ignore inaccessible files.

Application log:
o Automatic creation (in the absence of a log

file) the name of the log is specified explicitly.
o Continuing (appending the log) on restarts, no

log name specified.

Create or continue a log file along a specified or
calculated path.

Finally, we are left with the extended testing{78} level. And now we are going to do
what all the classic books teach us not to do — we are going to do away with this whole
set of checks.

• Configuration and start:
o SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME values:

▪ In different styles (Windows paths + *nix paths) — one in one style,
the other in another.

▪ Using UNC names.
▪ LOG_FILE_NAME inside the SOURCE_DIR.
▪ LOG_FILE_NAME inside the DESTINATION_DIR.

o Size of LOG_FILE_NAME at the start-up:
▪ 2–4 GB.
▪ 4+ GB.

o Running two or more copies of an application with:
▪ The same SOURCE_DIR, DESTINATION_DIR, LOG_FILE_NAME

parameters.
▪ The same SOURCE_DIR and LOG_FILE_NAME, but different DES-

TINATION_DIR.
▪ The same DESTINATION_DIR and LOG_FILE_NAME, but different

SOURCE_DIR.

• File processing:
o A correct format file in which text is represented in two or more supported

encodings at the same time.
o Input file size:

▪ 2–4 GB.
▪ 4+ GB.

Yes, we have now indeed increased the risk of missing a defect. But it is a defect
a low probability of occurrence (due to the low probability of occurrence of the situations
described in these checks). At the very least, we’ve reduced the total number of checks
we have to run by a third, which frees up time and energy for more thorough scrutiny of
typical day-to-day application use cases{137}.

The logic for creating effective checks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 148/278

The entire optimized checklist (which is also a draft for the test execution plan)
now looks like this:

1) Prepare the files (see table 2.4.f).
2) Use command files for the “smoke test” (see appendix “Command files for Win-

dows and Linux to automate the smoke test”{263}).
3) Use the files from point 1 and the following ideas for the main checks (table 2.4.h).

Table 2.4.h — Basic checks for the “File Converter” application

The essence of the check Expected response
Start without parameters. Display of usage message.

Start with insufficient parameters. Display of usage message and indication of

missing parameter names.

Startup with incorrect parameters:

o Invalid SOURCE_DIR path.

o Invalid DESTINATION_DIR path.

o Invalid LOG_FILE_NAME value.

o DESTINATION_DIR is a subdirectory of

SOURCE_DIR.

o DESTINATION_DIR and SOURCE_DIR are the

same.

Display of usage message and indication of in-

correct parameter name, incorrect parameter

value and explanation of the nature of the prob-

lem.

Inaccessible input files:

o No access permission.

o File is open and locked.

o File with read-only attribute.

Display message to console and log file, further

ignore inaccessible files.

Application log:

o Automatic creation (in the absence of a log file)

the name of the log is specified explicitly.

o Continuing (appending the log) on restarts, no

log name specified.

Create or continue a log file along a specified or

calculated path.

4) If time permits, use the original version of the extended test level checklist{78} as
the basis for carrying out exploratory testing{84}.

That’s pretty much it. It remains to be emphasized once again that this logic of test
selection does not pretend to be the only correct one, but it obviously allows us to save
an enormous amount of effort, while practically not reducing the quality of application
functionality testing that is in high demand by the customer.

Task 2.4.g: consider which of the checks in table 2.4.h can be automated using
command files. Write such command files.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 149/278

2.4.8. Typical mistakes in writing checklists, test cases and test suites

Mistakes in layout and wording

Absence of test case title or poorly written title. In the vast majority of test case
management systems, the field for the title is separate and obligatory — then this problem
disappears. If a tool allows you to create a test case without a title, you run the risk of
getting N test cases and reading dozens of lines instead of one sentence to understand
each test case. This is a guaranteed time killer and decreases the productivity of the team
by an order of magnitude.

If the title of the test case has to be written in a box with steps and the tool allows
formatting of the text, the title should be written in bold to make it easier to separate it
from the main text.

A continuation of this mistake is the creation of identical titles, by which it is objec-
tively impossible to distinguish one test case from another. Moreover, there is a suspicion
that similarly titled test cases are the same inside. Therefore, titles should be formulated
differently, while emphasizing the essence of the test case and how it differs from other
similar test cases.

Finally, the title should not contain “trash words” like “check”, “test”, etc. After all,
this is a test case title, i.e., it is by definition about testing, so there is no need to empha-
size this further. Also see the more detailed explanation of this mistake below under “Con-
stant use of the word “check” (and similar) in checklists”.

Absence of numbering of steps and/or expected results (even if there is only
one). The presence of this error turns a test case into a “stream of thought”, which lacks
structure, modifiability, and other useful features (yes, many properties of good require-
ments{42} are fully applicable to test cases) — it becomes very easy to confuse what relates
to what. Even the execution of such a test case becomes more difficult, and revision
becomes hard work altogether.

Referencing multiple requirements. Sometimes a high-level test case{113} does
involve several requirements, but in that case, it is recommended to refer to a maximum
of 2–3 of the most key requirements (those most relevant to the purpose of the test case),
or better yet, to a common section of these requirements (i.e. do not, for example, refer
to requirements 5.7.1, 5.7.2, 5.7.3, 5.7.7, 5.7.9, 5.7.12, but simply refer to section 5.7,
which includes all the items listed). In most test case management tools, this field is a
drop-down list, and this problem becomes irrelevant there.

The use of “to-infinitives”. If you write requirements in English, write “press” in-
stead of “to press”, “enter” instead of “to enter”, “go” instead of “to go”, etc. It is not rec-
ommended at all in technical documentation to overload the text with particles “to”.

The use of the past or future tense in the expected results. This is not a serious
mistake, but still “entered value is displayed in the field” reads better than “entered value
has been displayed in the field” or “entered value will be displayed in the field”.

 Constant use of the word “check” (and similar) in checklists. As a result, al-
most every item on the checklist starts with “check...”, “check...”, “check...”. But the whole
checklist is a list of checks! Why would you write that word? Compare:

Bad Good

Check that the application starts.

Check that the correct file is opened.

Check that the file has been modified.

Check that the file is saved.

Check that the application is closed.

Application start.

Correct file opening.

File modification.

File saving.

Application shutdown.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 150/278

 This also includes the typical word “try” in negative test cases (“try to divide by
zero”, “try to open a non-existing file”, “try to enter invalid characters”): “division by zero”,
“opening a non-existent file”, “entering special characters” are much shorter and more
informative. And the reaction of the application, if it is not obvious, can be specified in
brackets (this is even more informative): “division by zero” (message “Division by zero
detected”), “open non-existing file” (causes automatic creation of file), “enter special char-
acters” (characters are not entered, a hint is displayed).

 Description of standard interface elements instead of using their established
names. “The little cross at the top right of the application window” is the “Close” system
button, “Quickly, quickly double-click on the left mouse button” is a double click, “A small
box appearing when you point the mouse” is a hint.

Punctuation, spelling, syntax and similar mistakes. No comments.

Logical mistakes

 Referencing other test cases or the steps of other test cases. Unless you are
writing a strictly defined explicit suite of sequential test cases{139} you are not allowed to
do this. In the best-case scenario, you will get lucky and the test case you referenced will
simply be removed — lucky because you will notice it straight away. You will be out of
luck if the test case you reference is modified — the link still leads to some existing loca-
tion but says something completely different from what it says when the link was made.

Details that do not correspond to the functional testing level{77}. For example,
there’s no need to test every single button at the smoke test level{77} or prescribe a highly
complex, non-trivial, and rare scenario — button behavior can be checked with multiple
test cases objectively involving the buttons without being explicitly stated, and the com-
plex scenario has a place at the critical path test level{78} or even at the extended testing
level{78} (where, conversely, over-generalization without the necessary detail can be con-
sidered a disadvantage).

Vague, ambiguous descriptions of actions and expected results. Remember
that it is highly likely that you (the test case author) will not be doing the test case, another
employee will be doing it, and they are not mind readers. Try to guess from these exam-
ples what the author meant:

• “Install the application on the C drive”. (You mean in “C:\”? Straight to the root? Or
what?)

• “Click on the application icon”. (For example, if I have an ico-file with an application
icon and I click on it — is that it? Or not?)

• “The application window will start up”. (Where?)

• “Works right”. (Whoa! And what, I’m sorry, is that right?)

• “OK”. (So what? What’s “OK”?)

• “The number of files found matches”. (Matches what?)

• “The application refuses to execute the command”. (What does “refuses” mean?
What does it look like? What should happen?)

Actions as module/submodule names. For example, “Application start” is NOT
a module or submodule. A module or sub-module{118} is always some part of an applica-
tion, not its behavior. Compare: “lungs” are a human module, but “breathing” is not.

Description of events or processes as steps or expected results. For exam-
ple, as a step it says: “Entering special characters into field X”. This would be a passable
title for a test case, but is not suitable as a step which should be phrased as “Enter special
characters (list) in the field X”.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 151/278

It is much worse if this is found in the expected results. For example, it says: “Dis-
plays reading speed in X panel”. So? It should start, continue, terminate, not start, change
in some way (for example, the data dimension should change), or somehow affect some-
thing? The test case becomes completely meaningless, because this expected result
cannot be compared to the actual behavior of the application.

“Making up” features of the application’s behavior. Yes, there are often self-
evident (no quotes, they are in fact self-evident) things missing from requirements, but
there are also often bad (e.g., incomplete) requirements that need to be improved, not
“telepathically compensated”.

For example, the requirements state that “the application must display a save dia-
log with a default directory”. If you cannot find anything out from the context (neighboring
requirements, other documents) about this mysterious “default directory”, you need to ask
a question. You can’t just write “the default directory is selected in the save dialog” in the
expected results (how can we be sure that the default directory is selected, and not some
other?). And of course, the expected result cannot say “the save dialog box is shown with
the default directory “C:/SavedDocuments” selected” (where this “C:/SavedDocuments”
came from is unclear, i.e., it is obviously made up from your head and most likely made
up incorrectly).

Absence of description of the preparation for execution of a test case. It is
often necessary to set up the environment in some special way in order to correctly exe-
cute a test case. Suppose we are testing an application that backs up files. If the test
looks like this, the tester is confused because the expected result is nonsense. Where
does “~200” come from? What does it mean?

Steps Expected results

1. Click the “Quick deduplication” button in the

“Home” bar.

2. Select the “C:/MyData” directory

1. The “Quick deduplication” button goes into

“pressed” state and changes color from grey to

green.

2. The “Status” bar shows “~200” in the “Dupli-

cates” field.

This test case would be perceived very differently if the preparations said: “Create
a directory “C:/MyData” with an arbitrary set of subdirectories (nesting depth not less than
five). In the resulting directory tree place 1000 files of which 200 have the same name
and size but NOT the content inside”.

Complete duplication (copying) of the same test case at the smoke test, crit-
ical path test, extended test levels. Many ideas naturally develop from level to level{77},
but they should be developed rather than duplicated. Compare:

 Smoke test Critical path testing Extended testing

Bad Application start Application start Application start

Good Application start Application start from the

command line.

Application start via a

shortcut on the desktop.

Application start via the

Start menu.

Application start from the com-

mand line in active mode.

Application start from the com-

mand line in the background

Application start via a shortcut on

the desktop “as administrator”.

Application start via the Start menu

from the list of recent applications.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 152/278

Too long a list of steps, irrelevant to the goal (purpose) of the test case. For
example, we want to check that single-sided printing from our application is correct on a
duplex printer. Compare:

Bad Good

Single-sided printing

1. Start the application.

2. Select “File” -> “Open” from the menu.

3. Select any DOCX file consisting of several

pages.

4. Click the “Open” button.

5. Select “File” -> “Print” from the menu.

6. From the “Duplex printing” list, select “No”.

7. Press the “Print” button.

8. Close the file.

9. Close the application.

Single-sided printing

1. Open any DOCX file containing three or more

non-empty pages.

2. In the Print Setup dialog box, select “No” from

the “Duplex printing” list.

3. Print the document on a printer that supports

duplex printing.

On the left, we see a huge number of actions that are not directly related to what
the test case is testing. All the more so that starting and closing an application, opening
a file, operating a menu, etc. are either covered by other test cases (with their respective
purposes) or are in fact self-evident (it is logical that an application cannot open a file if
the application is not running) and do not need to be described in the steps, which only
create information noise and take time to write and read.

Incorrect naming of interface elements or their properties. Sometimes it is
clear from the context what the test case author had in mind, but sometimes it becomes
a real problem. For example, we see a test case with the title “Close an application with
the ‘Close’ and ‘Close window’ buttons”. Already there is some confusion as to what the
difference between these buttons is, and what we are talking about in general. Below (in
the steps of the test case) the author explains: “In the working panel at the bottom of the
screen click “Close window”. Aha! I see. But “Close window” is NOT a button, it’s an item
of system context menu in the taskbar.

Another great example: “The application window will roll up into a window with a
smaller diameter”. Hmm. Is the window round? Or should it be round? Or maybe we’re
talking about two different windows, and one should be inside the other? Or is it “the size
of the window decreases” (how much, by the way?), but its geometric shape stays rec-
tangular?

And finally, an example that could very well cause a defect report to be written on
a perfectly functioning application: “Select ‘Fix location’ in the system menu”. One would
think, what’s wrong with that? But then it turns out that it was the application’s main menu
and not the system menu at all.

Misunderstanding of how the application works and the resulting incorrect-
ness of test cases. A classic of the genre is to close an application: the fact that an
application window has “disappeared” (surprise: for example, it has minimized to the sys-
tem tray (taskbar notification area), or an application has turned off the user interface and
continued to operate in the background, is not at all a sign that it has finished working.

Checking typical “system” functionality. Unless your application is written us-
ing some special libraries and technologies and implements some atypical behavior, there
is no need to check system buttons, system menus, roll-up and roll-down windows, etc.
The probability of encountering an error here tends to zero. If you really want to, you can
write these checks as refinements for some actions at critical path testing level{78}, but
there is no need to create separate test cases for them.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 153/278

Incorrect application behavior as an expected result. This is not allowed per
se. There can be no “divide by zero” style test case with an expected result of “application
crash with loss of user data”. The expected results always describe the correct behavior
of the application — even in the worst stress test cases.

General test case incorrectness. Can be caused by a multitude of reasons and
expressed in a multitude of ways, but here is a classic example:

Steps Expected results
…
4. Close the application by Alt+F4.
5. Select “Current status” from the menu.

…
4. The app terminates the work.
5. The window with the “Current status” heading

and the contents as shown in figure 999.99 is
displayed.

 It is either not stated here that the “Current status” window is being invoked some-
where in another application, or it remains a mystery how to invoke this window in an
application that has terminated. Should it be restarted? Possibly, but the test case doesn’t
say so.

Incorrect division of data sets into equivalence classes. Surely, sometimes
equivalence classes{92} can be very unobvious. But errors also occur in fairly simple cases.
Suppose the requirements say that the size of a file can be between 10KB and 100KB
(inclusive). Splitting by size 0–9 KB, 10–100 KB, 101+ KB is wrong because kilobytes
are not indivisible units. This erroneous division does not account for sizes like 9.5KB,
100.1KB, 100.7KB and so on. Therefore, the following inequalities should apply: 0KB ≤
size < 10KB, 10KB ≤ size ≤ 100KB, 100KB < size. Bracketed syntax is even better here:
[0, 10] KB, [10, 100] KB, (100, ∞) KB, yet inequalities are more common for most people.

Test cases not related to the application under test. For example, we need to
test a photo gallery on a website. Accordingly, the following test cases have nothing to do
with the photo gallery (they test the browser, the user’s operating system, the file man-
ager, etc. — but NOT our application, not its server or even client side):

• A file from a network drive.

• A file from an external storage device.

• A file locked by another application.

• A file opened by another application.

• F file to which the user has no access rights.

• A manually specified path.

• A file from a deep subdirectory.

Formal and/or subjective checks. This error is most often found in the checklist
items. The author may have had a clear and detailed plan in mind, but the following ex-
amples make it completely impossible to understand what will be done with the applica-
tion and what result we should expect:

• “Convert”.

• “Check getMessage() method”.

• “Incorrect operation under correct conditions”.

• “Speed”.

• “Data volume”.

• “Should work fast”.

In some exceptional situations it can be argued that the idea is clear from the con-
text and further details. In most cases, however, there is no context and no further details,
i.e., the examples are presented as separate, full-fledged checklist items. It is not allowed.
See the example checklist{109} and the entire relevant section{108}.

Typical mistakes in writing checklists, test cases and test suites

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 154/278

It is now recommended to read again about test case attributes{117}, good test
cases’ properties{128} and the logic of creating{142} good test cases and good test case suites
to remember all this information better.

Defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 155/278

2.5. Defect reports

2.5.1. Errors, defects, malfunctions, failures, etc.

A simplified view of the concept of defect

Later in this chapter we will dive deeper into the terminology (which is really im-
portant!), and so we will start very simply: a defect can simplistically be any discrepancy
between something expected (property, result, behavior, etc., which we expected to see)
and something actual (property, result, behavior, etc., which we actually saw). When a
defect is detected, a defect report is created.

A defect is a discrepancy between the expected and actual result.
An expected result is the system behavior described in the requirements.
An actual result is the system behavior observed during testing.

IMPORTANT: These three definitions are given in an extremely simplified (and
even distorted) form for the sake of initial familiarization. For the full definitions,
see later in this chapter.

 Since such a simple interpretation does not cover all possible forms of problems
with software products, we move straight on to a more detailed discussion of the relevant
terminology.

An expanded view of the terminology

Let’s look at the wide range of synonyms used to refer to problems with software
products and other artefacts and processes involved in their development.
 The ISTQB syllabus states304 that humans make errors that lead to defects in code,
which in turn lead to application failures and faults (but failures and faults can also be
caused by external conditions such as electromagnetic interference with equipment, etc.)
 Thus, in a simplified way, the following diagram can be depicted:

Figure 2.5.a — Errors, defects, failures or interruptions

304 A human being can make an error (mistake), which produces a defect (fault, bug) in the program code, or in a document. If a

defect in code is executed, the system may fail to do what it should do (or do something it shouldn’t), causing a failure. Defects
in software, systems or documents may result in failures, but not all defects do so. Defects occur because human beings are
fallible and because there is time pressure, complex code, complexity of infrastructure, changing technologies, and/or many
system interactions. Failures can be caused by environmental conditions as well. For example, radiation, magnetism, electronic
fields, and pollution can cause faults in firmware or influence the execution of software by changing the hardware conditions.
[ISTQB Syllabus]

Error Defect
Failure or

Interruption

Errors, defects, malfunctions, failures, etc.

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 156/278

Looking at the terminology provided in the ISTQB glossary and other sources, it is
possible to construct a slightly more complex scheme:

Figure 2.5.b — Interconnection of problems in software product development

Let’s look at all the relevant terms.

Error305 (mistake) is a human action that leads to incorrect results.

 This term is very often used as the most general term to describe any problem
(“human error”, “code error”, “documentation error”, “operation error”, “data transmission
error”, “erroneous result”, etc.) Moreover, you will hear “error report” much more often
than “defect report”. This is normal, historically, and the term “error” is actually a very
broad one.

Defect306 (bug, problem, fault) is a flaw in a component or system that could
lead to a failure or interruption.

The term is also understood quite broadly, referring to defects in documentation,
settings, input data, etc. Why is the chapter called “defect reports” exactly? Because the
term is right in the middle — it makes no sense to write reports about human errors, just
as it is almost useless to simply describe failures and interruptions — you need to get to
the bottom of them, and the first step in this direction is to describe the defect.

Interruption307 or failure308 is a deviation from the expected behavior of the
system.

 These terms belong rather to reliability theory and are not often encountered in the
day-to-day work of the tester, but failures and interruptions are what the tester notices
during testing (and from which the tester investigates in order to identify the defect and
its causes).

Anomaly309 or incident310 (deviation) is any deviation of an observed (actual)
condition, behavior, value, result, property from the observer’s expectations
(formed on the basis of requirements, specifications, other documentation or
experience and common sense).

305 Error, Mistake. A human action that produces an incorrect result. [ISTQB Glossary]
306 Defect, Bug, Problem, Fault. A flaw in a component or system that can cause the component or system to fail to perform its

required function, e.g., an incorrect statement or data definition. A defect, if encountered during execution, may cause a failure
of the component or system. [ISTQB Glossary]

307 Interruption. A suspension of a process, such as the execution of a computer program, caused by an event external to that

process and performed in such a way that the process can be resumed. [http://www.electropedia.org/iev/iev.nsf/display?open-
form&ievref=714-22-10]

308 Failure. Deviation of the component or system from its expected delivery, service or result. [ISTQB Glossary]
309 Anomaly. Any condition that deviates from expectation based on requirements specifications, design documents, user documents,

standards, etc. or from someone’s perception or experience. Anomalies may be found during, but not limited to, reviewing,
testing, analysis, compilation, or use of software products or applicable documentation. See also bug, defect, deviation, error,
fault, failure, incident, problem. [ISTQB Glossary]

310 Incident, Deviation. Any event occurring that requires investigation. [ISTQB Glossary]

Error (Mistake)

Defect

(Problem, Bug,

Fault)

Failure,

Interruption

Anomaly, Incident (Deviation)

http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=714-22-10
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=714-22-10

Errors, defects, malfunctions, failures, etc.

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 157/278

So, we are back to where we started in the part of this chapter describing an ex-
tremely simplified view of defects. Errors, defects, malfunctions, interruptions, etc. are
manifestations of anomalies — deviations of the actual result from the expected result. It
is worth noting that the expected results can indeed be based on experience and common
sense, since the behavior of a software tool is never specified to the level of basic, ele-
mentary computer skills.

Now, to finally get rid of the confusion and ambiguity, let’s agree on what we will
consider to be a defect in the context of this book:

Defect is a deviation310 of an actual result311 from the observer’s expected re-
sult312 (that are formed on the basis of requirements, specifications, other doc-
umentation or experience and common sense).

It logically follows that defects can occur not only in the application code, but also
in any documentation, in the architecture and design, in the settings of the application
under test or the test environment — anywhere.

It is important to understand that the above definition of a defect helps to raise
the question of whether some behavior of the application is a defect. If there is
no clear positive answer from the project documentation, it is definitely worth
discussing your conclusions with your colleagues and getting the issue raised
to the customer if their opinion on the “defect candidate” under discussion is not
known.

A good introduction to the barely touched upon topic of reliability theory can be
obtained by reading Rudolph Frederick Stapelberg’s book “Handbook of Relia-
bility, Availability, Maintainability and Safety in Engineering Design”.

For a brief but quite detailed classification of anomalies in software products,
see “IEEE 1044:2009 Standard Classification For Software Anomalies”.

311 Actual result. The behavior produced/observed when a component or system is tested. [ISTQB Glossary]
312 Expected result, Expected outcome, Predicted outcome. The behavior predicted by the specification, or another source, of

the component or system under specified conditions. [ISTQB Glossary]

Defect report and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 158/278

2.5.2. Defect report and its lifecycle

As mentioned in the previous chapter, when a defect is detected, a tester creates
a defect report.

Defect report313 is a document that describes and prioritizes the defect de-
tected, and promotes its elimination.

 As the definition itself suggests, a defect report is written for the following main
purposes:

• provide information about the problem — notify the project team and other stake-
holders of the problem and describe the nature of the problem;

• prioritize the problem — identify the risk of the problem to the project and the de-
sired timeframe for fixing it;

• promote elimination of the problem — a good defect report not only provides all
the details needed to understand what happened, but can also provide an analysis
of the causes of the problem and recommendations for further actions.

The latter goal should be discussed in more detail. There is an opinion that “a well-
written defect report is half the solution to a problem for a programmer”. And indeed, as
we will see later (and especially in “Typical mistakes in writing defect reports”{186} chapter),
a lot depends on the completeness, correctness, accuracy, detail, and logic of a defect
report — the same problem could be described in such a way that a programmer could
literally fix a couple lines of code, or it could be described in a way that the next day the
report author will not understand what they really meant.

IMPORTANT: The “super goal” of writing a defect report is to quickly fix the
error (and ideally prevent it from occurring in the future). Special attention
should therefore be paid to the quality of defect reports.

The defect report (and the defect itself) goes through certain lifecycle stages, which
can be shown schematically as follows (figure 2.5.c).

The set of lifecycle stages, their names and the principle of transition from stage
to stage may differ in different defect report lifecycle management tools (“bug-
tracking tools”). Moreover, many such tools allow for flexible customization of
these parameters. Figure 2.5.c shows only the general principle.

 So, the list of stages is as follows:

• “Submitted” — this is the initial state of the report (sometimes called “new”), which
is the state it is in immediately after being created. Some tools also allow you to
draft a report before publishing it.

• “Assigned” — the report enters this state when someone on the project team is
assigned to be responsible for fixing the defect. The assignment is done either by
the development team leader, by the team, voluntarily, or in another way accepted
in the team, or automatically, based on certain rules.

• “Fixed” — the team member responsible for fixing the defect sets the report in this
state once the corrective action has been carried out.

313 Defect report, Bug report. A document reporting on any flaw in a component or system that can cause the component or system

to fail to perform its required function. [ISTQB Glossary]

Defect report and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 159/278

Figure 2.5.c — Defect report lifecycle with the most typical transitions between states

• “Verified” — the report is put in this state by the tester, who has verified that the
defect was indeed fixed. This is usually done by the tester who originally wrote the
defect report.

There are many “holy wars” over whether the tester who discovered the
defect should verify the fact that the defect has been fixed, or necessarily
another tester should. Proponents of the second option argue that the
fresh eyes of someone previously unfamiliar with the defect in question
make it more likely that they will discover new defects in the verification
process.

Though this point of view is valid, let’s note that if the testing process is
well organized and the search for defects is performed efficiently at an
appropriate stage of work, verification by a tester who has found the de-
fect nevertheless saves much time.

• “Closed” — this is the state of the report, which means that no further action is
planned for the defect (although of course nothing prevents the defect from being
“reopened” in the future). There are some differences in the lifecycle adopted by
different defect report management tools (“bug-tracking tools”):

o In some tools there are both “Verified” and “Closed” states, to emphasize
that in the “Verified” state some additional action may still be needed (dis-
cussions, additional checks in new builds, etc.), while the “Closed” state
means “we are done with the defect, don’t come back to this issue”.

o In some tools, one of the states is absent (it is absorbed by the other).

o In some tools, a defect report can be transferred to the “Closed” or “De-
clined” state from multiple previous states with resolutions such as:

▪ “Not a defect” — the application works as it should work, the de-
scribed behavior is not anomalous.

▪ “Duplicate” — this defect has already been described in another re-
port.

▪ “Unable to reproduce” — the developers were unable to reproduce
the problem on their equipment.

▪ “Won’t fix” — there is a defect, but for some serious reason it has

Submitted Assigned Fixed Verified

Deferred

ClosedReopened

Declined

To be declined

Defect report and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 160/278

been decided not to fix it.
▪ “Cannot be fixed” — the insurmountable cause of the defect is out-

side the remit of the development team, for example there is a prob-
lem in the operating system or hardware, the effect of which cannot
be remedied by reasonable means.

As just highlighted, in some tools the defect report in such cases will be
transferred to the “Closed” status, in some cases to the “Declined” status,
in some cases part of the cases are assigned to the “Closed” status, and
part to the “Rejected” status.

• “Reopened” — the report is put into this state (usually from “Fixed” state) by a
tester who has verified that the defect is still being reproduced on the build in which
it should already be fixed.

• “To be declined” — a defect report may be moved to this state from a number of
other states in order to submit a report for rejection for one reason or another. If
the recommendation is justified, the report is placed in the “Declined” state (see
next paragraph).

• “Declined” — the report is put in this state in the cases detailed at “Closed” if the
defect report management tool expects to use this state instead of “Closed” for
certain resolutions on the report.

• “Deferred” — the report is put in this state if fixing the defect in the near future is
not reasonable or possible, but there is a reason to believe that the situation will
improve in the foreseeable future (a new version of some library will be released,
a technology expert will return from holiday, the customer’s requirements will
change, etc.).

For a complete discussion of this subtopic, here is an example of the default lifecy-
cle in the JIRA314 defect report management tool (figure 2.5.d).

314 “What is Workflow”. [https://confluence.atlassian.com/jira063/what-is-workflow-683542483.html]

https://confluence.atlassian.com/jira063/what-is-workflow-683542483.html

Defect report and its lifecycle

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 161/278

Figure 2.5.d — Defect report lifecycle in JIRA

Open

In progress

Closed

Reopened

Resolved

Create

Resolve

Close
Stop

progress

Start progress

Reopen

Resolve

Close Close

Close

Start
progress

Reopen

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 162/278

2.5.3. Defect report fields (attributes)

 Depending on the defect report management tool, the appearance of the record
may vary slightly, and individual fields may be added or removed, but the concept remains
the same.

An overview of the entire defect report structure is shown in figure 2.5.e.

19 Infinite loop on input file
with read-only attribute

If an input file has the “read-only” at-
tribute, the app cannot move the pro-
cessed file into the destination direc-
tory: so, the app processes the file
again and again and thus falls into
the infinite loop.

Exp: the processed file is moved
from the input directory to the desti-
nation directory.

Act: the processed data (new file)
appears inside the destination direc-
tory, but the original file is not deleted
from the input directory.

Req: DS-2.1.

1. Place a valid file (size,
type) into the input direc-
tory.

2. Set the “read-only” attrib-
ute on this file.

3. Start the app.

Bug: the processing re-
sult appears inside the
destination dir (and the
file is repeatedly updated
according to the last write
time), but the original file
stays inside the input di-
rectory.

Always Medium Normal Incorrect opera-

tion

No If the customer has no special

plans for using “read-only” at-

tribute on files in the input di-

rectory, the Easiest solution is

to remove the attribute once it

is detected.

-

Figure 2.5.e — General overview of the defect report

Task 2.5.a: why do you think this defect report can be rejected on a technicality
with a “not a defect” resolution?

 Now let’s consider each attribute in detail.

 Identifier is a unique value to distinguish one defect report from another, and is
used in all kinds of references. In general, an identifier for a defect report can simply be
a unique number, but, if the report management tool permits, it can be much more com-
plex, using prefixes, suffixes or other meaningful components to quickly identify the defect
and the application part or requirements to which it relates.

Summary should answer three questions (“What happened?” “Where did it hap-
pen?” “Under what circumstances did it happen?”) as succinctly as possible. For example:
“There is no logo on the welcome page if the user is an administrator”:

• “What happened?” There is no logo.

• “Where did it happen?” On the welcome page.

• “Under what circumstances did it happen?” If the user is an administrator.

Identifier

(id)

Summary
Description

Steps to reproduce (STR)

Reproducibility

Severity
Priority

Symptom

Workaround

Comments
Attachments

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 163/278

One of the biggest problems for novice testers is filling in the Summary field, which
must at the same time:

• provide information about the defect that is as brief as possible, but sufficient to
understand the problem;

• answer the questions just mentioned (“what, where and under what circumstances
happened”) or at least those questions that apply to a specific situation;

• be short enough to fit entirely on the screen (in those defect report management
systems where the end of this field is cut off or causes scrolling);

• if necessary, contain information about the environment under which the defect
was detected;

• do not duplicate summaries of other defects (or even be similar to them), so that
defects are difficult to confuse or think of as duplicates of one another;

• be a complete sentence in English (or other) language, built according to appro-
priate grammatical rules.

The following algorithm is recommended for creating good defect summaries:
1. Formulate a detailed description of the defect — at first, without regard to the

length of the resulting text.
2. Eliminate all unnecessary things from the description, specify the important details.
3. In a detailed description, pick out words (or phrases, fragments of phrases) which

answer the questions “what happened, where and under what circumstances”.
4. Formulate what follows in paragraph 4 as a complete grammatically correct sen-

tence.
5. If the sentence is too long, reformulate it by reducing its length (by choosing syn-

onyms, using common abbreviations). By the way, in English a sentence will al-
most always be shorter than in most other languages.

Let’s look at some examples of this algorithm.

Situation 1. A web application is being tested, the “About product” field should
allow a maximum of 250 characters; the test reveals that this limit does not exist.

1. The gist of the problem: research has shown that neither the client nor the server
side has any mechanisms to check and/or limit the length of the data entered in
the “About product” field.

2. Original detailed description: the client and server parts of the application do not
check and limit the length of the data entered in the “About product” field on the
page http://testapplication/admin/goods/edit/.

3. Final version of the detailed description:

• Actual result: The product description (“About product”, http://testapplica-
tion/admin/goods/edit/) does not check or limit the length of the entered text
(MAX=250 characters).

• Expected result: an error message is displayed if an attempt is made to
enter 251+ characters.

4. Determining “what happened, where and under what circumstances”:

• What: there is no check and no limit on the length of text entered.

• Where: product description, “About product” field, http://testapplication/ad-
min/goods/edit/.

• Under what circumstances: – (in this case, the defect is always present,
regardless of any special circumstances).

5. Primary wording: “There is no check and no limit to the maximum length of the text
entered in the ‘About product’ field of the product description”.

6. Summary: “No check for ‘About product’ max length”.

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 164/278

Situation 2. Attempting to open an empty file in an application causes the client
side of the application to crash and the loss of unsaved user data on the server.

1. The gist of the problem: the client side of the application starts reading the file
header blindly, without checking the size, format or anything; an internal error oc-
curs and the client side of the application stops working incorrectly, without closing
the session with the server; the server closes the session by timeout (restarting
the client side starts a new session, so the old session and all data in it are lost in
any case).

2. Original detailed description: incorrect analysis of a file opened by the client causes
the client to crash and the current session with the server to be irretrievably lost.

3. Final version of the detailed description:

• Actual result: failure to check if a file opened by the client side of the appli-
cation is correct (including an empty file) causes the client side to crash and
the current session with the server to be irreversibly lost (see BR852345).

• Expected result: the structure of the file being opened is analyzed; if a prob-
lem is detected, a message indicating that the file cannot be opened is dis-
played.

4. Determining “what happened, where and under what circumstances”:
• What: crash of the client side of the application.
• Where: – (it is hardly possible to identify a specific location in the applica-

tion).
• Under what circumstances: when opening an empty or damaged file.

5. Primary wording: “Failure to check that the file being opened is correct will cause
the client side of the application to crash and user data to be lost”.

6. Summary: “Client crash and data loss on damaged/empty files opening”.

Situation 3. Very rarely, for reasons completely unclear, the site breaks the display
of all Russian text (both static lettering and data from the database, dynamically gener-
ated, etc. — everything “becomes question marks”).

1. The gist of the problem: the framework on which the website is built loads specific
fonts from a remote server; if the connection is broken, the required fonts are not
loaded, and default fonts are used, which do not have Russian characters.

2. Original detailed description: an error downloading fonts from a remote server re-
sults in the use of local fonts incompatible with the required encoding.

3. Final version of the detailed description:

• Actual result: periodic failure to download fonts from a remote server results
in the use of local fonts incompatible with the required encoding.

• Expected result: required fonts are always downloaded (or a local source of
required fonts is used).

4. Determining “what happened, where and under what circumstances”:

• What: fonts incompatible with the required encoding are used.

• Where: – (across the site).

• Under what circumstances: in the event of a connection error with the server
from which the fonts are downloaded.

5. Primary wording: “Periodic failures of an external font source cause Russian text
to be displayed incorrectly”.

6. Summary: “Wrong presentation of Russian text in case of external fonts inacces-
sibility”.

To reinforce this, let’s present the three situations again in table 2.5.a.

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 165/278

Table 2.5.a — Problem situations and wording of defects summaries

Situations Summary

A web application is being tested, the “About product” field should al-

low a maximum of 250 characters; the test reveals that this limit does

not exist.

No check for “About product”

max length.

Attempting to open an empty file in an application causes the client

side of the application to crash and the loss of unsaved user data on

the server.

Client crash and data loss on

damaged/empty files open-

ing.

Very rarely, for reasons completely unclear, the site breaks the display

of all Russian text (both static lettering and data from the database,

dynamically generated, etc. — everything “becomes question marks”).

Wrong presentation of Rus-

sian text in case of external

fonts inaccessibility.

Let’s go back to looking at the defect report fields.

Description provides detailed information on the defect and (mandatory!) a de-
scription of the actual result, the expected result and a reference to the requirement (if
possible).

Here is an example of such a description:

There is no logo on the welcome page if the user is an administrator.
Actual result: the logo is missing from the top left-hand corner of the page.
Expected result: The logo is displayed in the top left-hand corner of the page.
Requirement: R245.3.23b.

In contrast to a summary, which is usually a single sentence, detailed information
can and should be given here. If the same problem (caused by the same source) occurs
at several locations in an application, you can list these locations in the description.

Steps to reproduce (STR) describe the actions to be taken to reproduce the de-
fect. This field is similar to the test case steps, except for one important difference: here
the actions are described in as much detail as possible, with specific input values and the
smallest details, because the absence of this information in complex cases may lead to
an impossibility to reproduce the defect.

Here is an example of steps to reproduce:

1. Open http://testapplication/admin/login/.
2. Authenticate with “defaultadmin” login and “dapassword” password.

Defect: There is no logo in the top left-hand corner of the page (an empty
space with the word “logo” in its place).

Reproducibility shows whether the defect can be caused every time you go
through the steps to reproduce. This field accepts only two values: “always” or “some-
times”.
 We can say that reproducibility “sometimes” means that the tester has not found
the real cause of the defect. This leads to serious additional difficulties in dealing with the
defect:

• The tester needs to spend a lot of time making sure that the defect is present (as
a single application failure could be caused by a huge number of extraneous
causes).

• The developer also has to take the time to make sure that the bug is there, and to
make sure that it exists. After fixing the application the developer actually has to
rely only on their own professionalism, because even going through the replay
steps many times in such a case does not guarantee that the defect has been fixed
(perhaps after 10–20 more replayings it would have appeared).

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 166/278

• The tester who verifies the correction of the defect may only trust the developer’s
word for the same reason: even if he tries to reproduce the defect 100 times and
then stops trying, it may happen that on the 101st time the defect would have been
reproduced anyway.

As you can easily guess, such a situation is extremely unpleasant, so it is advisable
to take the time to thoroughly diagnose the problem once, find the cause and move the
defect to the category of one that is always reproducible.

Severity shows the degree of damage to the project caused by the existence of
the defect.
 In general, the following gradations of severity are distinguished:

• Critical — the existence of a defect leads to catastrophic consequences on a large
scale, for example: loss of data, disclosure of confidential information, disruption
of key application functionality, etc.

• Major — defects cause significant inconvenience to many users in their typical
activities, for example: clipboard inaccessibility, common keyboard shortcuts do
not work, application has to be restarted when performing typical work scenarios.

• Medium — the existence of defect has little effect on typical user work scenarios,
and/or there is a workaround to achieve the goal, for example: a dialog box does
not close automatically after pressing “OK”/“Cancel” buttons, when printing several
documents in a row the value of “Duplex printing” field value is not saved, sorting
directions of a table field are mixed up.

• Minor — the existence of a defect is rarely detected by a small percentage of users
and (almost) does not affect their work, for example: a typo in a deeply nested
menu item, some window at once is displayed awkwardly (one needs to drag it to
a convenient place), inaccurately displayed time to complete copying operations
files.

Priority indicates how quickly the defect must be fixed.
In general, the following gradations of urgency are distinguished:

• ASAP (as soon as possible) — indicates the need to fix the defect as quickly as
possible. Depending on the context, “as soon as possible” can range from “in the
nearest build” to minutes.

• High — the defect should be fixed out of turn, as it is either already objectively
disruptive or will become so in the near future.

• Normal — the defect has to be fixed in the general order of priority. Most defects
have this “Priority” field value.

• Low — fixing this defect will not have a significant impact on product quality in the
foreseeable future.

A few additional considerations about severity and priority are worth explor-
ing separately.

One of the most frequent questions relates to the relationship between the two.
There is none. For a better understanding of this fact, we can compare severity and pri-
ority to the X and Y coordinates of a point on a plane. While it may seem at a mundane
level that defects of high severity should be dealt with first, the reality may be quite differ-
ent.

To illustrate this point further, let’s go back to the list of gradations: did you notice
that there are examples for different degrees of severity and none for different degrees of
priority? There is a reason for that.

Knowing the nature of the project and the nature of the defect, its severity is quite
easy to determine, because we can trace the impact of the defect on the quality criteria,
the degree to which the requirements of one or another importance are fulfilled, etc. The
priority of the defect, however, can only be determined in a specific situation.

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 167/278

Let’s explain with an example from life: how necessary is water for human life?
Very necessary, without water a man dies. So, the severity of water absence for a human
can be estimated as “Critical”. But can we answer the question “How quickly does a per-
son need to drink water?” without knowing the situation in question? If the person in ques-
tion is dying of thirst in the desert, the priority will be the highest. If they are just sitting in
their office wondering if they need a cup of tea, the priority will be normal or even low.

Let’s go back to examples from software development and show the four cases of
combination of priority and severity in table 2.5.b.

Table 2.5.b — Examples of defect priority and severity combinations

 Severity

 Critical Minor

Priority

ASAP

Security problems in active

banking software.

A picture of the corporate logo on

the corporate website got dam-

aged.

Low

At the very beginning of project

development, a situation was

discovered in which user data

could be damaged or even lost

completely

The user manual contains several

typos that do not affect the mean-

ing of the text.

Symptom allows one to classify defects by their typical manifestation. There is no
universally accepted list of symptoms. Moreover, not every defect report management
tool has such a field, and where it does, it can be customized. As an example, consider
the following defect symptom values.

• Cosmetic flaw — a visually noticeable defect in the interface that does not affect
the application’s functionality (e.g., a button label is in the wrong font).

• Data corruption/loss — a defect causes some data to be corrupted, destroyed (or
not saved) (for example, copying a file causes the copy to be corrupted).

• A documentation issue — the defect is not in the application, but in the documen-
tation (for example, a user manual section is missing).

• Incorrect operation — some operation is not performed correctly (e.g., a calculator
shows the answer 17 when multiplying 2 by 3).

• Installation problem — the defect occurs during the installation and/or configura-
tion phase of the application (see installation testing{85}).

• Localization issue — something in the application is not translated or not correctly
translated into the selected language (see localization testing{88}).

• Missing feature — an application function is not running or cannot be accessed
(e.g., several items that should be there are missing from the list of formats for a
file export).

• Scalability problem — as the number of resources available to an application in-
creases, the expected performance gain is not achieved (see performance test-
ing{90} and scalability testing{90}).

• Low performance — some operations take an unacceptably long time to complete
(see performance testing{90}).

• System crash — an application stops working or loses the ability to perform its key
functions (may also be accompanied by a crash of the operating system, web
server, etc.).

• Unexpected behavior — during execution of some typical operation the application
behaves in an unusual (different from the common) way (for example, after adding
a new record to the list it is the first record in the list, not the new one, that becomes
active).

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 168/278

• Unfriendly behavior — the behavior of the application causes inconvenience to the
user in their work (for example, the “OK” and “Cancel” buttons are located in a
different order on different dialog boxes).

• Variance from specs — this symptom is used if the defect is difficult to correlate
with other symptoms, but the application doesn’t behave as described in the re-
quirements.

• Enhancement — many defect reporting tools have a separate report form for this,
because an enhancement suggestion is not technically a defect: the application
behaves as specified, but the tester has a valid opinion on how to improve it.

A common question is whether one defect can have more than one symptom at
the same time. Yes, it can. For example, a system crash very often leads to data loss or
corruption. In most defect reporting tools, however, the “Symptom” field is selected from
a list and it is not possible to specify two or more symptoms for the same defect. In such
a situation it is advisable to select either the symptom that best describes the situation,
or the “most dangerous” symptom (for example, unfriendly behavior, such as “an appli-
cation not asking for confirmation when overwriting an existing file”, results in loss of data;
“data loss” is much more appropriate than “unfriendly behavior” here).

Workaround indicates whether there is an alternative workflow which would allow
the user to achieve the goal (e.g., keyboard shortcut Ctrl+P does not work, but the docu-
ment can be printed by selecting the appropriate items from the menu). In some defect
report management tools this field may simply take the values “Yes” and “No”; in some,
selecting “Yes” gives the option of describing a workaround. Defects without a worka-
round are traditionally considered to have a higher priority for fixing.

Comments (additional info) can contain any data useful for understanding and
fixing the defect. In other words, it can contain anything that cannot be written in the other
fields.

Attachments — this is not so much a field as it is a list of attachments to the defect
report (screenshots, files that causes problems, etc.).

The general guidelines for the formation of attachments are as follows:

• If you are in doubt about whether or not to make an attachment, it is better to do.

• Be sure to attach so-called “problem artefacts” (e.g., files that the application does
not handle correctly).

• If you attach a screenshot:
o More often than not, you will need a copy of the active window (Alt+Print-

Screen) rather than the whole screen (PrintScreen).
o Trim off any excess (use Snipping Tool or Paint in Windows, Pinta or XPaint

in Linux).
o Mark the problem areas on the screenshot (circle it, draw an arrow, add a

caption — do whatever is necessary to make the problem visible and un-
derstandable at a glance).

o In some cases, it is worth making one large image from several screenshots
(placing them sequentially) to show the defect reproduction process. An al-
ternative to this solution is to make several screenshots, named in such a
way that the names form a sequence, e.g.: br_9_sc_01.png,
br_9_sc_02.png, br_9_sc_03.png.

o Save a screenshot in JPG format (if space saving is important) or PNG for-
mat (if accurate reproduction of the picture without distortion is important).

Defect report fields (attributes)

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 169/278

• If you attach a video recording of what is happening on the screen, be sure to leave
only the portion that relates to the defect being described (it will be just a few sec-
onds or minutes of the possible many hours of recording). Try to adjust your co-
decs to obtain the smallest video clip possible while maintaining sufficient image
quality.

• Experiment with different tools for creating screenshots and recording videos of
what’s happening on the screen. Choose the software that works best for you and
make a habit of using it all the time.

For a better understanding of the principles of defect reporting, it is recommended

that you read “Typical mistakes in writing defect reports”{186} chapter.

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 170/278

2.5.4. Defects management (bug-tracking) tools

So-called “defect management tools” are colloquially referred to as “bug-track-
ing systems” (BTS), “bug trackers”, etc. But we will here, by tradition, stick to
the stricter terminology.

There are many315 defect management tools316 (bug tracking systems) and many
companies have developed their own internal tools to handle this task. Often these tools
are part of the test management tools{122}.
 As with test management tools, there is no point in memorizing how to work with
defect reports in any particular tool. We will only look at a common set of functions, usually
implemented by such tools:

• Create defect reports, manage their lifecycle, taking into account version control,
access permissions and state transitions.

• Collect, analyze and present statistics in a human-readable form.

• Dispatch notifications, reminders and other artefacts to the staff concerned.

• Organize links between defect reports, test cases, requirements and analyze these
links with the possibility of making recommendations.

• Preparation of information to be included in the test result report.

• Integration with project management tools.

In other words, a good defect report lifecycle management tool not only relieves
the individual from having to carefully perform a large number of routine operations, but
also provides additional features that make the tester’s work easier and more efficient.

 For a general overview and a better understanding of how to write defect reports,
we will now look at a few pictures of forms from different tools.
 There is quite deliberately no comparison or detailed description given here —
there are plenty of such reviews on the Internet, and they are rapidly becoming outdated
as new versions of the products reviewed are released.
 But of interest are the individual features of the interface, which we will focus on in
each of the examples (important: if you are interested in a detailed description of each
field, its associated processes, etc., please refer to the official documentation — only the
briefest explanations will be given here).

315 “Comparison of issue-tracking systems”, Wikipedia [http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems]
316 Defect management tool, Incident management tool. A tool that facilitates the recording and status tracking of defects and

changes. They often have workflow-oriented facilities to track and control the allocation, correction and re-testing of defects and

provide reporting facilities. See also incident management tool. [ISTQB Glossary]

http://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 171/278

Jira317

1. “Project” allows one to specify to which project the defect relates.
2. “Issue type” allows one to specify exactly what the artefact is. JIRA has capabilities

to create not only defect reports, but also many other artefacts318 with customiza-
ble319 types. The default artefact types are:

• “Improvement” — has been described in detail in the section on defect re-
port fields (see description of the “symptom” field, “enhancement”{168} value).

• “New feature” — description of a new functionality, new capability, new
product feature.

• “Task” — a task to be carried out by a member of the project team.

• “Custom issue” — usually this value is deleted while configuring JIRA, or
replaced with custom options, or renamed to just “Issue”.

3. “Summary” allows one to specify a brief description of the defect.
4. “Priority” allows one to specify the priority for correcting the defect. By default, JIRA

offers the following options: highest, high, medium, low, lowest.

Please note: by default, there is no “Severity” field. But it can be added.

5. “Components” lists the components of the application affected by the defect (alt-
hough sometimes symptoms of defects are listed here).

6. “Affected versions” lists the versions of the product in which the defect occurs.
7. “Environment” describes the hardware and software configuration in which the de-

fect occurs.
8. “Description” allows one to specify a detailed description of the defect.
9. “Original estimate” allows one to specify an initial estimate of how long it will take

to correct the defect.
10. “Remaining estimate” shows how much time is left of the original estimate.
11. “Story points” allow one to specify the complexity of a defect (or other artefact) in

specific evaluation units adopted in agile project management methodologies.
12. “Labels” contains labels (tags, keywords) by which defects and other artefacts can

be grouped and categorized.
13. “Epic/Theme” contains a list of high-level tags describing major requirement areas,

major application modules, major parts of the subject area, extensive user scenar-
ios, etc. related to the defect.

14. “External issue id” allows one to link a defect report or other artefact to an external
document.

15. “Epic link” contains a link to the epic/theme (see point 13) most closely related to
the defect.

16. “Has a story/s” contains references and/or descriptions of user scenarios related
to the defect (usually links to external documents are provided here).

17. “Tester” contains the name of the author of the defect report.
18. “Additional information” contains useful additional information about the defect.
19. “Sprint” contains the number of the sprint (2–4 week project development iteration

in terms of agile project management methodologies) during which the defect was
detected.

Many additional fields and features become available in other defect operations
(viewing or editing the defect created, viewing reports, etc.).

317 “JIRA — Issue & Project Tracking Software” [https://www.atlassian.com/software/jira/]
318 “What is an Issue” [https://confluence.atlassian.com/jira063/what-is-an-issue-683542485.html]
319 “Defining Issue Type Field Values” [https://confluence.atlassian.com/display/JIRA/Defining+Issue+Type+Field+Values]

https://www.atlassian.com/software/jira/
https://confluence.atlassian.com/jira063/what-is-an-issue-683542485.html
https://confluence.atlassian.com/display/JIRA/Defining+Issue+Type+Field+Values

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 172/278

Figure 2.5.f — Defect report creation with JIRA

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18
19

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 173/278

Bugzilla320

1. “Product” allows one to specify to which product (project) the defect relates.
2. “Reporter” contains the e-mail address of the author of the defect report.
3. “Component” contains an indication of the application component to which the de-

fect being described relates.
4. “Component description” contains a description of the application component to

which the defect being described relates. This information is automatically loaded
when the component is selected.

5. “Version” contains the version of the product in which the defect was detected.
6. “Severity” contains an indication of the severity of the defect. The default options

are as follows: blocker (the defect does not allow a certain task to be solved by the
application), critical, major, normal, minor, trivial, enhancement (has been de-
scribed in detail in the section on defect report fields (see description of the “symp-
tom” field, “enhancement”{168} value)).

7. “Hardware” allows one to select the hardware environment profile in which the de-
fect occurs.

8. “OS” (operating system) allows one to specify the operating system under which
the defect occurs.

9. “Priority” allows one to specify the priority for fixing the defect. By default, Bugzilla
offers the following options: highest, high, normal, low, lowest.

10. “Status” allows one to set the status of the defect report. By default, Bugzilla offers
the following status options:

• “Unconfirmed” — the defect has not yet been studied, and there is no guar-
antee that it is actually correctly described.

• “Confirmed” — the defect has been studied; the correctness of the report
has been confirmed.

• “In progress” — work is underway to further investigate and fix the defect.

The official documentation recommends that, immediately after installing Bugzilla,
you should configure the status set and defect reporting lifecycle rules according
to your company’s rules.

11. “Assignee” gives the e-mail address of the project team member responsible for
investigating and fixing the defect.

12. “CC” contains a list of e-mail addresses of project team members who will receive
notifications of what is happening with this defect.

13. “Default CC” contains the e-mail address(es) of the project team members who will
be notified by default when any defects occur (most often e-mail addresses are
specified here).

14. “Original estimation” allows one to specify an original estimate of how long it will
take to fix the defect.

15. “Deadline” allows one to specify the date by which the defect must be fixed.
16. “Alias” allows one to specify a short, memorable name for the defect (perhaps in

the form of an acronym) for easy reference in a variety of documents.
17. “URL” allows one to specify the URL where the defect appears (particularly rele-

vant to web applications).

320 “Bugzilla” [https://www.bugzilla.org]

https://www.bugzilla.org/

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 174/278

Figure 2.5.g — Defect report creation with Bugzilla

18. “Summary” allows one to specify a brief description of the defect.
19. “Description” allows one to specify a detailed description of the defect.
20. “Attachment” allows one to add attachments to the defect report.
21. “Depends on” allows one to specify a list of defects that must be fixed before the

team can work on the defect in question.
22. “Blocks” allows one to specify a list of defects that can only be dealt with after the

defect has been fixed.

1 2

3
4

5

6

7

8

9
10

11

12

13

14 15

16
17

18

19

20

21
22

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 175/278

Mantis321

1. “Category” contains an indication of the project or application component to which
the defect being described relates.

2. “Reproducibility” indicates the possibility to reproduce the defect. Mantis offers an
atypically large number of options:

• “Always”.

• “Sometimes”.

• “Random” — a variation on the “sometimes” idea, where no pattern of the
defect occurrence could be established.

• “Have not tried” — is not so much reproducibility as status, but Mantis at-
tributes this value to this field.

• “Unable to reproduce” — it is not so much reproducibility as it is the resolu-
tion to reject the defect report, but in Mantis it is also referred to this field.

• “N/A” (non-applicable) — is used for defects to which the concept of repro-
ducibility does not apply (e.g., documentation problems).

3. “Severity” contains an indication of the severity of the defect. The default options
are as follows:

• “Block” — the defect does not allow a certain task to be completed by the
application.

• “Crash” — generally refers to defects that cause an application to fail to
work.

• “Major”.

• “Minor”.

• “Tweak” — usually a cosmetic defect.

• “Text” — the defect usually relates to the text (typos, etc.)

• “Trivial”.

• “Feature” — the report is not a description of a defect, but a request to
add/change functionality or properties to the application.

4. “Priority” allows one to specify the priority for fixing the defect. By default, Mantis
offers the following options: immediate, urgent, high, normal, low, none (priority is
not specified or cannot be determined).

5. “Select profile” allows one to select the hardware and software configuration profile
under which the defect occurs from a predefined list. If there is no such list or it
does not contain the necessary options, one can manually fill in fields 6–7–8 (see
below).

6. “Platform” allows one to specify the hardware platform under which the defect oc-
curs.

7. “OS” (operating system) allows one to specify the operating system under which
the defect occurs.

8. “OS Version” allows one to specify the version of the operating system under which
the defect occurs.

9. “Product version” allows one to specify the version of the application in which the
defect was detected.

10. “Summary” allows one to specify a brief description of the defect.
11. “Description” allows one to specify a detailed description of the defect.
12. “Steps to reproduce” allows one to specify the steps to reproduce the defect.
13. “Additional information” allows one to specify any additional information that may

be useful when analyzing and fixing the defect.

321 “Mantis Bug Tracker” [https://www.mantisbt.org]

https://www.mantisbt.org/

Defects management (bug-tracking) tools

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 176/278

Figure 2.5.h — Defect report creation with Mantis

14. “Upload file” allows one to upload screenshots and similar files that may be useful
in analyzing and fixing the defect.

15. “View status” allows one to manage the access permissions to the defect report
and offers by default two options: public, private.

16. “Report stay” — ticking this box allows one to immediately start writing the next
report after saving the current one.

Task 2.5.b: study 3–5 more defect report lifecycle management tools, read their
documentation, create some defect reports in them.

1 2

3

4 5

6

7

8
9

10

11

12

13

14
15

16

Good defect report properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 177/278

2.5.5. Good defect report properties

 A defect report may be imperfect (and therefore a described defect less likely to
be fixed) if one or more of the following properties are unsound.

All fields must be filled in accurately and correctly. There are a number of
reasons why this property may be compromised: inexperience of the tester, inattention,
laziness, etc.

The most striking manifestations of such a problem usually are:

• Some of the fields that are important for understanding the problem are not filled
in. As a result, the report becomes a collection of scattered information, which can-
not be used to correct the defect.

• The information provided is insufficient to understand the problem. For example,
from such a poorly detailed description it is not at all clear what the problem is:
“The app sometimes converts some files incorrectly”.

• The information provided is incorrect (e.g., invalid application messages, incorrect
technical terms etc.). This most often happens due to inattention (consequences
of erroneous copy-paste and lack of final proofreading of the report before submit-
ting).

• A “defect” (in quotes) is found in functionality, which has not yet been declared
ready for testing. That is, the tester states that something doesn’t work correctly,
but that something shouldn’t (yet!) work correctly.

• The report contains jargon: both in the literal sense (dirty words) and/or some tech-
nical jargon, understood by an extremely limited circle of people. For example:
“The chartniks have got it badly” (meaning: “Not all of the encoding tables are
loaded successfully”).

• The report, instead of describing a problem with the application, criticizes the work
of someone on the project team. For example: “How dumb do you have to be to
do that?”.

• The report omits a seemingly insignificant problem, but in fact it is critical to repro-
duce the defect. More often than not, this is seen as skipping a reproduction step,
missing or insufficiently detailed environment descriptions, overgeneralized input
values, etc.

• The report has the wrong (usually underestimated) priority or severity. In order to
avoid such problems, it is worthwhile to examine the problem thoroughly and de-
fine the most serious consequences of the defect and defend your position if your
colleagues think otherwise.

• The report is not accompanied by the necessary screenshots (especially important
for cosmetic defects) or other files. A classic example of such a mistake: the report
describes incorrect operation of an application with some file, but the file itself is
not attached.

• The report is written illiterately from the human language point of view. Sometimes
this can be overlooked, but sometimes it becomes a real problem, e.g.: “Not key-
board in parameters accepting values” (this is a real quote; and the author himself
could not explain what was meant by it).

Good defect report properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 178/278

 Proper technical language. This property applies equally to requirements, test
cases, defect reports — any documentation, so let’s not repeat it — see earlier{128}.

Compare the two detailed descriptions of the defect:

Bad description Good description

When it’s as if we want to remove a folder with

something inside it, it doesn’t ask if we want to.

No confirmation request when deleting a non-

empty subdirectory in the SOURCE_DIR directory.

Act: Deleting a non-empty subdirectory (with all its

contents) in the SOURCE_DIR directory without

asking for confirmation.

Exp: If the application detects a non-empty sub-

folder in the SOURCE_DIR folder, it will stop with

the message: “Non-empty subfolder [subfolder

name] in SOURCE_DIR folder detected. Remove

it manually or restart application with --

force_file_operations key to remove automatically.”

Req: UR.56.BF.4.c.

 Specificity of “steps to reproduce” descriptions. When talking about test
cases, we emphasized that it is worth keeping a balance between specificity and gener-
ality in their steps. In defect reports, specificity is usually preferred for a very simple rea-
son: the lack of a specific detail can make it impossible to reproduce the defect. So, if you
have even the slightest doubt about whether a detail is important, consider it important.
 Compare two sets of steps to reproduce the defect:

Insufficiently specified steps Pretty specified steps

1. Send a file of an acceptable format and size,

where the Ukrainian text is in different encod-

ings, to be converted.

Defect: the encodings are not converted cor-

rectly.

1. Send an HTML file with 100KB to 1MB size,

where Ukrainian text is encoded in UTF8 (10

lines of 100 characters) and KOI8-U (20 lines of

100 characters).

Defect: text that was presented in UTF8 is cor-

rupted (presented with an unreadable charac-

ters).

In the first case it is basically impossible to reproduce the defect, because it is
caused by peculiarities of external libraries in determining text encodings in the document,
while in the second case the data is sufficient if not to understand what is going on (the
defect is actually very “tricky”), then at least to guarantee the reproducibility and
acknowledge the fact of defect’s presence.
 Once again, the main point: unlike a test case, a defect report can have increased
specificity, and this will be less of a problem than not being able to reproduce the defect
because of an over-generalized description of the problem.

Good defect report properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 179/278

 Absence of unnecessary actions and/or lengthy descriptions. More often than
not, this property implies that there is no need to describe the steps to reproduce the
defect in a long, point-by-point way, which can be replaced by a single phrase:

Bad Good

1. Specify the path to the folder containing the
source files as the first parameter of the appli-
cation.

2. Specify the path to the destination folder as the
second parameter of the application.

3. Specify the path to the log file as the third appli-
cation parameter.

4. Run the application.

Defect: The application uses the first command
line parameter as both the path to the source
files folder and the path to the destination files
folder.

1. Run the application with all three correct pa-
rameters (especially make sure that
SOURCE_DIR and DESTINATION_DIR do not
overlap and are not nested in any combination).

Defect: The application stops with the message
“SOURCE_DIR and DESTINATION_DIR may
not be the same!” (The first command line pa-
rameter seems to be used to initialize both di-
rectory names).

The second most common mistake is to start every defect report by starting the
application and describing in detail how to bring it to a particular state. It is good practice
to write preparations (similar to test cases) in the defect report, or to describe the desired
application state in one (first) step.

Compare:

Bad Good

1. Start the application with all the correct param-
eters.

2. Wait more than 30 minutes.
3. Send a file in a suitable format and size for con-

version.

Defect: The application does not process the
file.

Prerequisite: The app is running and has been run-
ning for more than 30 minutes.
1. Send a file of a suitable format and size for con-

version.

Defect: The application does not process the
file.

Absence of duplicates. When a project team has a large number of testers, a
situation may arise when one and the same defect is described several times by different
people. And sometimes it happens that even the same tester has already forgotten that
they discovered some problem long time ago and is now describing it anew. The following
set of recommendations allows you to avoid this situation:

• If you are not sure if a defect has not been previously described, search with your
defect management tool.

• Write short descriptions that are as informative as possible (since they are the first
thing you search for). If your project has too many defects with short descriptions
like “Button doesn’t work”, you will waste a lot of time going over dozens of defect
reports over and over again in search of relevant information.

• Make the most of your toolkit’s capabilities: include application components, refer-
ences to requirements, tagging and more in the defect report. — all this will help
you quickly and easily narrow down your search in the future.

• In the detailed description of the defect, include the text of messages from the
application, if possible. Even a report in which the rest of the information is too
general can be found using such text.

• Try to participate in clarification meetings322, whenever possible, because you may
not remember every defect or user scenario verbatim, but at the right time you may
get the feeling “I’ve heard it before”, which will make you search for it and tell you
what to look for.

322 Clarification meeting. A discussion that helps the customers achieve “advance clarity” — consensus on the desired behavior of

each story — by asking questions and getting examples. [“Agile Testing”, Lisa Crispin, Janet Gregory]

Good defect report properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 180/278

• If you find any additional information, add it to an existing defect report (or ask its
author to do so), but do not create a separate report.

 Clarity and comprehensibility. Describe the defect so that the reader of your
report will not have the slightest doubt that it is indeed a defect. This is best achieved by
carefully explaining the actual and expected outcomes and by referring to the requirement
in the “Description” field.

Compare:

Bad description Good description

The application does not indicate detected subdi-
rectories in the SOURCE_DIR directory.

The application does not notify the user about sub-
directories found in the SOURCE_DIR directory,
resulting in unreasonable expectations for users to
process files in such subdirectories.
Act: the application starts (continues) if there are
subdirectories in the SOURCE_DIR directory.
Exp: If the application detects an empty subdirec-
tory in the SOURCE_DIR directory at startup or
during operation, it deletes it automatically (is that
logical?), but if a non-empty subdirectory is de-
tected, the application will stop and display the
message “Non-empty subfolder [subdirectory
name] in SOURCE_DIR folder detected. Remove
it manually or restart application with --
force_file_operations key to remove automatically.”
Req: UR.56.BF.4.c.

 In the first case, after reading the description, one is tempted to ask: “So what? Is
it supposed to notify?” The second version of the description, however, makes it clear
that such behavior is wrong according to the current version of the requirements. Further-
more, the second option asks (and ideally should ask the requirement itself) for a review
of how the application should behave correctly in such a situation, i.e., not only does it
qualitatively describe the current problem, but it also raises the question of how to further
improve the application.

 Traceability. It should be clear from the information in a good defect report which
part of the application, which functions and which requirements are affected by the defect.
This property is best achieved by making good use of the features of the defect report
management tool: include in the defect report application components, references to re-
quirements, test cases, related defect reports (similar defects; dependent and affiliated
defects), tagging, etc.
 Some tools even allow you to build visual diagrams based on such data, making
traceability management, even on very large projects, a trivial job rather than a humanly
impossible task.

Separate reports for each new defect. There are two immutable rules:

• Each report describes exactly one defect (if the same defect occurs in more than
one location, these occurrences are listed in the detailed description).

• When a new defect is detected, a new report is generated. You cannot edit old
reports to describe a new defect by putting them in the “reopen” state.

Violation of the first rule leads to objective confusion, which is best illustrated as
follows: imagine that one report describes two defects, one of which has been corrected
and the other has not. Which state would you put the report in? We don’t know.

Violation of the second rule creates chaos: not only the information about previous
defects is lost, but there are also problems with all kinds of metrics and common sense.
To avoid this problem, on many projects only a limited number of team members have
the right to move a defect report from “closed” to “reopen” state.

Good defect report properties

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 181/278

Compliance with accepted layout templates and traditions. As with test cases,

there is no problem with the layout templates for defect reports: they are defined by an

existing template or by the screen form of the defect report management tool. However,

the only advice would be to read ready-made defect reports before writing your own, as

traditions may differ even between teams in the same company. This can save you a lot

of time and effort.

Logic for creating effective defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 182/278

2.5.6. Logic for creating effective defect reports

The following procedure is recommended for creating an effective defect report:

0. Detect a defect ☺.
1. Understand the problem.
2. Reproduce the defect.
3. Check if the defect is already described in the defect management system (i.e.,

check for duplicates).
4. Formulate the essence of the problem as “what was done, what was the result,

what was expected”.
5. Fill in the fields of the report, starting with the “Description” field.
6. After completing all the fields, carefully reread the report, correcting inaccuracies

and adding details.
7. Reread the report again, as you have definitely missed something in point 6 ☺.

Now more about each step.

Understand the problem

It all starts with understanding what is going on with the application. Only with this
understanding can you write a really good defect report, correctly identify the importance
of the defect, and give useful recommendations on how to fix it. Ideally, a defect report
should describe the nature of the problem, not its external appearance.

Compare two reports for the same situation (the “File Converter” application does
not distinguish between files and symbolic links to files, which leads to a series of anom-
alies in the file system).

 A bad report written without having understood the problem:

Summary Description Steps to reproduce

Files outside the

SOURCE_DIR are pro-

cessed.

Sometimes, for unknown reasons, an

application processes random files

outside the SOURCE_DIR directory.

Act: individual files outside

SOURCE_DIR are processed.

Exp: only files in SOURCE_DIR are

processed.

Req: DS-2.1.

Unfortunately, it was not possible to

discover the sequence of steps

leading up to this defect.

Repro-

ducibil-

ity

Priority Severity Symptom Worka-

round

Comments

Some-

times

High High Incorrect oper-

ation

No

Logic for creating effective defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 183/278

A good report written having understood the problem:

Summary Description Steps to reproduce

The app does not

distinguish between

files and symbolic

links to files.

If a symbolic link to a file is placed in the

SOURCE_DIR directory, the following

erroneous behavior will occur:

a) If a symbolic link refers to a file inside

SOURCE_DIR, the file is processed

twice and both the file and the symbolic

link are moved to DESTINATION_DIR.

b) If a symbolic link points to a file out-

side the SOURCE_DIR, the application

processes the file, moves the symbolic

link and the file itself to DESTINA-

TION_DIR and then continues to pro-

cess files in the directory that originally

contained the processed file.

Act: the application considers symbolic

links to files as files themselves (see de-

tails above).

Exp: if the application finds a symbolic

link in the SOURCE_DIR directory, it will

terminate with the following message

“Symbolic link [symbolic link name] in

SOURCE_DIR folder detected. Remove

it manually or restart application with --

force_file_operations key to remove au-

tomatically.”

Req: UR.56.BF.4.e.

1. Create the following directory

structure at an arbitrary location:

/SRC/

/DST/

/X/

2. Place several arbitrary files (of

an acceptable format and size)

in the SRC and X directories.

3. Create two symbolic links in the

SRC directory: a) to any of the

files within the SRC directory; b)

to any of the files within the X

directory.

4. Run the application.

Defect: both files and symbolic

links have been moved to the

DST directory; the contents of

directory X have been pro-

cessed and moved to the DST

directory.

Repro-

ducibil-

ity

Priority Severity Symptom Worka-

round

Comments

Always High Normal Incorrect

operation

No A quick look at the code showed

that file_exists() is used instead of

is_file(). This seems to be the prob-

lem. This defect also causes an at-

tempt to treat directories as files

(see BR-999.99). There is a logical

error in the SOURCE_DIR pro-

cessing algorithm: the application

shouldn’t process files that are not

in the SOURCE_DIR range, so

there is something wrong with gen-

erating or checking for qualified file-

names.

Reproduce the defect

This will not only help you to fill in the “Reproducibility{165}” field correctly, but will
also help you avoid the unpleasant situation of mistaking an application defect for a mo-
mentary failure that (most likely) occurred somewhere on your computer or in another
part of your IT infrastructure that is not related to the application under test.

Logic for creating effective defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 184/278

Check if the defect is already described (check for duplicates)

It is a good idea to check whether the defect management system already has a
description of the exact defect you have just found. This is a simple action, not directly
related to writing the defect report, but it significantly reduces the number of reports de-
clined as “duplicate”.

Formulate the essence of the problem

Formulating the problem as “what was done (future “Steps to reproduce” field con-
tents), what was the result (future “actual result” in the “Description” field), what was ex-
pected (future “expected result” in the “Description” filed)” not only allows you to prepare
the data for the defect report fields, but also to understand the problem even better.

In general, the formula “what was done, what was the result, what was expected”
is good for the following reasons:

• Transparency and clarity: by following this formula, you prepare exactly the data
for the defect report, without getting bogged down in long, abstract considerations.

• Easy to verify the defect: with this data, the developer can quickly reproduce the
defect (and the tester in the future can verify that the defect is fixed).

• Obviousness for developers: even before trying to reproduce the defect it is obvi-
ous if what is described is a real defect or if the tester made a mistake somewhere,
putting the correct behavior of the application into defects.

• Eliminate unnecessary and meaningless communication: detailed “what was done,
what was the result, what was expected” description enable problem solving and
defect resolution without the need for querying, searching, and discussing addi-
tional information.

• Simplicity: in the final stages of testing involving end-users, the effectiveness of
incoming feedback can be greatly improved by explaining the formula to users and
asking them to adhere to it when reporting problems.

The information gathered at this stage becomes the foundation for all further report
writing activities.

Fill in the fields of defect report

The fields of the defect report have already been covered earlier{162}, now we just
want to stress that it is best to start with the “Description” filed, as the process of complet-
ing this field may reveal many additional details and also give you ideas about how to
formulate a brief and informative “Summary” filed contents.

If you realize that you don’t have enough data to fill in some field, do some more
research. If that does not work, describe in the field (if it is a text filed) why you are having
difficulty completing it, or (if it is a drop-down) select the value that you think best de-
scribes the problem (in some cases, the tool allows you to select a value like “unknown”,
then select it).

If you have no useful idea for “Comments” filed (or if the defect is so trivial that it
doesn’t need any explanation), don’t write “text for text’s sake”: comments like “I recom-
mend fixing it” are not just meaningless, they’re annoying as well.

Logic for creating effective defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 185/278

Reread the report (and reread the report again)

Once everything is written, completed and ready, reread it carefully. Often you will
find that there are logical inconsistencies or overlaps in the text, you might want to im-
prove the wording or change things.

The perfection is unattainable, and you shouldn’t spend eternity on a single defect
report, but it’s also a mean thing to submit an unread document.

After submitting a defect report, it is advisable to further investigate the area of
the application in which you have just found the defect. Practice shows that
defects often occur in groups.

Typical mistakes in writing defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 186/278

2.5.7. Typical mistakes in writing defect reports

Before reading this text, it is advisable to reread the section on typical mistakes in
writing test cases and checklists{149}, as many of the problems described there are also
relevant to defect reports (both are specific technical documents).

Layout and wording mistakes

Bad “Summaries”. Formally, this is a layout problem, but in fact it is a much more
dangerous one, because reading a defect report and understanding the nature of the
problem starts with the “Summary” field. Once again, its essence is that it:

• Answers the questions “what?”, “where?”, “under what conditions?”.

• Must be extremely brief.

• Must be informative enough to understand the essence of the problem.

Look at these summaries and try to answer yourself what the problem is, where it
occurs, under what conditions it occurs:

• “Unexpected interruption”.

• “19 items found”.

• “Searching through all file types”.

• “Uninformative error”.

• “Application has red font”.

• “Error when entering just the name of computer disk or folder”.

• “No reaction to ‘Enter’ key”.

Sometimes it is the “Description” field which can help one to understand the prob-
lem, but even then, it is a hell-of-a-job to relate such summary to a description that con-
tains something essentially different.

Reread the section on wording good summaries again{162}.

Identical “Summary” and “Description”. Yes, occasionally there are defects so
simple that a summary will suffice (e.g., “A typo in the name of the main menu item ‘File’
(now ‘Fille’)”), but if the defect is related to some more or less complex application behav-
ior, you should think of at least three ways of describing the problem:

• brief for the “Summary” field (best formulated at the very end of the defect descrip-
tion process);

• detailed for the “Description” field (explaining and expanding the information from
the “Summary”);

• another short one for the last “step” in the “Steps to reproduce” filed.

This is not an intellectual game of too much free time, but a working tool for forming
an understanding of the problem (believe it, you can hardly explain in three different ways
what you don’t understand).

Lack of an explicit indication of the actual result, the expected result and a
reference to the requirement in the “Description”, if they are important and it is pos-
sible to specify them.

Yes, for minor things like typos in captions, you don’t have to do that (and still: if
you have time, you’d better write it; also write it if you have a multi-lingual project team).

But what can be understood from a defect report, whose brief and detailed descrip-
tion only says “the application shows the contents of OpenXML files”? Shouldn’t it show?
What’s the problem, anyway? Well, it shows and let it be — is that bad? Ah, it turns out
(!) that the application must not show the contents of these files, but must open them with
a suitable external program. This can be guessed from experience. But guessing is a bad

Typical mistakes in writing defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 187/278

assistant when you have to rewrite the application — you can only make things worse.
This can also (probably) be understood by reading the requirements thoughtfully. But let’s
be realistic: a defect report will be declined with the resolution “the behavior described is
not a bug”).

Ignoring quotes, resulting in a distortion of meaning. How would you under-
stand a “Summary” such as “The record disappears on mouseover”? Some record disap-
pears on mouseover? No, it’s “the ‘Record’ field disappears on mouseover”. Even if you
don’t add the word “field” to it, the quotes let you know that it’s a proper name, i.e., the
name of an element. Also don’t ignore capital letters in proper nouns.

General problems with phrasing. Yes, it’s not easy to learn to formulate a
thought at once in a very concise and informative way, but it’s equally difficult to read
similar creations (quotes verbatim):

• “Search does not work by Enter button”.

• “The default for field where to search is +”.

• “When searching for files in a large directory, the app briefly ‘hangs’”.

• “When the error closes, the application closes”.

• “The application doesn’t work with the from keyboard by the user in the field “What
to search”.

Superfluous items in the “Steps to reproduce”. You don’t have to start “from
scratch”; most project members know the application well enough to “identify” its key
parts, so compare:

Bad Good
1. Run the application.

2. Open the “File” menu item.

3. Select “New” from the menu.

4. Fill at least three pages with text.

5. Open the “File” menu item.

6. Open the “Print” menu item.

7. Open the “Print settings” tab.

8. Select “No” from the “Duplex printing” list.

9. Print the document on a printer that supports

duplex printing.

Defect: printing is still duplex.

1. Create or open a file with three or more non-

empty pages.

2. Select “File” -> “Print” -> “Print settings” ->

“Duplex printing” -> “No”.

3. Print the document on a printer that supports

duplex printing.

Defect: printing is still duplex.

Screenshots as “copies of the whole screen”. More often than not, you want to

make a copy of a particular application window rather than the whole screen, so Alt+Print-
Screen will help. Even if it is important to capture more than one window, almost any
graphical editor allows you to cut off the unwanted part of the picture.

Typical mistakes in writing defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 188/278

Screenshots where the problem is not highlighted. Drawing a red line around
the problem area will make it much quicker and easier to understand the problem in most
cases.

Screenshots and other artefacts hosted on third-party servers. This error
deserves a special mention: it is strictly forbidden to use any image and file
sharing services to attach screenshots and other files to the defect report. There
are two reasons for this:
• in most cases, there are limitations on the amount of time an image or other

file can be stored and/or accessed (downloaded) on such services — in other
words, the file may become unavailable after a certain period of time;

• hosting of project information on third-party services constitutes the disclo-
sure of confidential information, the rights to which belong to the customer.

Therefore, the defect management system itself should be used to store any
such artefacts. If, for some reason, no such system is used, all attachments
should be placed directly in the document in which you describe the defect (im-
ages can be placed simply “as images”, other artefacts can be placed as an
embedded documents).

Putting off writing a report “for later”. The desire to find more defects before
describing them leads to some important details (and sometimes the defects themselves!)
being forgotten. If the “later” is measured in hours or even days rather than minutes, the
project team will not receive important information in time. The conclusion is simple: de-
scribe the defect as soon as you find (and investigate) it.

Punctuation, spelling, syntax and similar mistakes. No comments.

Logical mistakes

 Imaginary defects. One of the most frustrating reasons for a defect report to be
declined is so-called “not a bug”, when for some reason the correct behavior of an appli-
cation is described as defective.

But even worse is when the “supposedly expected behavior” is just... invented out
of your head. That is, nowhere in the requirements does it say that the application should
do something like that, but a defect report is generated because the application doesn’t
do it.

Sometimes it could be some questionable cases or occasional suggestions for im-
provement that show up in the defect report. That’s bad, but one can at least understand
that.

But sometimes, for some unknown reason, the application is “required” (according
to the defect report) to do something completely illogical, irrational and insane. Where
does it come from? Why? Just don’t do it that way.

Categorizing an application’s advanced features as a defect. The clearest ex-
ample of this case is when an application is described as defective by the fact that it can
run under operating systems not explicitly listed as supported. Only in some rare cases
this situation may be considered a defect (when developing some system utilities or sim-
ilar software, that is highly dependent on the OS version and potentially can “break” an
unsupported one; from the common-sense point of view such application really should
show a warning or even error message and exit working on unsupported OS). But what’s
wrong with a child’s game running on a previous generation OS? Is that really a problem?!
Doubtful.

Typical mistakes in writing defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 189/278

 Incorrect “Symptom” value. This is not fatal and can always be corrected, but if
the reports are initially grouped by symptom, it is an annoying inconvenience to get them
wrong.

 Excessively low (or overrated) “Priority” and “Severity”. This problem is dealt
with quite effectively by holding clarification meetings and reviewing defect reports by the
whole team (or at least a few key people), but if “Priority” and “Severity” are excessively
low, it is highly likely that it will be a long time before the report is simply given a turn at
the next review meeting.

Focusing on the minutiae to the detriment of the essentials. A paradigmatic
example should be mentioned here, where a tester found a problem that caused an ap-
plication to crash with loss of user data, but reported it as a cosmetic defect (there was a
typo in the error message that the application showed “before it died”). Always think about
how the problem will affect your users, what difficulties they might experience, and how
important it is to them — then you have a much better chance of seeing the real problem.

 Technical illiteracy. Yes, it’s so unapologetic and harsh. In some cases, it just
makes you smile sadly, but in some... Imagine such a “Summary” (it is identically dupli-
cated in the description, i.e., it is the whole description of the defect): “The number of files
found does not correspond to the actual nesting depth of the directory”. Why, should it?
It’s almost the same as “the color of the cat does not match its size”.

A few more illustrative examples (these are examples from different, unrelated de-
fect reports):

• Summary: “Audio directory selected by default”. (In fact, “Audio files” is selected in
the “What to search” drop-down.)

• Explanation in the description: “The directory cannot have a date and time of cre-
ation”. (Hmm. It can.)

• Expected result: “The app correctly detected an unsupported file system and
showed a list of files”. (Wow! You could probably have a philosophical conversation
with this application, if it’s capable of such magic.)

Specification in the “Steps to reproduce” information that is not important
for the defect reproducibility. The desire to describe everything in as much detail as
possible sometimes takes a morbid form when the defect report is almost filled with infor-
mation about the weather outside the window and the national currency exchange rate.

Compare:

Bad Good
1. Create the “Data” directory on the “J:” drive.

2. Place the attached files “song1.mp3” of 999.99

KB and “song2.mp3” of 888.88 KB in the cre-

ated “Data” directory.

3. Enter “J:\Data” in the “Where to search” field.

4. From the “What to search” drop-down list se-

lect “Audio files”.

5. Press the “Search” button.

Defect: the files specified in point 2 were not

found.

1. Place one (or more) files with the “.mp3” ex-

tension at an arbitrary location on the local

drive.

2. Set search options (“What to search” -> “Audio

files”, “Where to search” -> location of file(s)

from step 1).

3. Perform a search.

Defect: the application cannot detect files with

the “.mp3” extension.

Is it really important to search the “J:” drive in order to reproduce the defect? Is it
really important to search exactly for files with those names and sizes in that exact direc-
tory? Perhaps in some infinitesimally unlikely case it is, then the question goes away. But
in all probability, it does not matter at all, and there is no need to record this information.
To be more certain, you may want to do some more research.

Typical mistakes in writing defect reports

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 190/278

Not specification in the “Steps to reproduce” information that is important
for the defect reproducibility. No, we’re not mocking, this point is really the exact op-
posite of the previous one. Defects can be different. Very different. Sometimes a key
“chip” is not enough for the developer to reproduce the defect or even just understand its
essence. Some real examples (underlining the details, the absence of which for a long
time did not allow some developers to reproduce the defect):

• The application did not save user settings if there were spaces in the directory path
to save them (two or more consecutive spaces).

• The application did not terminate correctly when opening files whose size did not
allow them to be read in their entirety into RAM, the available capacity of which is
determined by the memory_limit parameter in the runtime settings.

• The application displayed incorrect user statistics if there was at least one user in
the system whose role was not explicitly specified (NULL value in database table,
invalid subquery operation).

How do you know how deep to describe such details? By research. It is not enough
to find a single instance of misbehavior in an application, it is necessary to understand
the pattern of misbehavior and its source. Then the necessary level of detail becomes
clear.

This also includes the notorious reproducibility of “sometimes”. You need to keep
looking for causes, review the code, consult with colleagues, run more tests, investigate
similar functionality in other parts of the application, investigate similar applications,
“google”, etc., etc. Yes, some defects turn out to be stronger than even the most diligent
testers, but the percentage of such defects can be very close to zero.

Ignoring so-called “sequential defects”. Sometimes one defect is a conse-
quence of another (let’s say a file gets corrupted in transmission to the server, and then
the application processes the corrupted file incorrectly). Yes, if the file is transferred with-
out corruption, the second defect may not occur. But it could also show up in a different
situation, because the problem is still there: the application does not correctly handle cor-
rupted files. It is therefore worth describing both defects.

Workload estimation, planning and reporting

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 191/278

2.6. Workload estimation, planning and reporting

2.6.1. Planning and reporting

In “The logic for creating effective checks”{142} chapter we reasoned about how to
get the maximum effect from testing with minimal effort on the example of “File Converter”
project. It was simple enough, since our application is ridiculous in its size. But let us
imagine that we have to test a real project where requirements in the “page equivalent”
take hundreds or even thousands of pages. Let’s also recall “Detailed testing classifica-
tion”{67} chapter with its several dozens of types of testing (and this without taking into
account the fact that they can be flexibly combined, obtaining new options) and think
about how to apply all this knowledge (and the opportunities they open) in a large project.

Even if we assume that we know perfectly all the technical aspects of the work to
be done, questions as the following remain unanswered:

• When and what to start with?

• Do we have everything we need to get the job done? If not, where can we get what
we need?

• In what order should we perform the different types of work?

• How do we distribute responsibility among the team members?

• How do we organize the reporting to stakeholders?

• How can we objectively measure progress and achievements?

• How can we see possible problems in advance, so that we have time to prevent
them?

• How do we organize our work so that for a minimum of expenses we get the max-
imum result?

These and many other similar questions are outside the technical domain — they
are related to project management. This task itself is huge, so we will consider only a
small part of it, which many testers have to deal with — planning and reporting.

Recall the testing lifecycle{26}: each iteration starts with planning and ends with re-
porting, which becomes the basis for planning the next iteration — and so on (see figure
2.6.a). Thus, planning and reporting are closely related, and problems with one of these
activities inevitably lead to problems with the other, and eventually to problems with the
project as a whole.

Figure 2.6.a — Interrelation (interdependence) of planning and reporting

Work process

Reporting Planning

Planning and reporting

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 192/278

 If we express this thought more clearly and point by point, it turns out:

• Without good planning, it’s not clear who needs to do what.

• When it is not clear who needs to do what, the work is done poorly.

• When the work is done poorly and the exact reasons are not clear, it is impossible
to make correct conclusions about how to fix the situation.

• Without the right conclusions, it is impossible to create a good work report.

• Without a good work report, it is impossible to create a good plan for further work.

• That’s it. The vicious circle has closed. The project dies.

It would seem, so what’s the problem? Let’s plan well and write good reports, and
everything will be fine. The problem is that a very small percentage of people have these
skills sufficiently developed. If you don’t believe this, think back to studying the material
the night before an exam, being late for important meetings, and... repeating it over and
over without ever drawing a conclusion. (If that hasn’t happened in your life, you’re lucky
to be in the small percentage of people who have developed those skills well.)

The root of the problem is that planning and reporting are taught rather superficially
in schools and universities, while (alas) in practice they are often reduced to mere formal-
ity (plans that no one looks at, and reports that no one reads; then again, some are lucky
enough to see the exact opposite, but obviously not many).

 So, to the point. First, let’s look at the classic definitions.

Planning323 is a continuous process of making management decisions and me-
thodically organizing efforts to implement them in order to ensure the quality of
some process over a long period of time.

High-level planning tasks include:

• reducing uncertainty;

• improving efficiency;

• improving goal understanding;

• creating a basis for process management.

Reporting324 is a process of collecting and distributing performance information
(including status reporting, progress measurement, and forecasting).

High-level reporting tasks include:

• collecting, aggregating, and providing objective information about the results of the
work in an easy-to-understand form;

• formation of an assessment of the current status and progress (in comparison with
the plan);

• outlining the existing and possible problems (if any);

• formation of the forecast of the situation development and fixation of recommen-
dations on elimination of problems and improvement of work efficiency.

As mentioned earlier, planning and reporting belong to the area of project man-
agement, which is beyond the scope of this book.

323 Planning is a continuous process of making entrepreneurial decisions with an eye to the future, and methodically organizing the

effort needed to carry out these decisions. There are four basic reasons for project planning: to eliminate or reduce uncertainty;
to improve efficiency of the operation; to obtain a better understanding of the objectives; to provide a basis for monitoring and
controlling work. [“Project Management: A Systems Approach to Planning, Scheduling, and Controlling”, Harold Kerzner]

324 Reporting — collecting and distributing performance information (including status reporting, progress measurement, and fore-

casting). [PMBOK, 3rd edition]

Planning and reporting

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 193/278

If you are interested in the details, two fundamental sources of information are
recommended:

• “Project Management: A Systems Approach to Planning, Scheduling, and
Controlling”, Harold Kerzner.

• PMBOK (“Project Management Body of Knowledge”).

We move on to more specific things that even a novice tester has to work with
(albeit at the level of use rather than creation).

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 194/278

2.6.2. Test plan and test result report

Test plan

Test plan325 is a document that describes and regulates a list of testing activi-
ties, as well as related techniques and approaches, strategy, areas of respon-
sibility, resources, timetable and milestones.

Low-level test planning tasks include:

• assessing the scope and complexity of the work;

• determination of the necessary resources and their sources;

• definition of the schedule, deadlines and milestones;

• risk assessment and preparation of preventive countermeasures;

• allocation of duties and responsibilities;

• coordination of testing activities with the activities of project team members en-
gaged in other tasks.

 Like any other document, a test plan can be good or have shortcomings. A good
test plan has most of the properties of the good requirements{42}, and also expands their
set with the following items:

• Realism (the planned approach is feasible).

• Flexibility (a good test plan is not only modifiable in terms of working with the doc-
ument, but also designed so that, when unforeseen circumstances arise, to allow
a rapid change in any of its parts without breaking the relationship with other parts).

• Consistency with the overall project plan and other individual plans (e.g., the de-
velopment plan).

The test plan is created at the beginning of the project and is refined as needed
throughout the project lifecycle with the participation of the most qualified representatives
of the project team involved in quality assurance. The person responsible for creating the
test plan is usually the lead tester (“test lead”).

In general, the test plan includes the following sections (examples of their filling
will be shown later, so here — only a list).

• Purpose (project scope and main goals). An extremely brief description of the pur-
pose of application development (partly reminiscent of the business require-
ments{38}, but here the information is presented in an even more concise form and
in the context of what should be the primary focus of testing and quality improve-
ment).

• Features (requirements) to be tested. A list of functions and/or non-functional
features of the application to be tested. In some cases, the priority of the corre-
sponding area is also listed here.

• Features (requirements) not to be tested. A list of functions and/or non-func-
tional features of the application that will not be tested. Reasons for excluding a
particular area from the list of areas to be tested may vary from their extremely low
priority for the customer to a lack of time or other resources. This list is compiled
for the project team and other stakeholders to have a clear common understanding
that testing of such and such features of an application is not planned — this ap-
proach allows to avoid false expectations and unpleasant surprises.

325 Test plan. A document describing the scope, approach, resources and schedule of intended test activities. It identifies amongst

others test items, the features to be tested, the testing tasks, who will do each task, degree of tester independence, the test
environment, the test design techniques and entry and exit criteria to be used, and the rationale for their choice, and any risks
requiring contingency planning. It is a record of the test planning process. [ISTQB Glossary]

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 195/278

• Test strategy326 and Test approach327. Description of the testing process in terms
of methods, approaches, types of testing, technologies, tools, etc.

• Criteria. This section includes the following subsections:
o Acceptance criteria328 — any objective quality indicators that the product

to be developed must meet from the customer’s or user’s point of view in
order to be considered ready for use.

o Entry criteria329 — a list of conditions under which the team starts testing.
Having these criteria ensures the team from wasting effort in circumstances
where testing will not bring the expected benefits.

o Suspension criteria330 — a list of conditions under which testing is sus-
pended. The presence of this criteria also ensures the team from wasting
efforts in conditions when testing will not bring the expected benefit.

o Resumption criteria331 — a list of conditions under which testing is re-
sumed (usually after suspension).

o Exit criteria332 — a list of conditions under which testing is terminated. The
presence of this criteria insures the team against premature termination of
testing, as well as against continuation of testing in conditions when it no
longer brings tangible results.

• Resources. This section of the test plan lists all the resources required for a suc-
cessful test strategy implementation and in general can be divided into:

o software resources (which software is needed by the testers team, how
many copies and with what licenses (if we are talking about commercial
software));

o hardware resources (which hardware, in what quantity and at what time the
testers team needs);

o human resources (how many specialists at what level and with knowledge
in what areas should join the testing team at any given time);

o time resources (how long it will take to perform certain works);
o financial resources (how much it will cost to use the existing resources or to

obtain the missing resources listed in the previous items on this list); in
many companies, financial resources can be presented as a separate doc-
ument, since they are confidential information.

• Test schedule333. In fact, it is a calendar that specifies what must be done and by
when. Particular attention is paid to the so-called “milestones” (key dates), by the
time of which some significant tangible result should be obtained.

326 Test strategy. A high-level description of the test levels to be performed and the testing within those levels (group of test activities

that are organized and managed together, e.g., component test, integration test, system test and acceptance test) for an organ-
ization or program (one or more projects). [ISTQB Glossary]

327 Test approach. The implementation of the test strategy for a specific project. It typically includes the decisions made that follow

based on the (test) project’s goal and the risk assessment carried out, starting points regarding the test process, the test design
techniques to be applied, exit criteria and test types to be performed. [ISTQB Glossary]

328 Acceptance criteria. The exit criteria that a component or system must satisfy in order to be accepted by a user, customer, or

other authorized entity. [ISTQB Glossary]
329 Entry criteria. The set of generic and specific conditions for permitting a process to go forward with a defined task, e.g., test

phase. The purpose of entry criteria is to prevent a task from starting which would entail more (wasted) effort compared to the
effort needed to remove the failed entry criteria. [ISTQB Glossary]

330 Suspension criteria. The criteria used to (temporarily) stop all or a portion of the testing activities on the test items. [ISTQB

Glossary]
331 Resumption criteria. The criteria used to restart all or a portion of the testing activities that were suspended previously. [ISTQB

Glossary]
332 Exit criteria. The set of generic and specific conditions, agreed upon with the stakeholders for permitting a process to be officially

completed. The purpose of exit criteria is to prevent a task from being considered completed when there are still outstanding
parts of the task which have not been finished. Exit criteria are used to report against and to plan when to stop testing. [ISTQB
Glossary]

333 Test schedule. A list of activities, tasks or events of the test process, identifying their intended start and finish dates and/or times,

and interdependencies. [ISTQB Glossary]

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 196/278

• Roles and responsibility. A list of required roles (e.g., “lead tester”, “performance
optimization expert”) and the area of responsibility of specialists performing these
roles.

• Risk evaluation. A list of risks that are likely to arise during the work on the project.
For each risk, an assessment of the threat posed by it is given and options for
dealing with the situation are provided.

• Documentation. A list of the test documentation used, specifying who should pre-
pare it and when, and to whom it should be handed over.

• Metrics334. Numerical characteristics of quality indicators, methods of their evalu-
ation, formulas, etc. This section, as a rule, has many “incoming” references from
other sections of the test plan.

Metrics in testing are so important that we will talk about them separately. So.

Metric334 is a numerical characteristics of a quality indicator. It may include a
description of how to evaluate and analyze the result.

First, let us explain the importance of metrics on a trivial example. Imagine that a
customer is interested in the current situation and asks you to briefly describe the testing
situation on the project. Generic words in the style of “all is well”, “all is bad”, ‘it’s OK” and
so on will not satisfy the customer, of course, since they are extremely subjective and
may be very far from reality. And an answer like this looks completely different: “We have
implemented 79 % of requirements (including 94 % of important ones), over the last three
sprints test coverage grew from 63 % to 71 %, and the overall test case pass rate grew
from 85 % to 89 %. In other words, we are fully on track for all key indicators, and we are
even slightly ahead of schedule in development”.

In order to operate with all these numbers (and they are needed not only for re-
porting, but also for organizing the work of the project team), they need to be somehow
calculated. This is what metrics allow you to do. Then the calculated values can be used
for:

• making decisions about starting, suspending, resuming, or terminating testing (see
the “Criteria” section of the test plan above);

• determining the extent to which the product meets the stated quality criteria;

• determining the degree of deviation of actual project development from the plan;

• identification of “bottlenecks”, potential risks, and other problems;

• evaluating the effectiveness of management decisions;

• preparation of objective informative reporting;

• etc.

Metrics can be both direct (do not require calculations) and calculated (calculated
by formula). Typical examples of direct metrics are the number of test cases developed,
the number of defects found, etc. Calculated metrics can use both completely trivial and
quite complex formulas (see table 2.6.1).

334 Metric. A measurement scale and the method used for measurement. [ISTQB Glossary]

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 197/278

Table 2.6.1 — Examples of calculated metrics

Simple calculated metrics Complex calculated metrics

𝑇𝑆𝑃 =
𝑇𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑇𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝑇𝑆𝑃 — percentage of successfully

passed test cases,

𝑇𝑆𝑢𝑐𝑐𝑒𝑠𝑠 — quantity of successfully

passed test cases,

𝑇𝑇𝑜𝑡𝑎𝑙 — total quantity of executed test

cases.

Minimum value boundaries:

• Beginning project phase: 10 %.

• Main project phase: 40 %.

• Final project phase: 85 %.

𝑇𝑆𝐶 = ∑
(𝑇𝐿𝑒𝑣𝑒𝑙∙𝐼)𝑅𝐿𝑒𝑣𝑒𝑙

𝐵𝐿𝑒𝑣𝑒𝑙

𝑀𝑎𝑥𝐿𝑒𝑣𝑒𝑙
𝐿𝑒𝑣𝑒𝑙 , where

𝑇𝑆𝐶 — integral metric of successfully passed test cases in

relation to requirements and defects,

𝑇𝐿𝑒𝑣𝑒𝑙 — the level of test case priority,

𝐼 — number of test case executions,

𝑅𝐿𝑒𝑣𝑒𝑙 — priority of the requirement tested (covered) by the

test case,

𝐵𝐿𝑒𝑣𝑒𝑙 — the number of defects detected by the test case.

Method of analysis:

• The ideal state is a continuous growth of the 𝑇𝑆𝐶 value.

• In the case of a negative trend, a decrease of 15 % or more

in the 𝑇𝑆𝐶 value over the last three sprints may be consid-

ered unacceptable and is sufficient reason to suspend test-

ing.

There are a large number of common metrics in testing, many of which can be
collected automatically using project management tools. For example335:

• percentage of (not) completed test cases to all available test cases;

• percentage of successfully passed test cases (see “Simple Calculated Metrics” in
table 2.6.1);

• percentage of blocked test cases;

• the density of the defect distribution;

• efficiency of defect elimination;

• defect distribution by priority and severity;

• etc.

Usually, when generating reports, we will be interested not only in the current met-
ric value, but also in its dynamics over time, which is very convenient to depict graphically
(which many project management tools can also do automatically).

Some metrics can be calculated based on schedule data, e.g., “schedule slippage”
metric:

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 =
𝐷𝑎𝑦𝑠𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒

𝑁𝑒𝑒𝑑𝑒𝑑𝐷𝑎𝑦𝑠
− 1, where

 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 — the value of schedule slippage,
 𝐷𝑎𝑦𝑠𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 — the number of days until the scheduled completion of the work,
 𝑁𝑒𝑒𝑑𝑒𝑑𝐷𝑎𝑦𝑠 — the number of days needed to complete the work.

 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 value should not become negative.

 Thus, we see that metrics are a powerful tool for collecting and analyzing infor-
mation. And at the same time there is a danger here: under no circumstances should we
allow the situation of “metrics for the sake of metrics”, when a tool collects a lot of data,
calculates many numbers and builds dozens of graphs, but... no one understands how to
interpret them. Note that both of the metrics in table 2.6.1 and the 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑆𝑙𝑖𝑝𝑝𝑎𝑔𝑒 met-
ric just discussed are accompanied by a quick guide on how to interpret them. And the
more complex and unique the metric is, the more detailed guidance is needed to apply it
effectively.

335 “Important Software Test Metrics and Measurements — Explained with Examples and Graphs” [http://www.softwaretest-

inghelp.com/software-test-metrics-and-measurements/]

http://www.softwaretestinghelp.com/software-test-metrics-and-measurements/
http://www.softwaretestinghelp.com/software-test-metrics-and-measurements/

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 198/278

Finally, it is worth mentioning the so-called “coverage metrics”, because they are
very often mentioned in various literature.

Coverage336 is a percentage expression of the degree to which the coverage
item337 is affected by the corresponding test suite.

The simplest representatives of coverage metrics are:

• Requirements’ coverage metric (a requirement is considered “covered” if it is ref-
erenced by at least one test case):

𝑅𝑆𝑖𝑚𝑝𝑙𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑅𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝑅𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝑅𝑆𝑖𝑚𝑝𝑙𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 — requirements’ coverage by tests (percentage),

𝑅𝐶𝑜𝑣𝑒𝑟𝑒𝑑 — the quantity of requirements covered by at least one test case,

𝑅𝑇𝑜𝑡𝑎𝑙 — total quantity of requirements.

• Requirements’ coverage density metric (takes into “account how many test cases
refer to more than one requirement”):

𝑅𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
∑ 𝑇𝑖

𝑇𝑇𝑜𝑡𝑎𝑙∙𝑅𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝑅𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 — requirements’ coverage density,
𝑇𝑖 — the quantity of test cases covering the i-th requirement,

𝑇𝑇𝑜𝑡𝑎𝑙 — total quantity of test cases,

𝑅𝑇𝑜𝑡𝑎𝑙 — total quantity of requirements.

• Equivalence classes’ coverage metric (analyses “how many equivalence classes
are affected by test cases”):

𝐸𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐸𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝐸𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝐸𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 — equivalence classes’ coverage metric,

𝐸𝐶𝑜𝑣𝑒𝑟𝑒𝑑 — the quantity of equivalence classes covered by at least one test case,

𝐸𝑇𝑜𝑡𝑎𝑙 — total quantity of equivalence classes.

• Boundary conditions’ coverage metric (analyze “how many values from a group of
boundary conditions are affected by the test cases”):

𝐵𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐵𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝐵𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝐵𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 — boundary conditions’ coverage metric,

𝐵𝐶𝑜𝑣𝑒𝑟𝑒𝑑 — the quantity of boundary conditions covered by at least one test case,

𝐵𝑇𝑜𝑡𝑎𝑙 — total quantity of boundary conditions.

• Metrics of code coverage (by unit tests). There are a lot of such metrics, but the
whole point of them is to identify some code characteristic (number of lines,
branches, paths, conditions, etc.) and define what percentage of representatives
of this characteristic are covered by unit tests.

There are so many coverage metrics that even the ISTQB Glossary defines
around fifteen of them. You can find these definitions by searching in the ISTQB
glossary file for the word “coverage”.

This concludes the theoretical planning and moves on to an example, the sample
test plan for our “File Converter{57}”. application. Recall that the application is very simple,
so the test plan will be very small (however, note how much of it will be in the metrics
section).

336 Coverage, Test coverage. The degree, expressed as a percentage, to which a specified coverage item has been exercised by a

test suite. [ISTQB Glossary]
337 Coverage item. An entity or property used as a basis for test coverage, e.g., equivalence partitions or code statements. [ISTQB

Glossary]

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 199/278

Test plan sample

 In order to fill in some parts of the test plan, we will have to make assumptions
about the composition of the project team and the time available for project development.
Because this test plan is inside the text of the book, it does not have the typical parts such
as the title page, table of contents, etc.

So.

Project scope and main goals
Automated conversion of text documents in different source encodings to one des-

tination encoding with performance significantly higher than human performance during
the same actions.

Requirements to be tested
(See corresponding sections of the requirements.)

• UR-1.*: smoke test.

• UR-2.*: smoke test, critical path test.

• UR-3.*: critical path test.

• BR-1.*: smoke test, critical path test.

• QA-2.*: smoke test, critical path test.

• L-4: smoke test.

• L-5: smoke test.

• DS-*: smoke test, critical path test.

Requirements NOT to be tested

• SC-1: the application is a console one by design.

• SC-2, L-1, L-2: the application is developed with proper PHP version.

• QA-1.1: this performance characteristic is at the bottom border of typical opera-
tions performance for such applications.

• L-3: no implementation required.

• L-6: no implementation required.

Test strategy and approach

General approach.
The specifics of the application are that it is configured once by an experienced

technician and then used by end-users, for whom only one operation is available — plac-
ing the file in the source directory. Usability, security, etc. are therefore not considered in
the testing process.

Functional testing levels:

• Smoke test: automated with batch files under Windows and Linux.

• Critical path test: executed manually.

• Extended test: not executed as the probability of defects detection on this level is
negligibly small.

Due to the team cross-functionality, a significant contribution to quality improve-
ment can be expected from the code review combined with manual testing using the white
box method. Unit-testing will not be applied due to extreme time limitations.

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 200/278

Criteria

• Acceptance criteria: 100 % success of test cases on Smoke Test level and 90 %
success of test cases on Critical Path Test level (see “Test cases success per-
centage” metric) if 100 % of critical and major bugs are fixed (see “Overall defects
fixed percentage” metric). Final requirements coverage by tests (see “Require-
ments coverage by tests” metric) should be at least 80 %.

• Testing start criteria: new build.

• Testing pause criteria: critical path test must begin only after 100 % success of test
cases on the Smoke Test (see “Test cases success percentage” metric) ; test pro-
cess may be paused if with at least 25 % test cases executed there is at least 50 %
failure rate (see “Stop-factor” metric).

• Testing resumption criteria: more than 50 % of defects found during the previous
iteration are fixed (see “Ongoing defects fixed percentage” metric).

• Testing finish criteria: more than 80 % planned for the current iteration test cases
are executed (see “Test cases execution percentage” metric).

Resources

• Software: four virtual machines (two with Windows 10 Ent x64, two with Linux Ub-
untu 18 LTS x64), two PHP Storm licenses (latest version available).

• Hardware: two standard workstations (8GB RAM, i7 3GHz).

• Personnel:
o One senior developer with testing experience (100 % workload during all

project time). Roles: team lead, senior developer.
o One tester with PHP knowledge (100 % workload during all project time).

Role: tester.

• Time: one workweek (40 work hours).

• Finances: according to the approved budget.

Schedule

• 25.05 — requirements testing and finalizing.

• 26.05 — test cases and scripts for automated testing creation.

• 27.05–28.05 — main testing stage (test cases execution, defect reports creation).

• 29.05 — testing finalization, reporting.

Roles and responsibilities

• Senior developer: participation in requirements testing and code review.

• Tester: documentation creation, test cases execution, participation in code-review.

Risk evaluation

• Personnel (low probability): if any team member is inaccessible, we can contact
the representatives of the “Cataloger” project to get a temporary replacement (the
commitment from the “Cataloger” PM John Smith was received).

• Time (high probability): the customer has indicated a deadline of 01.06, therefore
time is a critical resource. It is recommended to do our best to complete the project
by 28.05 so that one day (29.05) remains available for any unexpected issues.

• Other risks: no other specific risks have been identified.

Documentation

• Requirements. Responsible person — tester, deadline — 25.05.

• Test cases and defect reports. Responsible — tester, creation period — 26.05–
28.05.

• Test result report. Responsible person — tester, deadline — 29.05.

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 201/278

Metrics

• Test cases’ success percentage:

𝑇𝑆𝑃 =
𝑇𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝑇𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝑇𝑆𝑃 — percentage of successfully passed test cases,

𝑇𝑆𝑢𝑐𝑐𝑒𝑠𝑠 — quantity of successfully passed test cases,

𝑇𝑇𝑜𝑡𝑎𝑙 — total quantity of executed test cases.

Minimally acceptable borders:

o Beginning project phase: 10 %.

o Main project phase: 40 %.

o Final project phase: 80 %.

• Overall defects fixed percentage:

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑇𝑃 =

𝐷𝐿𝑒𝑣𝑒𝑙
𝐶𝑙𝑜𝑠𝑒𝑑

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑜𝑢𝑛𝑑 ∙ 100%, where

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑇𝑃 — overall defects fixation percentage by 𝐿𝑒𝑣𝑒𝑙 during all project lifetime,

𝐷𝐿𝑒𝑣𝑒𝑙
𝐶𝑙𝑜𝑠𝑒𝑑 — quantity of defects of 𝐿𝑒𝑣𝑒𝑙 fixed during all project lifetime,

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑜𝑢𝑛𝑑 — quantity of defects of 𝐿𝑒𝑣𝑒𝑙 found during all project lifetime.

Minimally acceptable borders:

 Defect severity

 Minor Medium Major Critical

Project

phase

Beginning 10 % 40 % 50 % 80 %

Main 15 % 50 % 75 % 90 %

Final 20 % 60 % 100 % 100 %

• Ongoing defects fixed percentage:

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝐶𝑃 =

𝐷𝐿𝑒𝑣𝑒𝑙
𝐶𝑙𝑜𝑠𝑒𝑑

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑜𝑢𝑛𝑑 ∙ 100%, where

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝐶𝑃 — defects fixation percentage by 𝐿𝑒𝑣𝑒𝑙 (defects found in the previous build and fixed

in the current build),

𝐷𝐿𝑒𝑣𝑒𝑙
𝐶𝑙𝑜𝑠𝑒𝑑 — quantity of defects of 𝐿𝑒𝑣𝑒𝑙 fixed in the current build,

𝐷𝐿𝑒𝑣𝑒𝑙
𝐹𝑜𝑢𝑛𝑑 — quantity of defects of 𝐿𝑒𝑣𝑒𝑙 found in the previous build.

Minimally acceptable borders:

 Defect severity

 Minor Minor Minor Minor

Project

phase

Beginning 60 % 60 % 60 % 60 %

Main 65 % 70 % 85 % 90 %

Final 70 % 80 % 95 % 100 %

• Stop-factor:

𝑆 = {
𝑌𝑒𝑠, 𝑇𝐸 ≥ 25% && 𝑇𝑆𝑃 < 50%

𝑁𝑜, 𝑇𝐸 < 25% || 𝑇𝑆𝑃 ≥ 50%
 , where

𝑆 — decision to pause the testing process,

𝑇𝐸 — current 𝑇𝐸 value,

𝑇𝑆𝑃 — current 𝑇𝑆𝑃 value.

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 202/278

• Test cases execution percentage:

𝑇𝐸 =
𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑇𝑃𝑙𝑎𝑛𝑛𝑒𝑑 ∙ 100%, where

𝑇𝐸 — test cases execution percentage,

𝑇𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 — quantity of executed test cases,

𝑇𝑃𝑙𝑎𝑛𝑛𝑒𝑑 — quantity of planned (to execution) test cases.

Levels (borders):

o Minimal: 80 %.

o Desired: 95–100 %.

• Requirements coverage by tests:

𝑅𝐶 =
𝑅𝐶𝑜𝑣𝑒𝑟𝑒𝑑

𝑅𝑇𝑜𝑡𝑎𝑙 ∙ 100%, where

𝑅𝐶 — requirements coverage by tests (percentage),

𝑅𝐶𝑜𝑣𝑒𝑟𝑒𝑑 — quantity of requirements covered by test cases,

𝑅𝑇𝑜𝑡𝑎𝑙 — overall quantity of requirements.

Minimally acceptable borders:

o Beginning project phase: 40 %.

o Main project phase: 60 %.

o Final project phase: 80 % (90 %+ recommended).

Task 2.6.a: search the Internet for more detailed examples of test plans. These
appear periodically, but are just as quickly deleted, as real (not study) test plans
are usually confidential information.

 This concludes the planning discussion and moves on to reporting, which com-
pletes the testing cycle.

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 203/278

Test progress report (test result report)

Test progress report (test progress report338, test summary report339, test result
report) is a document that summarizes the results of the test work and provides
information sufficient to compare the current situation with the test plan and to
make necessary managerial decisions.

Low-level reporting tasks in testing include:

• assessing the scope and quality of the work done;

• comparing the current progress against the test plan (including metrics analysis);

• describing the difficulties encountered and making recommendations for their elim-
ination;

• providing project stakeholders with complete and objective information on the cur-
rent status of project quality, expressed in concrete facts and figures.

 Like any other document, a test progress report can be good or have flaws. A good
test progress report has many of the characteristics of a good requirement{42}, but it also
extends them with the following items:

• Informativeness (ideally, after reading the report, there should be no open ques-
tions about what is happening to the project in the context of quality).

• Accuracy and objectivity (no misrepresentation of facts is allowed in the report un-
der any circumstances, and personal opinions must be supported by solid reason-
ing).

A test progress report is prepared according to a predetermined schedule (de-
pending on the project management model) with the involvement of most of the project
team involved in quality assurance. A lot of factual data for the report can easily be ex-
tracted in a convenient form from the project management system. The person responsi-
ble for preparing the report is usually the lead tester (“test-lead”). If necessary, the report
can be discussed in small meetings.

The following people are the first to need a test progress report:

• the project manager — as a source of information on the current situation and as
a basis for management decisions;

• the development team leader (“dev-lead”) — as an additional objective view of
what is happening on the project;

• the test team leader (“test-lead”) — as a way of structuring their own thoughts and
gathering the necessary material to address the project manager on the issues at
hand if necessary;

• the customer — as the most objective source of information about what is happen-
ing on the project for which they are paying their money.

In general, the test progress report includes the following sections (examples of
how to fill them in will be shown later, so here is just a list).

Important! While there is a more or less well-established opinion in the testing
community about the test plan, there are dozens of forms for test progress re-
port (especially if the report is tied to a particular type of testing). Here is the
most universal version, which can be adapted to suit specific needs.

338 Test progress report. A document summarizing testing activities and results, produced at regular intervals, to report progress of

testing activities against a baseline (such as the original test plan) and to communicate risks and alternatives requiring a decision
to management. [ISTQB Glossary]

339 Test summary report. A document summarizing testing activities and results. It also contains an evaluation of the corresponding

test items against exit criteria. [ISTQB Glossary]

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 204/278

• Summary. This summarizes the main achievements, problems, conclusions and
recommendations in an extremely concise form. Ideally, a summary would be
enough to form a complete picture of what is going on, thus avoiding the need to
read the whole report (this is important, as the test progress report can fall into the
hands of very busy people).

Important: Distinguish between a test progress report Summary and a
defect report Summary{162}! Although they have the same name, they are
created according to different principles and contain different information!

• Test team. A list of project team members involved in quality assurance, indicating
their positions and roles during the reporting period.

• Testing process description. A consistent description of what work has been
carried out during the reporting period.

• Timetable. A detailed timetable of the testing team and/or personal schedules of
team members.

• New defects statistics. A table showing data on defects detected during the re-
porting period (categorized by lifecycle stage and priority).

• New defects list. A list of defects detected during the reporting period with brief
descriptions and their priority.

• Overall defects statistics. A table presenting data on defects detected over the
project lifecycle (categorized by life lifecycle stage and priority). A graph showing
these statistics is usually added to the same section.

• Recommendations. Some reasoned conclusions and recommendations for man-
agerial decisions (changing the test plan, requesting or releasing resources, etc.).
This information can be given with more specifics here (rather than in the Sum-
mary), emphasizing exactly what is recommended to be done in the current situa-
tion and why.

• Appendixes (attachments). An actual data (usually metrics values and a graph-
ical representation of their change over time).

Test progress report logic

 In order for a test progress report to be really useful, the universal reporting logic
(see figure 2.6.b) should always be kept in mind, especially for parts of the test progress
report such as Summary and Recommendations:

• The conclusions are based on the goals (which have been covered in the plan).

• The conclusions are complemented by recommendations.

• Both conclusions and recommendations are rigorously justified.

• The justification is based on objective facts.

Figure 2.6.b — Universal reporting logic

Actual data

Justification

Conclusions

Recommendations

Based on goals

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 205/278

Conclusions should be:

• Brief. Compare:

Bad Good

1.17. An in-depth analysis of the test execution

protocols shows that most of the functions

identified by the customer as most important

are operating within the tolerance range of the

quality metrics agreed upon at the last discus-

sion with the customer.

1.11. Basic functionality is fully usable (see

2.1–2.2).

1.23. There are non-critical problems with mes-

sage details in the log file (see 2.3–2.4).

1.28. Testing of application under Linux could

not be performed due to unavailability of SR-

85 server (see 2.5).

• Informative. Compare:

Bad Good

1.8. The results of processing files with multiple

encodings represented in comparable propor-

tions leave much to be desired.

1.9. The application fails to start with some

command line parameters.

1.10. It’s unclear what happens to the analysis

of input directory changes.

1.8 Serious problems with encoding recogni-

tion library detected (see BR 834).

1.9. Functionality of command line parameter

analysis is broken (see BR 745, BR 877, BR

878).

1.10. The “Scanner” module is unstable, addi-

tional investigations are being carried out.

• Useful for the report reader. Compare:

Bad Good

1.18. Some of the tests went surprisingly well.

1.19. We had no difficulty in setting up the au-

tomation environment during the tests.

1.20. Compared to the results we had yester-

day, it is a little better.

1.21. There are still some problems with qual-

ity.

1.22. Part of the team was on holiday, but we

got through it anyway.

What is presented in the “bad” column

simply should not be in the report!

Recommendations should be:

• Brief. Yes, we are talking about brevity again, as too many documents suffer from
its absence. Compare:

Bad Good

2.98. We recommend that you consider possi-

ble solutions to this situation in the context of

finding an optimal solution, while minimizing

the developers’ efforts and maximizing the ap-

plication’s compliance with the stated quality

criteria, namely: investigating the possibility of

replacing some libraries with higher-quality

analogues.

2.98. It is necessary to change the way the text

encoding in the document is detected. Possible

solutions:

• [difficult, reliable, but very long] write our own

solution;

• [requires further research and agreement] re-

place the problematic “cflk_n_r_coding” li-

brary with an analogue (possibly commercial).

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 206/278

• Realistically feasible. Compare:

Bad Good

2.107. Use a word processing mechanism

similar to the one used by Google.

2.304. Do not load file information in the input

directory into RAM.

2.402. Completely rewrite the project without

using external libraries.

2.107. Implement the algorithm for the nomina-

tive case of Russian words (see the description

at ...).

2.304. Increase size of RAM available to the

script by 40–50 % (ideally, up to 512 MB).

2.402. Replace with our own solutions the di-

rectory contents and file parameters analysis

functions of the “cflk_n_r_flstm” library.

• Giving both an understanding of what needs to be done and some space to make
your own decisions. Compare:

Bad Good

2.212. We recommend searching for options to

resolve this issue.

2.245. Use only disk-based sorting.

2.278. Eliminate possibility of passing invalid

log file names via command line parameter.

2.212. Possible solutions:

a) ...

b) [recommend! ...

c) ...

2.245. Add functionality to determine the opti-

mal sorting method depending on the amount

of available RAM.

2.278. Add filtering of log file name retrieved

via command line parameter using regular ex-

pression.

Recommendations and conclusions justification — a middle ground between an
extremely concise analysis and a wealth of factual data. It answers questions like:

• “Why do we think so?”

• “Is it really so?!”

• “Where to get additional data?”

Compare:

Bad Good

4.107. Requirements coverage by test cases is

sufficient.

4.304. More effort should be devoted to regres-

sion testing.

4.402. Reduced development time should be

abandoned.

4.107. The requirements coverage by test

cases has reached a sufficient level (𝑅𝐶 value

was 63 % with a stated minimum of 60 % for

the current stage of the project).

4.304. More effort should be directed towards

regression testing, as the previous two itera-

tions identified 21 defects of high priority (see

list in 5.43) in functionality in which no prob-

lems had previously been detected.

4.402. Reducing development time should be

abandoned as the current 30 man hours ahead

of schedule could easily be absorbed by the

R84.* and R89.* requirements implementation

phase.

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 207/278

Actual data contains a wide variety of data from the testing process. This can
include defect reports, test automation logs, files created by various applications, etc. As
a rule, only shortened aggregated samples of such data (if possible) are attached to the
test results report, and links to relevant documents, project management system sections,
data repository paths, etc. are provided.

This brings us to the end of the reporting theory and we move on to the sample
report on the test results of our “File Converter”{57} application. Recall that the application
is very simple, so the test progress report (test result report) will be very small.

Test result report sample

 In order to fill in some parts of the report, we have to make assumptions about the
current status of the project and the current quality situation. As this report is inside the
text of the book, it does not have the typical parts such as the cover, the table of contents,
etc.
 So.

Summary. During May 26–28 four builds were released. The latest build has suc-
cessfully passed 100 % of the Smoke Test, and 76 % of the Critical Path Test. 98 % of
the requirements of high importance are implemented correctly. All key quality metrics
are in the green zone, so there is every reason to expect the project completion on time
(at the moment, real progress exactly corresponds to the plan). At the next iteration (start-
ing May 29) the remaining low-priority test cases are scheduled for execution.

Test team.
Name Position Role

Joe Black Tester Documentation creation, test
cases execution, participation in
code-review

Jane White Senior developer Participation in requirements
testing and code review

Testing process description. Each of the four builds (3–6) released during the
reporting period was tested under Windows 10 Ent x64 and Linux Ubuntu 18 LTS x64 in
the PHP 7.4.0 runtime environment. The Smoke Test (see http://projects/FC/Test-
ing/SmokeTest) was performed using automation based on batch files (see \\PRO-
JECTS\FC\Testing\Aut\Scripts). The Critical Path Test (see http://projects/FC/Test-
ing/CriticalPathTest) was performed manually. Regression testing shows high stability of
functionality (only one defect was found with the severity of “medium”). Re-testing shows
a noticeable quality increase (83 % of previously detected defects were fixed).

Timetable.
Name Date Activity Duration, h

Joe Black 27.05.2015 Test cases creation 2

Joe Black 27.05.2015 Pair testing 2

Joe Black 27.05.2015 Smoke test automation 1

Joe Black 27.05.2015 Defect reporting 2

Jane White 27.05.2015 Code review 1

Jane White 27.05.2015 Pair testing 2

Joe Black 28.05.2015 Test cases creation 3

Joe Black 28.05.2015 Pair testing 1

Joe Black 28.05.2015 Defect reporting 2

Joe Black 28.05.2015 Test result reporting 1

Jane White 28.05.2015 Code review 1

Jane White 28.05.2015 Pair testing 1

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 208/278

New defects statistics.
 Severity

Status Quantity Low Medium Major Critical

Submitted 23 2 12 7 2

Fixed 17 0 9 6 2

Verified 13 0 5 6 2

Reopened 1 0 0 1 0

Declined 3 0 2 1 0

New defects list.
ID Severity Summary

BR 21 Major The app does not distinguish files and symbolic links to
files

BR 22 Critical The app ignores .md input files

And so on for all the 23 submitted defects…

Overall defects statistics.
 Severity

Status Quantity Low Medium Major Critical

Submitted 34 5 18 8 3

Fixed 25 3 12 7 3

Verified 17 0 7 7 3

Reopened 1 0 0 1 0

Declined 4 0 3 1 0

Recommendations. No significant changes are required at the current moment.

0

5

10

15

20

25

30

35

40

26.05.2015 26.05.2015 27.05.2015 27.05.2015 28.05.2015 28.05.2015

1 2 3 4 5 6

Overall defects statistics

Submitted Fixed Total submitted Total fixed

Test plan and test result report

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 209/278

Attachments. Metrics through time changes.

Task 2.6.b: search the Internet for more detailed examples of test progress
reports. These appear periodically, but are just as quickly deleted, as real (not
study) test plans are usually confidential information.

0

20

40

60

80

100

120

140

160

180

200

26.05.2015 26.05.2015 27.05.2015 27.05.2015 28.05.2015 28.05.2015

1 2 3 4 5 6

Metrics

Tsp Dftp Dfcp S Te Rc

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 210/278

2.6.3. Workload estimation

At the end of this chapter, we return to planning again, but in a much simpler way
— to workload estimation.

Workload (man-hours340) is an amount of working time needed to do the work
(expressed in man-hours).

Every time you receive a task or give someone a task, explicitly or implicitly there

are questions like the following:

• How long will it take to complete the work?

• When will it be ready?

• Can the work be guaranteed to be completed by a certain date (time)?

• What are the most optimistic and pessimistic time estimates?

Let’s look at a few considerations on how the workload is estimated.

Any estimation is better than no estimation at all. Even if the area of the work
to be done is completely new to you, even if you are wrong in your estimation by an order
of magnitude, you will at least gain experience — that you can use in the future when
similar tasks arise.

Optimism is ruinous. Generally, people tend to underestimate the complexity of
unfamiliar tasks, which leads to an underestimation of the workload.

But even with a reasonably accurate estimation, people without experience of the
effort itself tend to regard the task at hand as an isolated activity, forgetting that through-
out the working day, “net productivity” will be reduced by such things as correspondence,
meetings and discussions, dealing with technical issues, studying documentation and
thinking through complex parts of the task, and force majeure (urgent matters, problems
with equipment, etc.).

So, you should remember that in reality you will be able to deal with the task not
100 % of your working time but less (how much less — depends on the situation, on
average it is accepted to calculate that for the task itself you can spend no more than six
hours out of every eight working hours). Given this fact, it is worth making appropriate
adjustments to the estimation of the total time that will be needed to complete the work
(and this is what the task-maker is most often interested in).

The estimation must be reasoned. This does not mean that you always have to
go into detailed explanations, but you should be prepared to explain why you think a
particular piece of work will take that time. Firstly, by thinking through these arguments,
you have an additional opportunity to better assess the work to be done and to adjust
your estimate. Secondly, if your estimate does not meet the task-maker’s expectations,
you will be able to defend your point of view.

340 Man-hour. A unit for measuring work in industry, equal to the work done by one man in one hour. [http://dictionary.refer-

ence.com/browse/man-hour]

http://dictionary.reference.com/browse/man-hour
http://dictionary.reference.com/browse/man-hour

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 211/278

A simple way to learn to estimate is to estimate. There are many techniques in
the specialized literature (see small list below), but it is the habit of estimating the work to
be done that is primary. In the process of developing this habit you will naturally encounter
most of the typical problems and after a while you will learn to make appropriate correc-
tions in the estimate without even thinking about it.

Estimate what? Anything. How long it will take you to read a new book. How long
it will take you to get home on a new route. How long it will take you to write your course
paper or graduation thesis. And so on. It doesn’t matter what you estimate, what matters
is that you repeat it over and over again, given the accumulated experience.

If you are interested in a professional approach to workload estimation, you are
advised to consult the following sources:

• “The Mythical Man Month”, Frederick Brooks.

• “Controlling Software Projects”, Tom De Marco.

• “Software engineering metrics and models”, Samuel Conte.

Algorithm for learning how to estimate:

• Generate an estimation. It was noted earlier that there is nothing wrong with a
value that may be very far from reality. It just has to be to begin with.

• Write down the estimation. Make sure you write it down. This insures you against
at least two risks: forgetting the value (especially if the work takes a lot of time),
and lying to yourself in the style of “well, that’s kind of what I thought”.

• Get the job done. On occasion, people tend to adjust to a pre-formed estimation
by speeding up or slowing down — this is also a useful skill, but now this behavior
will get in the way. However, if you train on dozens or hundreds of different tasks,
you will not physically be able to “adjust” to each one and start getting real results.

• Check the actual results against the estimation you formed earlier.

• Take mistakes into account when forming new estimations. At this stage it is very
useful not just to note the deviation, but to think about what caused it.

• Repeat this algorithm as often as possible for a variety of areas of life. The cost of
your mistakes is now extremely low, and the experience you have gained is no
less valuable.

Useful ideas for workload estimation:

• Add a small “buffer” (in time, budget or other critical resources) for contingencies.
The farther ahead you make your forecast, the bigger this “buffer” can be — from
5–10 % to 30–40 %. But under no circumstances should you deliberately inflate
your estimate by many times.

• Find out your “distortion factor”: most people, due to the nature of their thinking,
tend to constantly either underestimate or overestimate. If you repeatedly make
workload estimations and then compare them with reality, you may recognize a
pattern that you can put in a number. For example, you may find that you tend to
underestimate the workload by a factor of 1.3. Try to make an appropriate adjust-
ment next time.

• Take into account circumstances beyond your control. For example, you are sure
that you will make testing of the next build in N man-hours, you took into account
all the distractions and so on and decided that you will finish it by so-and-so date.
And then the reality is that the build release is delayed by two days, and your
forecast for the time of completion is unrealistic.

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 212/278

• Think ahead about the resources you’ll need. For example, you can (and should!)
prepare (or order) the necessary infrastructure in advance, since such auxiliary
tasks can take a long time, and the main work often can’t start until all preparations
are completed.

• Look for ways to organize tasks in parallel. Even if you’re working alone, some
tasks can and should be done in parallel (for example, refining the test plan, while
deploying virtual machines). If the work is done by more than one person, parallel-
ing the work may be considered a vital necessity.

• Check the plan periodically, make adjustments to the estimations, and notify stake-
holders in advance of any changes. For example, you have realized (as in the
delayed build example mentioned above) that you will complete the work at least
two days late. If you notify the project team immediately, your colleagues have a
chance to adjust their own plans. If you surprise them at the “X” hour with a two-
day shift in deadline, you will create an objective problem for your colleagues.

• Use tools (ranging from electronic calendars to the capabilities of your project man-
agement system): this will allow you at least not to keep a lot of details in your
memory, and at most it will increase the accuracy of the estimations you make.

 Estimation using work breakdown structure

For other estimation techniques, see the following literature:

• “Essential Scrum”, Kenneth Rubin.

• “Agile Estimating and Planning”, Mike Cohn.

• “Extreme programming explained: Embrace change”, Kent Beck.

• PMBOK (“Project Management Body of Knowledge”).

• For a brief list of basic techniques and explanations, see “Software Estimation
Techniques — Common Test Estimation Techniques used in SDLC341”.

Work breakdown structure342 (WBS) is a hierarchical decomposition of volu-
minous tasks into progressively smaller subtasks in order to simplify evaluation,
planning and performance monitoring.

In the process of hierarchical decomposition, large tasks are divided into smaller

and smaller subtasks, which allows us to:

• describe the entire scope of work with sufficient accuracy to clearly understand the
essence of the tasks, form a fairly accurate workload estimation and develop indi-
cators of achievement;

• determine the total amount of the workload as the sum of the workload for the
individual tasks (taking into account the necessary adjustments);

• move from an intuitive view to a specific list of individual actions, which simplifies
the construction of the plan, making decisions about the paralleling of work, etc.

341 “Software Estimation Techniques - Common Test Estimation Techniques used in SDLC” [http://www.softwaretest-

ingclass.com/software-estimation-techniques/]
342 The WBS is a deliverable-oriented hierarchical decomposition of the work to be executed by the project team, to accomplish the

project objectives and create the required deliverables. The WBS organizes and defines the total scope of the project. The WBS
subdivides the project work into smaller, more manageable pieces of work, with each descending level of the WBS representing
an increasingly detailed definition of the project work. The planned work contained within the lowest-level WBS components,
which are called work packages, can be scheduled, cost estimated, monitored, and controlled. [PMBOK, 3rd edition]

http://www.softwaretestingclass.com/software-estimation-techniques/
http://www.softwaretestingclass.com/software-estimation-techniques/

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 213/278

We will now look at the application of hierarchical decomposition combined with a
simplified view of workload estimation based on requirements and test cases.

Detailed theory on the subject can be found in the following articles:

• “Test Effort Estimation Using Use Case Points343”, Suresh Nageswaran.

• “Test Case Point Analysis344”, Nirav Patel.

If we abstract from the scientific approach and formulas, the essence of this as-
sessment boils down to the following steps:

• decomposition of requirements to the level at which it becomes possible to create
good checklists;

• decomposition of testing tasks for each item on the checklist to the level of “testing
actions” (creation of test cases, execution of test cases, creation of defect reports,
etc.);

• making an estimation, taking into account one’s own performance.

Let us consider this approach on the example of testing the DS-2.4{59} requirement:
“If the value of any command line parameter is incorrect, the application should shut down
displaying standard usage message (DS-3.1) and incorrect parameter name, value, and
proper error message (DS-3.2).”.

This requirement itself is low-level and requires almost no decomposition, but to
illustrate the essence of the approach, let’s divide the requirement into components:

• If all three command line parameters are specified correctly, no error message is
displayed.

• If one to three values are specified incorrectly, a usage message, the name (or
names) of the incorrectly specified parameter and the incorrect value, as well as
an error message will be displayed:

o If SOURCE_DIR or DESTINATION_DIR is incorrect: “Directory not exists
or inaccessible”.

o If DESTINATION_DIR is a SOURCE_DIR subdirectory: “Destination direc-
tory may not reside within source directory tree”.

o If LOG_FILE_NAME is incorrect: “Wrong file name or inaccessible path”.

Let’s create a checklist and here we will write an approximate number of test
cases for each item on the assumption that we will conduct sufficiently in-depth testing of
this requirement:

• All values are correct {1 test case}.

• Non-existing/incorrect path for:
o SOURCE_DIR {3 test cases};
o DESTINATION_DIR {3 test cases}.

• Invalid file name LOG_FILE_NAME {3 test cases}.

• SOURCE_DIR and DESTINATION_DIR values are correct names of existing di-
rectories, but DESTINATION_DIR is a SOURCE_DIR subdirectory {3 test cases}.

• Invalid/non-existing FS object names are specified in more than one parameter {5
test cases}.

• SOURCE_DIR and DESTINATION_DIR values are not valid/existing directory
names, and DESTINATION_DIR a SOURCE_DIR subdirectory {3 test cases}.

343 “Test Effort Estimation Using Use Case Points”, Suresh Nageswaran [http://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.597.6800&rep=rep1&type=pdf]
344 “Test Case Point Analysis”, Nirav Patel [http://www.stickyminds.com/sites/default/files/article/file/2013/XUS373692file1_0.pdf]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.597.6800&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.597.6800&rep=rep1&type=pdf
http://www.stickyminds.com/sites/default/files/article/file/2013/XUS373692file1_0.pdf

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 214/278

We have approximately 22 test cases. Let’s also assume, for the sake of clarity of
the example, that part of the test cases (for example, 10) has already been created earlier.

Now let’s sum up the data obtained in table 2.6.a, where we also reflect the number
of passes. This figure appears from the consideration that some test cases will find de-
fects, which will require re-running the test case to verify the defect correction; in some
cases, defects will be reopened, which will require reverification. This only applies to a
portion of test cases, so the number of passes may be fractional to make the evaluation
more accurate.

The number of passes for testing of new functionality in the general case can be
roughly estimated as follows:

• Simple functionality: 1–1.5 (not all tests are repeated).

• Medium complexity functionality: 2.

• Complex functionality: 3–5.

Table 2.6.a — Evaluation of the number of test cases created and executed

 Creation Execution

Number 12 22

Repeats (passes) 1 1.2

Total number 12 26.4

Time per test case

Total time

 It remains to fill in the cells with the values of the time required to develop and
execute one test case. Unfortunately, there are no magic ways to find out these parame-
ters — only accumulated experience about your own productivity, which is influenced,
among other things, by the following factors (for each of them you can enter refining co-
efficients):

• your professionalism and experience;

• the complexity and volume of the test cases;

• the performance of the application under test and the test environment;

• type of testing;

• availability and convenience of automation tools;

• stage of project development.

However, there is a simple way to get an integral estimate of your own productivity
in which the influence of these factors can be neglected: you need to measure your
productivity over a long period of time and record how many test cases you can create
and complete in an hour, day, week, month, etc. The longer the period of time will be
considered, the less the measurement results will be affected by short-term distractions,
the appearance of which is difficult to predict.

Let’s assume that for some imaginary tester these values are as follows — in a
month (28 working days) he manages to:

• Create 300 test cases (about 11 test cases per day, or 1.4 per hour).

• Execute 1,000 test cases (approximately 36 test cases per day, or 4.5 per hour).

Let’s insert these values into table 2.6.a and obtain table 2.6.b.

Workload estimation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 215/278

Table 2.6.b — Workload estimation

 Creation Execution

Number 12 22

Repeats (passes) 1 1.2

Total number 12 26.4

Time per test case, h 0.7 0.2

Total time, h 8.4 5.2

Total 13.6 hours

If the productivity of our fictional tester had been measured over short periods of
time, the resulting value could not have been used directly, because it would not have
included time for writing defect reports, participating in various meetings, correspond-
ence, and other activities. However, this is why we used monthly measurements, because
all of these factors were present multiple times during a typical 28 working days, and their
influence is already factored into our productivity estimates.

If we were still relying on short-term studies, we could have introduced an addi-
tional coefficient or used the assumption that working with test cases for one day is not 8
hours, but less (for example, 6).

Altogether we have 13.6 hours, or 1.7 working days. Keeping in mind the idea of
laying a small “buffer”, we can assume that our fictitious tester will be able to solve the
problem in two full working days.
 In conclusion of this chapter, let us mention once again that in order to clarify your
own productivity and improve your workload estimation skills, you should form an estima-
tion, then perform the work and compare the actual result to the estimation. And repeat
this sequence of steps over and over again.

Task 2.6.c: based on the final checklist{148}, presented in Section 2.4, create test
cases and evaluate your performance on this task.

Examples of various testing techniques usage

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 216/278

2.7. Examples of various testing techniques usage

2.7.1. Positive and negative test cases

Earlier we have already considered{142} an algorithm for thinking up test case ideas,
in which you are asked to answer yourself the following questions about the object to be
tested:

• “What is this?”

• “Who needs it and what for (and how important is it)?”

• “What is the usage process?”

• “How can something go wrong?”

Now we will apply this algorithm, concentrating on the last two questions, since it
is the answers to them that allow us to come up with many positive{80} and negative{80} test
cases. Let’s continue testing our “File Converter”{57}, and choose for the research the first
parameter of the command line, SOURCE_DIR, the name of the directory where the ap-
plication searches for files to be converted.

What is this? The path to the directory. Seemingly simple, but it is worth remem-
bering that our application should work{58} at least under Windows and Linux, which leads
to the need to refresh your memory on the principles of file systems in these operating
systems. And network support (i.e., accessing files on LAN) may also be needed.

Who needs it and what for (and how important is it)? End users do not config-
ure the application, i.e., the administrator needs this parameter (presumably, this person
is qualified and does not do explicit nonsense, but from his qualifications it follows the
possibility to think up uses that the average user would not think up). The priority of this
parameter is critical, because if there are any problems with it, there is a risk of complete
loss of functionality of the application.

What is the usage process? Here we need to understand how file systems work.

• Correct name of the existing directory:
o Windows:

▪ X:\dir
▪ “X:\dir with spaces”
▪ .\dir
▪ ..\dir
▪ \\host\dir
▪ All abovementioned with “\” at the end of the path.
▪ X:\

o Linux:
▪ /dir
▪ “/dir with spaces”
▪ host:/dir
▪ smb://host/dir
▪ ./dir
▪ ../dir
▪ All abovementioned with “/” at the end of the path.
▪ /

Positive and negative test cases

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 217/278

That’s it, i.e., in this particular case there is only one way to correctly use the first
parameter — to specify the correct name of the existing directory (even if there are many
variants of such correct names). In fact, we got a checklist for positive testing. Have we
considered all variants of valid names? Maybe not all of them. But we will consider this
problem in the next chapter on equivalence classes and boundary conditions{218}.

At this point, it is important to reiterate the idea that we first test the application on
positive test cases, i.e., under correct conditions. If these checks fail, in some perfectly
acceptable and typical situations the application will be inoperable, i.e., the damage to
quality will be quite tangible.

How can something go wrong? Negative test cases (with the rarest of excep-
tions) far outnumber positive ones. So, what problems with the source directory name
(and the source directory itself) could interfere with our application?

• The specified path is not a valid directory name:
o Blank value (“”).
o Too long name:

▪ For Windows: more than 256 bytes. (Important! A “real path” of 256
bytes (and more) is acceptable, but be aware of the limitation of the
full file name, as exceeding this can be achieved naturally and will
lead to a crash.)

▪ For Linux: more than 4096 bytes.
o Invalid characters, for example: ? < > \ * | " \0.
o Invalid combinations of valid characters, for example: “....\dir”.

• Directory does not exist:
o on the local drive;
o on the network.

• A directory exists, but the application has no permission to access it.

• Directory access is lost after launching the application:
o directory deleted or renamed;
o access permission was revoked;
o loss of connection to the remote computer has happened.

• Use of a reserved name:
o for Windows: com1–com9, lpt1–lpt9, con, nul, prn;
o for Linux: “..”.

• Encoding problems, e.g.: the name is correct, but is in the wrong encoding.

If you dive into the details of the behavior of individual operating system and file
system, this list can be greatly expanded. Nevertheless, two questions will remain in play:

• Do all of these options need to be checked?

• Aren’t we missing something important?

The answer to the first question can be found based on the reasoning described
in “The logic for creating effective checks”{142} chapter. The answer to the second question
can be found using the reasoning described in the next two chapters, since equivalence
classes, boundary conditions, and domain testing greatly simplify the solution of such
problems.

Task 2.7.a: why do you think we left out in the above checklists the requirement
that SOURCE_DIR cannot be a DESTINATION_DIR subdirectory?

Equivalence classes and boundary conditions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 218/278

2.7.2. Equivalence classes and boundary conditions

In this chapter, we consider examples of the previously mentioned testing tech-
niques based on equivalence classes{92} and boundary conditions{92}. If we refine the defi-
nitions, it turns out:

Equivalence class345 is a set of data processed in the same way and leading
to the same result.

Boundary condition346 (border condition) is a value that is on the boundary of
the equivalence classes.

Sometimes the equivalence class is understood as a test suite, the full execu-
tion of which is redundant. This definition does not contradict the previous one,
because it shows the same situation, but from a different point of view.

As an explanation of the idea, let’s consider a trivial example. Suppose we need
to test a function that determines whether the user entered the correct or incorrect name
during registration.

The requirements for the username are as follows:

• Three to twenty characters inclusive.

• Numbers, underscores, upper- and lower-case letters of English alphabet are al-
lowed.

If we try to solve the problem directly, we have to try all combinations of valid char-
acters with length [3, 20] (this is an 18-bit 63-digit number, i.e., 2.4441614509104E+32)
for a positive test. And there will be an infinite number of negative test cases here, be-
cause we can test a string of 21 characters long, 100, 10000, a million, a billion, etc.

Let us represent the equivalence classes graphically with respect to length require-
ment (see figure 2.7.a).

Figure 2.7.a — Equivalence classes for username length values

Since fractional and negative values are impossible for the string length, we see
three unattainable areas that can be excluded, and we get the final version (see figure
2.7.b).
 We got three equivalence classes:

• [0, 2] — invalid length;

• [3, 20] — valid length;

• [21, ∞] — invalid length.

345 An equivalence class consists of a set of data that is treated the same by a module or that should produce the same result. [Lee

Copeland, “A practitioner’s guide to software test design”]
346 The boundaries — the “edges” of each equivalence class. [Lee Copeland, “A practitioner’s guide to software test design”]

0 2

3 20

21

Valid InvalidInvalid

Impossible

Equivalence classes and boundary conditions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 219/278

Figure 2.7.b — The final division into equivalence classes for username length values

Note that the value ranges [0, 2] and [21, ∞] belong to different equivalence clas-
ses, because the string length belonging to these ranges is checked by separate condi-
tions at the level of the program code.
 The boundary conditions are already marked in figure 2.7.b: 2, 3, 20, and 21. The
value 0 is also worth including in this set “just in case”, because in programming zero,
NULL, zero byte, etc. are historically “dangerous values”.
 As a result, we get the following set of input data for test cases (the characters
themselves to make up strings can be chosen from the set of allowed characters ran-
domly, but it is desirable to take into account all types of characters, i.e., letters in both
registers, numbers, the underscore sign).

Table 2.7.a — Input data values for test cases (response to username length)

 Positive test cases Negative test cases

Value
AAA 123_zzzzzzzzzzzzzzzz AA Blank

string

1234_zzzzzzzzzzzzzzzz

Explana-

tion

String of the

minimum

valid length

String of maximum valid

length

String of in-

valid length

at the lower

boundary

String of in-

valid length,

taken into

account for

reliability

String of invalid length by

the upper boundary

It remains to solve the issue of invalid characters. Unfortunately, such clarity as
with the length is not possible here. Even if we approach strictly scientifically, i.e., choose
an encoding and use its code table to determine character code ranges (figure 2.7.c
shows an example of such separation for an ASCII table), we have no guarantee that the
characters with codes from each range are interpreted uniformly.

Here we see the clearest example of a case where white box testing would
make our lives a lot easier. If we could see how the check for valid and invalid
characters is implemented in the application code, we could choose very indic-
ative values for the input data.

Figure 2.7.c — Bad way to find equivalence classes for sets of valid and invalid charac-
ters (character codes are given by ASCII table)

0 2

3 20

21

Valid InvalidInvalid

Numbers

48

0 47

57

58

65 90

64 91 96

97 122

94

95

123 255

Letters A-Z Letters a-z_

Equivalence classes and boundary conditions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 220/278

Since it turned out to be irrational to select equivalence classes by character codes
in our case, let us look at the situation in a different (and much simpler) way. Let us divide
symbols into invalid and valid ones, and the latter, in turn, into groups (see figure 2.7.d).

Figure 2.7.d — Equivalence classes for valid and invalid characters

 We have already taken into account all combinations of valid characters (with rep-
resentatives of all groups) we are interested in when checking the application’s reaction
to user names of valid and invalid lengths, so it remains to consider only the variant with
valid string length, but invalid characters (which can be chosen randomly from the corre-
sponding set). Let’s add one column to table 2.7.a and get table 2.7.b.

Table 2.7.b — All input data values for test cases

 Positive test cases Negative test cases

Value
AAA 123_zzzzzzzzzzzzzzzz AA Blank

string

1234_zzzzzzzzzzzzzzzz #$%

Ex-

plana-

tion

String of

the mini-

mum

valid

length

String of maximum valid

length

String of

invalid

length at

the lower

boundary

String of

invalid

length,

taken

into ac-

count for

reliability

String of invalid length by

the upper boundary

String of

valid

length, in-

valid

charac-

ters

Of course, in the case of critically important applications (e.g., a nuclear reactor
control system), we would use automation tools to check the application’s re-
sponse to each invalid character. But assuming that we have a trivial application
in front of us, we can assume that a single check for invalid characters will be
enough.

Now we go back to “File Converter”{57} and look for an answer to the question{217} of
whether we missed any important checks in “Positive and negative test cases”{216} chapter.

Let’s start by identifying the SOURCE_DIR property groups that the application
depends on (these groups are called “dimensions”):

• Existence of the directory (initial and during application operation).

• Length of the name.

• Character sets in the name.

• Combinations of characters in the name.

• Location of the directory (local or network).

• Directory access permissions (initial and during application operation).

• Reserved names.

• Operating system specific behavior.

• Network specific behavior.

Numbers

Letters A-Z

Letters a-z

Underscore _

Other

symbols

Valid

Invalid

Equivalence classes and boundary conditions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 221/278

Task 2.7.b: what other property groups would you add to this list and how would
you define subgroups of the properties that are already in the list?

Obviously, the noted property groups have a reciprocal influence. Graphically it
can be displayed as a concept map347 (figure 2.7.e).

Figure 2.7.e — Concept map of the mutual influence of the directory property groups

347 “Concept map”, Wikipedia [http://en.wikipedia.org/wiki/Concept_map]

Local

SOURCE_DIR

Network

Permissions

Existence

Initially During runtime

Network features

Exists

Does not exist

Permissions granted

No permissions

Name

Length

Valid Invalid

Symbols

ValidInvalid

Symbol combinations ValidInvalid

Reserved

Free

OS features

Encoding

http://en.wikipedia.org/wiki/Concept_map

Equivalence classes and boundary conditions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 222/278

To be able to apply the standard technique of equivalence classes and boundary
conditions, we need to go from the central element (“SOURCE_DIR”) in figure 2.7.e to
any end element, unambiguously related to the positive or negative test.

One of such paths in figure 2.7.e is marked with circles. It can be expressed ver-
bally as follows: SOURCE_DIR → Windows → Local directory → Name → Free → Length
→ In UTF16 encoding → Valid or invalid.

The maximum path length for Windows is generally 256 bytes, so:
[disk][:\][path][null] = 1 + 2 + 256 + 1 = 260. The minimum length is 1 byte (the dot repre-
sents the “current directory”). Everything seems obvious and can be represented by figure
2.7.f.

Figure 2.7.f — Equivalence classes and boundary conditions for path length

However, if you read the specification348 carefully, it turns out that the “physical”
path can be up to 32’767 characters long, while the 260-character limit applies only to the
so called “full name”. That is why it is possible, for example, when a directory with a 200
characters long name can hold a file with a 200 characters long name, and the full file-
name becomes 400 characters long (which is obviously longer than 260).

We have come to a situation where we need either to know the internal behavior
of the application in order to test it, or we need to modify the requirements, introducing
artificial constraints (for example, the length of SOURCE_DIR name cannot exceed 100
characters, and the length of a name of a file in SOURCE_DIR cannot exceed 160 char-
acters, that in total can give the maximum length of 260 characters).

Introducing artificial constraints is a bad idea, so from the quality point of view we
have the right to consider the division shown in figure 2.7.f correct, and failures in the
application (if any), caused by the “200 symbols + 200 symbols” situation described
above, as a defect.

Table 2.7.c — All input data values for test cases to test the chosen path in figure 2.7.e

 Positive test cases Negative test cases

Value . (dot) C:\256bytes Blank string C:\257bytes

Ex-

plana-

tion

Name with the

minimum valid

length

Name with the maxi-

mum valid length

Name with invalid

length, taken into ac-

count for reliability

Name with invalid length

So, we have dealt with one path in figure 2.7.e. But there are considerably more,
and so, in the next chapter, we will consider how to deal with a situation where we have
to take into account the effect of a large number of parameters on the application.

348 “Naming Files, Paths, and Namespaces”, MSDN [https://msdn.microsoft.com/en-us/library/aa365247.aspx#maxpath]

0

1 256

257

Valid InvalidInvalid

https://msdn.microsoft.com/en-us/library/aa365247.aspx#maxpath

Domain testing and parameters combinations

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 223/278

2.7.3. Domain testing and parameters combinations

Let us clarify the definition given earlier{93}:

Domain testing (domain analysis349) is a technique for creating effective and
efficient test cases when several variables can or must be tested simultane-
ously.

The techniques for determining equivalence classes and boundary conditions,
which were discussed in the corresponding{218} chapter, are actively used as tools for do-
main testing. Therefore, we turn at once to a practical example.
 In figure 2.7.e the circles indicate the path, one of the options we considered in the
previous chapter, but there can be many variants:

• OS family
o Windows
o Linux

• Directory location
o Local
o Network

• Name availability
o Reserved
o Free

• Length
o Valid
o Invalid

In order not to complicate the example, let us stop at this set. Graphically, the
combinations of options can be represented as a hierarchy (see figure 2.7.g). Excluding
the quite atypical exotics for our application (we are not developing a network utility, after
all), let us cross out the cases of reserved network names (marked gray in figure 2.7.g).
 It is easy to see that, for all its clarity, the graphical representation is not always
easy to handle (besides, we have so far limited ourselves to general ideas, without men-
tioning specific equivalence classes and boundary condition values that interest us).
 An alternative approach is to represent the combinations in the form of a table,
which can be obtained sequentially in several steps.
 First, we take into account combinations of values of the first two parameters, the
OS family and the directory location. We get table 2.7.d.

Table 2.7.d — Values combinations of the first two parameters

 Windows Linux

Local path + +

Network path + +

At the intersection of rows and columns you can mark the need for testing (in our
case it is, so there is a “+”) or its absence, the priority of the test, individual parameter
values, links, etc.

349 Domain analysis is a technique that can be used to identify efficient and effective test cases when multiple variables can or

should be tested together. [Lee Copeland, “A practitioner’s guide to software test design”]

Domain testing and parameters combinations

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 224/278

Figure 2.7.g — Graphical representation of parameter combinations

SOURCE_DIR

Windows

Linux

Local

Network

Local

Network

Reserved

Free

Reserved

Free

Reserved

Free

Reserved

Free

Invalid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Invalid

Valid

Domain testing and parameters combinations

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 225/278

Let’s add a third parameter (the reserved name feature) and get table 2.7.e.

Table 2.7.e — Combinations of values of three parameters

 Windows Linux

Reserved name
Local path + +

Network path - -

Free name
Local path + +

Network path + +

Add a fourth parameter (length validity feature) and you get table 2.7.f.
To make the table grow evenly in height and width, it is convenient to add each

subsequent parameter alternately as a row or a column (when forming tables 2.7.e and
2.7.f, we added the third parameter as a row, the fourth as a column).

Table 2.7.f — Combinations of values of four parameters

 Valid length Invalid length

 Windows Linux Windows Linux

Reserved name
Local path - - + +

Network path - - - -

Free name
Local path + + + +

Network path + + + +

Such a representation is more compact than a graphical one and makes it very
easy to see the combinations of parameter values to be tested. Instead of “+” signs, the
cells can contain references to other tables (although sometimes all data are combined
in one table), which will present equivalence classes and boundary conditions for each
selected case.
 As you can easily guess, with many parameters, each of which can take many
values, a table like 2.7.f will consist of hundreds of rows and columns. It would take a lot
of time even to build it, and it may not be possible to do all the checks at all, because of
time constraints.

In the next chapter we will look at another testing technique to solve the problem
of too many combinations.

Pairwise testing and combinations search

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 226/278

2.7.4. Pairwise testing and combinations search

Let us clarify the definition given earlier{93}:

Pairwise testing350 is a testing technique in which instead of checking all pos-
sible combinations of all parameter values, only combinations of values of each
pair of parameters are checked.

Selecting and checking value pairs sounds simple. But how does one choose
these pairs? There are several closely related mathematical methods for creating combi-
nations of all pairs:

• based on orthogonal arrays351, 355;

• based on Latin squares352;

• IPO (in parameter order) method353;

• based on evolutionary algorithms354;

• based on recursive algorithms355.

Deeply underlying these methods is serious mathematical theory355. In simpli-
fied examples, the essence and advantages of this approach are shown in Lee
Copeland’s356 book and Michael Bolton’s article351, and a fair critique is given in
James Bach’s article 357.

 So, the essence of the problem: if we try to test all combinations of all values of all
parameters for a more or less complex test case, we will get a number of test cases that
exceeds all reasonable limits.
 If we represent the scheme shown in figure 2.7.e as a set of parameters and the
number of their values, we get the situation shown in table 2.7.g. The minimum number
of values is obtained on the basis of “location: local or network”, “existence: yes or no”,
“OS family: Windows or Linux”, etc. The probable number of values is estimated on the
basis of the necessity to consider several equivalence classes. The number of values,
taking into account the complete enumeration was obtained from the technical specifica-
tions of operating systems, file systems, etc. The value of the bottom line is obtained by
multiplying the values in the corresponding column.

350 The answer is not to attempt to test all the combinations for all the values for all the variables but to test all pairs of variables. [Lee

Copeland, “A practitioner’s guide to software test design”]
351 “Pairwise Testing”, Michael Bolton [http://www.developsense.com/pairwiseTesting.html]
352 “An Improved Test Generation Algorithm for Pair-Wise Testing”, Soumen Maity and oth. [https://citeseerx.ist.psu.edu/view-

doc/download?doi=10.1.1.147.2164&rep=rep1&type=pdf]
353 “A Test Generation Strategy for Pairwise Testing”, Kuo-Chung Tai, Yu Lei [https://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.106.8350&rep=rep1&type=pdf]
354 “Evolutionary Algorithm for Prioritized Pairwise Test Data Generation”, Javier Ferrer and oth.

[https://neo.lcc.uma.es/staff/javi/files/gecco12.pdf]
355 “On the Construction of Orthogonal Arrays and Covering Arrays Using Permutation Groups”, George Sherwood

[http://testcover.com/pub/background/cover.htm]
356 “A Practitioner’s Guide to Software Test Design”, Lee Copeland.
357 “Pairwise Testing: A Best Practice That Isn’t”, James Bach [http://citeseerx.ist.psu.edu/viewdoc/down-

load?doi=10.1.1.105.3811&rep=rep1&type=pdf].

http://www.developsense.com/pairwiseTesting.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.2164&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.2164&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.8350&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.8350&rep=rep1&type=pdf
https://neo.lcc.uma.es/staff/javi/files/gecco12.pdf
http://testcover.com/pub/background/cover.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.3811&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.3811&rep=rep1&type=pdf

Pairwise testing and combinations search

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 227/278

Table 2.7.g — List of parameters affecting the application

Parameter Minimum num-

ber of values

Probable num-

ber of values

Number of values for “brute

force” approach

Location 2 25 32

Existence 2 2 2

Permissions 2 3 155

OS family 2 4 28

Reserved or free name 2 7 23

Encodings 2 3 16

Length 2 4 4096

Character combinations 2 4 82

TOTAL test cases 256 201’600 34’331’384’872’960

Of course, we won’t go through all possible values (that’s why we need equiva-
lence classes), but even 256 test cases to check just one command line parameter is a
lot. And it’s much more likely that you’ll have to run about 200’000 test cases. If you were
to do it manually and run one test every five seconds around the clock, that would take
about 11 days.

But we can apply a pairwise testing technique to generate an optimal set of test
cases, taking into account the combination of pairs of each value of each parameter. Let
us describe the values themselves. Note that already at this stage we have performed
optimization, gathering into a single set information about the location, length, value, char-
acter combination, and sign of the reserved name. We did this because combinations like
“length 0, reserved name com1” don’t make sense. We also strengthened some of the
checks by adding Russian-language directory names.

Pairwise testing and combinations search

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 228/278

Table 2.7.h — List of parameters and their values

Parameter Values

Location / length / value / char-

acter combination / reserved

or free

1. X:\

2. X:\dir

3. “X:\spaces and кириллические символы”

4. .\dir

5. ..\dir

6. \\host\dir

7. [256 bytes for Windows only]

+ Points 2–6 with “\” at the end of the path.

8. /

9. /dir

10. “/spaces and кириллические символы”

11. host:/dir

12. smb://host/dir

13. ./dir

14. ../dir

15. [4096 bytes for Linux only]

+ Points 9–14 with “/” at the end of the path.

Invalid name.

16. [0 characters]

17. [4097 bytes for Linux only]

18. [257 bytes for Windows only]

19. "

20. //

21. \\

22. ..

23. com1–com9

24. lpt1–lpt9

25. con

26. nul

27. prn

Existence 1. Yes

2. No

Permissions 1. To the directory and its contents

2. To the directory only

3. Neither to the directory nor to its contents

OS family 1. Windows 32 bit

2. Windows 64 bit

3. Linux 32 bit

4. Linux 64 bit

Encodings 1. UTF8

2. UTF16

3. OEM

The number of potential test cases decreased to 2736 (38*2*3*4*3), which is al-
ready much less than 200’000, but still is irrational.

Now let’s use any of the tools358 (for example, PICT) and generate a set of combi-
nations based on a pairwise combination of all parameter values. An example of the first
ten lines of the result is shown in table 2.7.i. A total of 152 combinations is obtained, i.e.,
1’326 times less (201’600 / 152) than the original estimate or 18 times less (2’736 / 152)
than the optimized variant.

358 “Pairwise Testing, Available Tools” [https://jaccz.github.io/pairwise/tools.html]

https://jaccz.github.io/pairwise/tools.html

Pairwise testing and combinations search

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 229/278

Table 2.7.i — Sets of values obtained by the method of pairwise combination

№ Location / length / value
/ character combination

/ reserved or free

Existence Permissions OS Family Encodings

1 X:\ Yes To the directory and
its contents

Windows 64 bit UTF8

2 smb://host/dir/ No Neither to the directory
nor to its contents

Windows 64 bit UTF16

3 / No To the directory only Windows 32 bit OEM

4 [0 characters] Yes To the directory only Linux 32 bit UTF8

5 smb://host/dir No To the directory and
its contents

Linux 32 bit UTF16

6 ../dir Yes Neither to the directory
nor to its contents

Linux 64 bit OEM

7 [257 bytes for Windows
only]

Yes To the directory only Windows 64 bit OEM

8 [4096 bytes for Linux
only]

No Neither to the directory
nor to its contents

Windows 32 bit UTF8

9 [256 bytes for Windows
only]

No Neither to the directory
nor to its contents

Linux 32 bit OEM

10 /dir/ Yes To the directory only Windows 32 bit UTF16

If we examine the set of combinations obtained, we can exclude from them those
that do not make sense (for example, the existence of a directory with a zero-length name
or checking under Windows for cases typical only for Linux — see lines 4 and 8).

Completing such an operation, we get 124 combinations. For reasons of space
saving, this table will not be given, but “Pairwise testing data sample”{272} appendix pre-
sents the final result of the optimization (some other combinations have been removed
from the table, e.g. checking under Linux of names that are reserved for Windows).

We got 85 test cases, which is even a little less than the minimum score of 256
test cases, and we took into account much more dangerous for the application combina-
tions of parameter values.

Task 2.7.c: the “Permissions” column in “Pairwise testing data sample”{272} pre-
sented in the appendix is sometimes missing values. Why do you think that is?
Also, there are still “superfluous” tests in this table, the execution of which
makes no sense or represents an extremely unlikely scenario. Find them.

So, in the last four chapters, we’ve looked at several testing techniques for identi-
fying data sets and ideas for writing effective test cases. The next chapter will be devoted
to the situation when there is no time for such thoughtful testing.

Exploratory testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 230/278

2.7.5. Exploratory testing

Exploratory{84} and ad-hoc{84} testing have already been mentioned earlier at the
definition level. To begin with, let us emphasize once again that these are different kinds
of testing, even if in each of them the degree of formalization of the process is much less
than in test case based testing{84}. Now we will consider the use of exploratory testing.
 Cem Kaner defines359 exploratory testing as an approach based on the freedom
and responsibility of the tester to continuously optimize their work through concurrent and
complementary study, planning, test execution and assessment of results throughout the
project. In short, exploratory testing is all about studying, planning and testing at the same
time.
 Besides the obvious problem with test case based testing, which is a time-con-
suming approach, there is another one: existing optimization techniques try to maximize
application testing in all the considered situations that we can control, but it is impossible
to control everything.

This idea is represented visually in figure 2.7.h.

Figure 2.7.h — Factors that may be missed by test case based testing359

Exploratory testing often reveals defects caused by these missing factors. In addi-
tion, it works perfectly in the following situations:

• Lack of or poor quality of necessary documentation.

• The need for rapid quality assessment when time is short.

• Suspicion of ineffectiveness of existing test cases.

• The need to test components developed by “third parties”.

• Verification of defect elimination (to verify that the defect does not appear with a
slight deviation from the reproduction steps).

In his research359 Cem Kaner shows in detail how to conduct exploratory testing

using basic methods, models, examples, partial scripting changes, application interven-
tion, error handling checks, team testing, product-to-requirements comparison, additional
investigation of problem areas, etc.

359 “A Tutorial in Exploratory Testing”, Cem Kaner [http://kaner.com/pdfs/QAIExploring.pdf]

Application
Intended inputs

(and data)

Monitored outputs

(and results)

Missing application

components states

Missing OS and runtime

environment states

Missing configurations and

resources states

Missing impacts from other

applications

Missing application

components states

Missing OS and runtime

environment states

Missing impacts on a variety

of resources

Missing impacts on other

applications

http://kaner.com/pdfs/QAIExploring.pdf

Exploratory testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 231/278

But let’s return to our “File Converter”{57}. Let’s imagine the following situation: the
developers released the first build very quickly, we don’t have test cases (and all those
ideas that were discussed earlier in this book) yet, but we need to check the build.

Let’s say, the build release notice says: “The following requirements are imple-
mented and ready for testing: SC-1, SC-2, SC-3, UR-1.1, UR-1.2, UR-2.1, UR-3.1, UR-
3.2, BR-1.1, BR-1.2, DS-1.1, DS-2.1, DS-2.2, DS-2.3, DS-2.4, DS-3.1, DS-3.2 (text mes-
sages are made informative), DS-4.1, DS-4.2, DS-4.3”.

 We noted earlier that exploratory testing is a closely related study, planning, and
testing. Let’s apply this idea.

Study

 Let’s present the information received from the developers in the form of table 2.7.j
and analyze the relevant requirements to understand what we will need to do.

Table 2.7.j — Preparation for exploratory testing

Requirement What we will do and how we will do it

SC-1 Does not require a separate check, because all work with the application will be

done in the console.

SC-2 Does not require a separate check, observable in the code.

SC-3 Test under Windows and Linux.

UR-1.1 Standard test of the reaction of the console application to the different options of

specifying parameters. Note that the first two parameters of the three are mandatory

(the third takes on a default value if not specified). See “Ideas”, point 1.
DS-2.1

DS-2.2

DS-2.3

DS-2.4

UR-1.2 See “Ideas”, point 2.

UR-2.1 Does not require a separate check, covered by other tests.

UR-3.1 At the moment, we can only check the fact of logging and format of records, be-

cause the basic functionality is not yet implemented. See “Ideas”, point 4. UR-3.2

DS-4.1

DS-4.2

DS-4.3

BR-1.1 See “Ideas”, point 3.

BR-1.2

DS-1.1 Test it with PHP 5.5.

DS-3.1 Check the output messages while executing points 1–2 (see “Ideas”).

DS-3.2

Exploratory testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 232/278

Planning

 The “What we will do and how we will do it” column in table 2.7.j can be considered
a part of the planning, but for clarity we will present this information as a generalized list,
which for simplicity we will call “Ideas” (yes, this is quite a classic checklist).

Ideas:
1. Messages in startup situations:

a. Without parameters.
b. With one, two, three correct parameters.
c. With incorrect first, second, third, one, two, three parameters.

2. Stop the application by Ctrl+C.
3. Messages in startup situations.

a. Destination directory and source directory are in different branches of the
FS.

b. Destination directory within the source directory.
c. Destination directory matches the source directory.

4. Log contents.
5. Look into the code responsible for analyzing command line parameters and log-

ging.

Task 2.7.d: compare the presented set of ideas with the previously considered
approaches{142}, {216}, {218}, {223}, {226} — which option do you find simpler to develop
and which one to implement, and why?

So, there is a list of ideas. In fact, it’s almost a finished scenario, if point 2 (about
stopping the application) is repeated at the end of the checks from points 1 and 3.

Testing

We can start testing, but it is worth noting that it should involve a specialist with
extensive experience with console applications, otherwise testing will be very formal and
will be ineffective.
 What to do with detected defects? First, record in the same format, i.e., as “a list
of ideas”, as switching between going through some kind of scenario and writing a report
on the defect is very distracting. If you are afraid of forgetting something, record what is
happening on the screen (a great trick is to record the whole screen so that you can see
the clock, and in the idea lists mark the time when you found the defect, so that it is easier
to find it later in the record).
 For convenience, the list of “ideas of defects” can be arranged in the form of a
table (see table 2.7.k).

Table 2.7.k — List of “ideas of defects”

What we did What we got What we expected / What’s

wrong

0 a) In all cases, the application messages are quite correct in terms of what is happening and informative, but

contrary to the requirements (discuss with the customer changes in the requirements).

b) The log is created, the date-time format is correct, but we need to clarify what the requirements mean by

“operation_name operation_parameters operation_result”, because for different operations a single format is

not very convenient (whether it is necessary to bring everything to one format or not?)

1 php converter.php Error: Too few command line parameters.

USAGE: php converter.php SOURCE_DIR

DESTINATION_DIR [LOG_FILE_NAME]

Please note that DESTINATION_DIR may

NOT be inside SOURCE_DIR.

The message is completely irrele-

vant.

Exploratory testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 233/278

2 php converter.php zzz:/ c:/ Error: SOURCE_DIR name [zzz:] is not a
valid directory.

Strangely, the only thing left of
“zzz:/” is “zzz:”.

3 php converter.php “c:/non/exist-
ing/directory/” c:/

Error: SOURCE_DIR name [c:\non\exist-
ing\directory] is not a valid directory.

The slashes have been replaced
with backslashes, the final back-
slash has been removed: is this
correct? Look in the code, it is not
clear if this is a defect or the inten-
tion.

4 php converter.php c:/ d:/ 2015.06.12 13:37:56 Started with parame-
ters: SOURCE_DIR=[C:\], DESTINA-
TION_DIR=[D:\],
LOG_FILE_NAME=[.\converter.log]

Drive letters are uppercase,
slashes are replaced by back-
slashes. Why is the name of a log
file relative (not fully qualified)?

5 php converter.php c:/ c:/ Error: DESTINATION_DIR [C:\] and
SOURCE_DIR [C:\] mat NOT be the same
dir.

There is a misprint in a message. It
must be “must” or “may”.

6 php converter.php “c:/каталог с
кириллическими символами/” c:/

Error: SOURCE_DIR name [c:\ърЄрыюу ё
ъшЁшыышўхёъшьш ёшь-тюырьш] is not
a valid directory.

Encoding problem.

7 php converter.php / c:/Win-
dows/Temp

Error: SOURCE_DIR name [] is not a valid
directory.

Check under Linux: it is unlikely
that someone would store some-
thing working directly in /, but the
name “/” is cut to an empty string,
which is acceptable for Windows,
but not for Linux.

8 Note: “e:” is a DVD-drive.
php converter.php c:/ e:/

file_put_con-
tents(e:f41c7142310c5910e2cfb57993b4d
004620aa3b8): failed to open stream: Per-
mission denied in \classes\CLPAna-
lyser.class.php at line 70 Error: DESTINA-
TION_DIR [e] is not writeable.

A message from PHP interpreted
is not handled.

9 php converter.php /var/www
/var/www/1

Error: SOURCE_DIR name [var/www] is
not a valid directory.

In Linux the initial “/” in the directory
name is cut off, i.e., you can safely
consider that under Linux the appli-
cation does not work (only relative
paths starting with “.” or “.” can be
specified).

The conclusions of the test (which, by the way, took about half an hour):

• The formats and contents of application usage and error messages, as well as the
format of log files, must be discussed in detail with the customer. The developers
have suggested ideas which look much more adequate than originally described
in the requirements, but still need to be agreed upon.

• Under Windows no serious defects were found, the application is quite stable.

• Under Linux there is a critical problem with disappearance of “/” at the beginning
of the path, which does not allow to specify absolute paths to directories.

• If we summarize the above, we can state that the Smoke Test successfully passed
under Windows and failed under Linux.

One can repeat the “study, planning, testing” cycle many times, supplementing
and reviewing the list of problems found (table 2.7.k) as new information to study, be-
cause each problem gives mental food and comes up with additional test cases.

Task 2.7.e: describe the defects presented in table 2.7.k in the form of complete
defect reports.

In this chapter in table 2.7.k, some items are obvious defects. But what causes
them? Why do they occur, how can they appear, and what do they affect? How to describe
them in as much detail and as correctly as possible in defect reports? The next chapter
is devoted to answering these questions, where we will talk about finding and investigat-
ing the causes of defects.

Root cause analysis

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 234/278

2.7.6. Root cause analysis

We noted earlier{156} that we use the word “defect” to refer to a problem because
describing the end symptom is of little use, and identifying the root cause can be quite
difficult. And yet, it is the identification and elimination of the root cause that has the great-
est effect, reducing the risk of new defects arising from the same (undetected and not
eliminated) flaw.

Root cause analysis360 is a process of investigating and categorizing the root
causes of events with safety, health, environmental, quality, reliability and pro-
duction impacts.

As you can see from the definition, root cause analysis is not limited to software
development, but we will be interested in it in the IT context. Often the situation in which
a tester writes a defect report can be shown in figure 2.7.i.

Figure 2.7.i — Defect manifestation and causes

 In the worst case, the problem will be missed (not detected) at all, and the defect
report will not be written. A slightly better situation is when the report describes only the
external manifestations of the problem. A description of the underlying causes may be
considered acceptable. But ideally you should try to get to the two lowest levels — the
root cause and the conditions that led to its emergence (although the latter is often in the
field of project management, rather than testing as such).

In a nutshell, this whole idea is expressed in three simple points. We need to un-
derstand:

• What had happened.

• Why did it happened (find the root cause).

• How to reduce the likelihood of such a situation recurring.

360 Root cause analysis (RCA) is a process designed for use in investigating and categorizing the root causes of events with

safety, health, environmental, quality, reliability and production impacts. [James Rooney and Lee Vanden Heuvel, “Root Cause
Analysis for Beginners”, https://www.abs-group.com/content/documents/rca_for_begineers.pdf]

Observed manifestation of a

problem Symptom

Cause N

Cause N-1

Root cause

Prerequisites contributing to the

root cause

...

https://www.abs-group.com/content/documents/rca_for_begineers.pdf

Root cause analysis

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 235/278

Let’s look at a practical example right away. In table 2.7.k, line number 9{233} men-
tions a very dangerous behavior for Linux applications: the initial character “/” is removed
from the paths passed to the application from the command line, which makes any full
path invalid for Linux.

Let’s walk through the chain shown in figure 2.7.i and reflect this path in table 2.7.l:

Table 2.7.l — Example of a root cause analysis

Analysis level Observed situation Reasoning and conclusions

Observable mani-

festation of the

problem

Tester executed the “php converter.php

/var/www /var/www/1” command and got the

following application response: “Error:

SOURCE_DIR name [var/www] is not a valid

directory.” in a situation when the specified

directory exists and is accessible.

It is immediately noticeable that

the directory name in the error

message is different from the

specified one: the initial “/” is

missing. Several tests confirm

the guess — in all command line

parameters the initial “/” is de-

leted from the full path.

At this stage, very often beginner testers describe the defect as “the directory
name is not recognized correctly”, “the application does not detect available
directories” and similar words.
This is bad for at least two reasons:
a) the description of the defect is incorrect;
b) the developer will have to do all the investigation themselves.

Table 2.7.l [continued]

Analysis level Observed situation Reasoning and conclusions

Cause N Fact: in all command line parameters the ini-

tial “/” is removed from the full path. Checking

with relative paths (“php converter.php . .”)

and checking under Windows (“php con-

verter.php c:\ d:\”) shows that in such situa-

tions the application works.

The problem is clearly in the

processing of entered names: in

some cases the name is pro-

cessed correctly, in some cases

it is not.

Hypothesis: initial and final “/”

(maybe also “\”) are removed.

Cause N-1 Checks of “php converter.php \\\\\c:\\\\\

\\\\\d:\\\\\” and “php converter.php /////c://///

/////d://///” show that the Windows application

starts, correctly recognizing the correct paths:

“Started with parameters:

SOURCE_DIR=[C:\], DESTINA-

TION_DIR=[D:\]”

The hypothesis was confirmed:

the application removes all “/”

and “\” present in any quantity in

the beginning and at the end of

the directory name.

Generally, at this stage it is already possible to write a report about the defect with
a summary like “Removing the leading and trailing “/” and “\” from the startup parameters
corrupts the full paths under Linux”. But what prevents us from going even deeper?

Root cause analysis

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 236/278

Table 2.7.l [continued]

Analysis level Observed situation Reasoning and conclusions

Cause N-2 Hypothesis: somewhere in the code there is

a primary filter of path values, which pro-

cesses them before the directory is checked

for existence. This filter doesn’t work cor-

rectly. Let’s open the code that is responsible

for command line parameters analysis. Very

quickly we find the method which is to blame

for what’s going on:

private function getCanonicalName($name)

{

 $name = str_replace('\\', '/', $name);

 $arr = explode('/', $name);

 $name = trim(implode(DIRECTORY_SEPARATOR,

$arr), DIRECTORY_SEPARATOR);

 return $name;

}

We have found the specific

place in the application code

which is the root cause of the

detected defect. The information

about the file name, line number

and an excerpt of the code itself

with explanations of what is

wrong in it can be attached to

the defect report comment. Now

it is much easier for the devel-

oper to fix the problem.

Task 2.7.f: imagine that the developer fixed the problem by changing the lead-
ing and trailing “/” and “\” deletion to only trailing “\” deletion (i.e., now they are
deleted only at the end of the directory name, but not at the beginning). Is this
a good solution?

A generalized root cause search algorithm can be formulated as follows (see figure

2.7.j):

• Identify the problem manifestation:
o What exactly happens?
o Why is it bad?

• Gather the necessary information:
o Does the same thing happen in other situations?
o Does it always happen in the same way?
o What makes a problem appear or go away?

• Hypothesize the cause of the problem:
o What could be the cause?
o What actions or conditions might cause the problem to manifest itself?
o What other problems might be causing the observed problem?

• Check the hypothesis:
o Carry out additional research.
o If the hypothesis is not confirmed, work on other hypotheses.

• Make sure that the root cause (and not just another cause in a long chain of events)
is found:

o If the root cause is found, make recommendations to eliminate it.
o If an intermediate cause is found, repeat the algorithm for it.

Here we have considered a very specific application of root cause search. But
the presented algorithm is universal: it works in different subject areas, in pro-
ject management, and in developers’ work (as part of the debugging process).

Root cause analysis

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 237/278

Figure 2.7.j — Root cause analysis algorithm

 This concludes the main part of this book, which is devoted to “testing in general”.
Next, we will consider test automation as a set of techniques that increase the efficiency
of the tester’s work in many respects.

Identify the problem

manifestation

Gather the necessary

information

Hypothesize the cause

of the problem

Check the hypothesis

Is the hypothesis

confirmed?

Make

recommendations on

elimination

Is it a root cause?

Yes

Yes

No

No

Chapter 3: test automation

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 238/278

Chapter 3: test automation

3.1. Automation benefits and risks

3.1.1. Automation advantages and disadvantages

In the section devoted to the detailed testing classification{67} we briefly considered
what automated testing{73} is: a set of techniques, approaches and tools that allow a per-
son to be excluded from some tasks in the testing process. In table 2.3.b{73} a short list of
advantages and disadvantages of automation was given, which we will now consider in
detail.

• The speed of execution of test cases can exceed human capabilities by orders of
magnitude. If you imagine that a person has to manually check several files of
several tens of megabytes each, the estimate of the manual execution time be-
comes frightening: months or even years. At the same time, the 36 checks, imple-
mented in the Smoke Test batch scripts{263} are performed in less than five seconds
and require the tester to do only one thing — run the script.

• There is no influence of the human factor in the process of test cases execution
(fatigue, inattention, etc.). Let’s continue the example from the previous paragraph:
what is the probability that a person will make a mistake comparing (character by
character!) even two ordinary texts of 100 pages each? And if there are 10 such
texts? 20? And the checks need to be repeated over and over again? It is safe to
say that a human error is guaranteed. Automation will not make such a mistake.

• Automation tools are capable of performing test cases which are, in principle, be-
yond human control due to their complexity, speed, or other factors. Again, our
example with the comparison of large texts is relevant: we cannot afford to spend
years doing an extremely complex routine over and over again, in which we are
also guaranteed to make mistakes. Another excellent example of test cases that
are beyond human capabilities is performance testing{90}, in which one must per-
form certain actions at high speed and also record the values of a wide set of
parameters. Can a human, for example, measure and record the amount of RAM
occupied by an application a hundred times per second? No. Automation can.

• Automation tools are capable of collecting, storing, analyzing, aggregating, and
presenting enormous amounts of data in a human-readable form. In our example
with the “File Converter” Smoke Test, the amount of data obtained as a result of
testing is not large — it can well be handled manually. But if we turn to real project
situations, the logs of automated testing systems can occupy tens of gigabytes at
each iteration. It is logical that a human being is not able to analyze such data
volumes manually, but a properly customized automation environment will do it by
itself, providing the output of neat 2–3 page reports, handy graphs and tables, as
well as the ability to dive into specifics, moving from aggregated data to details, if
the need arises.

• Automation tools are capable of performing low-level actions with the application,
operating system, data transmission channels, etc. In one of the previous para-
graphs, we mentioned a task such as “measure and record the amount of RAM
occupied by an application a hundred times per second”. Such a task of collecting
information about the resources used by an application is a classic example. But
automation tools can not only collect such information, they can also influence the
execution environment of an application or the application itself by emulating typi-
cal events (for example, insufficiency of RAM or CPU power) and recording the
reaction of the application. Even if a tester is skilled enough to perform such oper-
ations on his own, he will still need one or another tool, so why not solve this task
at the level of test automation?

Automation advantages and disadvantages

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 239/278

So, by using automation, we are able to increase test coverage{198} by:

• executing test cases that we shouldn’t have thought of before;

• repeating test cases multiple times with different input data;

• freeing up time to create new test cases.

But is everything so good with automation? Alas, no. One of the serious problems
can be visualized in figure 3.1.a:

Figure 3.1.a — Ratio of test case development and execution time in manual and auto-
mated testing

The first thing to realize is that automation does not happen by itself, there is no
magic button that solves all problems. Moreover, there are a series of serious drawbacks
and risks associated with test automation:

• The need for highly skilled personnel due to the fact that automation is a “project
within a project” (with its own requirements, plans, code, etc.). Even if we forget
for a moment about the “project within a project”, the technical qualifications of the
staff involved in automation should generally be noticeably higher than those of
their colleagues involved in manual testing.

• The development and maintenance of both the automated test cases themselves
and the entire necessary infrastructure takes a very long time. The situation is ag-
gravated by the fact that in some cases (when a project undergoes major changes
or in case of errors in the strategy) all the relevant work has to be done from
scratch: if there are significant changes in requirements, a change in the technol-
ogy domain, redesign of interfaces (both user and software) many automated test
cases become hopelessly outdated and need to be created anew.

• Automation requires more careful planning and risk management, because other-
wise the project can be seriously damaged (see the previous point about redoing
all the developments from scratch).

• Commercial automation tools are tangibly expensive, and the available free ana-
logues do not always allow us to effectively solve the tasks. And here we are forced
to return to the question of errors in planning: if the initial set of technologies and
automation tools was not chosen correctly, we will have not only to redo all the
work, but also buy new automation tools.

• There are a lot of automation tools, which complicates the problem of choosing
one or another tool, complicates the planning and definition of testing strategy,
may entail additional time and financial costs, as well as the need to train personnel
or hire the appropriate specialists.

t

Test cases development and debugging

E
x
e
c
u

-

ti
o
n

E
x
e
c
u

-

ti
o
nTest cases

development

E
x
e
c
u

-

ti
o
n

E
x
e
c
u

-

ti
o
n

E
x
e
c
u

-

ti
o
n

E
x
e
c
u

-

ti
o
n

...

Manual testing

Automated testing

Automation advantages and disadvantages

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 240/278

So, test automation requires tangible investments and greatly increases project
risks, and therefore there are special approaches361, 362, 363 for evaluating the applicability
and effectiveness of automated testing. If we express their essence very briefly, first of
all it is necessary to take into account:

• Time spent on manual execution of test cases and on the execution of the same
automated test cases. The greater the difference, the more profitable automation
seems to be.

• Number of repetitions of the same test cases. The more it is, the more time we can
save due to automation.

• The amount of time spent on debugging, updating and supporting automated test
cases. This parameter is the most difficult to estimate, and it is it that represents
the greatest threat to the success of automation, so it is necessary to involve the
most experienced professionals to make an estimation here.

• The presence of appropriate specialists in the team and their workload. Automa-
tion is done by the most qualified employees, who are not able to solve other tasks
at the same time.

As a small example of a cursory evaluation of the automation effectiveness is the
following formula364:

𝐴𝑒𝑓𝑓𝑒𝑐𝑡 =
𝑁∙𝑇𝑚𝑎𝑛𝑢𝑎𝑙

𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑁∙𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑟𝑢𝑛 𝑎𝑛𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑒

+𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡, where

𝐴𝑒𝑓𝑓𝑒𝑐𝑡 — benefit ratio from the use of automation,

𝑁 — planned number of application builds;

𝑇𝑚𝑎𝑛𝑢𝑎𝑙
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 — estimated time of manual test cases development and execution, and results analysis;

𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑟𝑢𝑛 𝑎𝑛𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑒

— estimated time of automated test cases execution, and results analysis;

𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

 — estimated time of automated test cases development and support.

To visualize how this formula can help, let’s graph the coefficient of automation
benefit depending on the number of builds (figure 3.1.b). Suppose that in some project
the parameter values are as follows:

𝑇𝑚𝑎𝑛𝑢𝑎𝑙
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 30 hours per build;

𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑟𝑢𝑛 𝑎𝑛𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑒

 = 5 hours per build;

𝑇𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑
𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

 = 300 hours for the entire project.

361 “Implementing Automated Software Testing — Continuously Track Progress and Adjust Accordingly”, Thom Garrett

[http://www.methodsandtools.com/archive/archive.php?id=94]
362 “The ROI of Test Automation”, Michael Kelly [https://www.stickyminds.com/sites/default/files/presenta-

tion/file/2013/04STRER_W12.pdf]
363 “Cost Benefits Analysis of Test Automation”, Douglas Hoffman [https://www.cmcrossroads.com/sites/default/files/arti-

cle/file/2014/Cost-Benefit%20Analysis%20of%20Test%20Automation.pdf]
364 “Introduction to automation”, Vitaliy Zhyrytskyy.

http://www.methodsandtools.com/archive/archive.php?id=94
https://www.stickyminds.com/sites/default/files/presentation/file/2013/04STRER_W12.pdf
https://www.stickyminds.com/sites/default/files/presentation/file/2013/04STRER_W12.pdf
https://www.cmcrossroads.com/sites/default/files/article/file/2014/Cost-Benefit%20Analysis%20of%20Test%20Automation.pdf
https://www.cmcrossroads.com/sites/default/files/article/file/2014/Cost-Benefit%20Analysis%20of%20Test%20Automation.pdf

Automation advantages and disadvantages

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 241/278

Figure 3.1.b — Automation benefit ratio depending on the number of builds

 As you can see in figure 3.1.b, only by the 12th build will automation pay back the
investment, and from the 13th build it begins to bring benefits. Nevertheless, there are
areas where automation has a tangible effect almost immediately. We’ll look at them in
the next chapter.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
e

n
e

fi
t

ra
ti
o

Build

Areas of test automation high and low efficiency

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 242/278

3.1.2. Areas of test automation high and low efficiency

First, we look again at the list of tasks that automation helps to solve:

• Executing test cases that are beyond human capabilities.

• Solving routine tasks.

• Accelerating test execution.

• Releasing human resources for intellectual work.

• Increasing test coverage.

• Improving code by increasing test coverage and using specific test cases.

These tasks are most common and easiest to solve in the following cases (see
table 3.1.a).

Table 3.1.a — Cases of greatest automation applicability

Case / Task What problem automation solves

Regression testing{86}. The need to manually perform tests, the number of which steadily grows

with each build, but the whole point of which is to verify that the previ-

ously worked functionality continues to work correctly.

Installation testing{85} and

test environment setup.

A lot of repetitive routine operations to check the installer, files’ location

in the file system, the contents of configuration files, the registry entries,

etc. Preparation of the application in a specified environment and with

specified settings for basic testing.

Configuration testing{88} and

compatibility testing{88}.

Execution of the same test cases on a large set of input data, under dif-

ferent platforms and in different conditions. A classic example: there is a

configuration file, it contains a hundred parameters, each can take a

hundred values: there are 100100 variants of the configuration file — all

of them need to be tested.

The use of combinatorial

testing techniques{102} (in-

cluding domain testing{93},

{223}).

Generation of combinations of values and multiple execution of test

cases using these generated combinations as input data.

Unit testing{75}. The check of correctness of atomic code sections and elementary inter-

actions of such code sections is a practically impossible task for a hu-

man being on condition that it is necessary to do thousands of such

checks and not to make a mistake anywhere.

Integration testing{75}. Deep testing of interaction of components in a situation when a person

has almost nothing to watch, as all the processes of interest and being

tested take place at levels deeper than the user interface.

Security testing{87}. The need to check access permissions, default passwords, open ports,

vulnerabilities of current software versions, etc., i.e., to perform a very

large number of checks quickly, during which nothing can be missed,

forgotten or “misunderstood”.

Performance testing{90}. Creating a load with an intensity and accuracy inaccessible to humans.

Collecting a large set of application operation parameters at high speed.

Analyzing a large amount of data from the automation system’s logs.

Smoke test{77} for large sys-

tems.

Executing a large number of test cases, simple enough to automate, on

each build.

Applications (or their parts)

without a graphical inter-

face.

Validating console applications against large sets of command line pa-

rameters (and their combinations). Validation of applications and their

components that are not intended to interact with humans at all (web

services, servers, libraries, etc.).

Operations that are long,

routine, tedious for a per-

son and/or require a high

level of attention.

Checks that require comparison of large amounts of data, high calcula-

tion accuracy, processing a large number of files located throughout the

directory tree, a noticeably large execution time, etc. Especially when

such checks are repeated very often.

Areas of test automation high and low efficiency

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 243/278

Checking the “internal func-

tionality” of web applica-

tions (links, page accessi-

bility, etc.).

Automation of very routine operations (e.g., checking all 30’000+ links to

make sure that they all lead to corresponding pages). Automation is sim-

plified here due to the standard nature of the task — there are many off-

the-shelf solutions.

Standard, same-type func-

tionality for many projects.

Even the high complexity of primary automation in this case will pay off

due to the ease of reuse of the solution in different projects.

“Technical tasks”. Checks for the correctness of logging, database manipulation, search,

file operations, correctness of formats and contents of the generated

documents, etc.

 On the other hand, there are cases where automation is likely to make things
worse. In a nutshell, these are all the areas where human thinking is required, as well as
some list of technological areas.

In a little more detail, the list looks like this (table 3.1.b):

Table 3.1.b — Cases of least automation applicability

Case / Task What is the problem of automation

Planning{191}. The computer has not yet learned to think.

Test cases development{113}.

Writing defect reports{158}.

Analysis of test progress results, and report-

ing{191}.

Functionality that only needs (is enough) to

be tested a few times.

The cost of automation will not pay off.

Test cases that only need to be executed a

few times (if a person can execute them).

Low level of abstraction in the available auto-

mation tools.

We will have to write a lot of code, which is not only

complicated and time-consuming, but also leads to a

lot of errors in the test cases themselves.

Poor capabilities of the automation tool to log

the testing process and collect technical data

about the application and the environment.

There is a risk of getting data in the form of “something

is broken somewhere”, which doesn’t help diagnose

the problem.

Low stability of requirements. We will have to redo a lot of things, which in the case

of automation is more expensive than in the case of

manual testing.

Complex combinations of a large number of

technologies.

High complexity of automation, low reliability of test

cases, high difficulty in estimating workloads and pre-

dicting risks.

Problems with planning and/or manual test-

ing.

The automation of chaos leads to automated chaos,

but it also requires manpower. It is worth solving exist-

ing problems first, and then engaging the automation.

Time constraints and the threat of missed

deadlines.

Automation does not bring instant results. It only con-

sumes team resources (including time) at first. There is

also a universal aphorism: “it is better to test some-

thing manually than to test nothing automatically”.

Testing areas that require human evaluation

of the situation (usability testing{87}, accessi-

bility testing{87}, etc.).

Generally, it is possible to develop some algorithms

that evaluate the situation the way a human could eval-

uate it. But in practice, a living person can do it faster,

easier, more reliably, and cheaper.

Conclusion: it is worth remembering that the effect of automation comes not im-

mediately and not always. Like any expensive tool, automation, if used correctly, can
provide tangible benefits, but if used incorrectly it will only bring very tangible costs.

Automated testing features

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 244/278

3.2. Automated testing features

3.2.1. Required knowledge and skills

In many sources on the basics of test automation, you can find a scheme like the
one in figure 3.2.a — which means that test automation is a combination of programming
and testing at different scales (depending on the project and specific tasks).

Figure 3.2.a — The combination of programming and testing in test automation

 It follows a simple conclusion that a specialist in test automation must combine the
skills and knowledge of both a programmer and a tester. But the list does not end there:
the ability to administer operating systems, networks, various servers, the ability to work
with databases, understanding of mobile platforms, etc. — all of this can come in handy.
 But even if we stop only at programming and testing skills, automation also has its
own characteristics — a set of technologies. In classical manual testing, progress is grad-
ual and evolutionary — years and even decades pass between the appearance of new
approaches, gaining popularity. In programming, progress is slightly faster, but even there
specialists benefit from the consistency and similarity of technology.

The situation looks different in test automation: dozens and hundreds of technolo-
gies and approaches (both borrowed from related disciplines, and unique) appear and
disappear very quickly. The number of test automation tools is already counted in thou-
sands and continues to grow steadily.

Therefore, you can easily add a very high teachability and ability to find, study,
understand and start to apply in a very short time absolutely new information from possi-
bly earlier absolutely unknown area to the list of tester skills. It sounds a little intimidating,
but one thing is for sure: you won’t get bored.

We will discuss several of the most common technologies in “Test automation
technologies”{248} chapter.

Test automation

Program-

ming

Program-

ming
TestingTesting

Testing

Program-

ming

Features of automated test cases

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 245/278

3.2.2. Features of automated test cases

Often (and in some projects “usually”) test cases are originally written in plain hu-
man language (and, in principle, suitable for manual execution) — i.e. the usual classic
test cases that we have already considered in detail in the relevant chapter{113} are sub-
jected to automation.

Still, there are a few important points to keep in mind when developing (or refining)
test cases for further automation.

The main problem is that the computer is not a human, and the corresponding test
cases cannot operate with “intuitive descriptions”, and automation specialists quite rightly
do not want to spend time on supplementing such test cases with the technical details
necessary to perform automation — they have enough tasks of their own.
 Hence the list of recommendations for preparing test cases for automation and for
automation itself:

• The expected result in automated test cases should be described very clearly with
specific indications of its correctness. Compare:

Bad Good

…

7. The standard search page loads.

…

7. The search page loads: title = “Search

page”, there is a form with fields “input

type=’text’”, “input type=’submit’ value=’Go!’”,

there is a logo “logo.jpg” and no other graphic

elements (“img”).

• Since a test case can be automated using a variety of tools, you should describe
it, avoiding tool-specific solutions. Compare:

Bad Good

1. Click the “Search” link.

2. Use clickAndWait to synchronize the timing.

1. Click the “Search” link.

2. Wait for the page to load.

• To continue the previous point: test case can be automated to run under different
hardware and software platforms, so do not initially prescribe it something specific
to only one platform. Compare:

Bad Good

…

8. Send the application a WM_CLICK mes-

sage in any of the visible windows.

…

8. Pass the focus to any of the application

windows that are not minimized (if there are

no such windows, maximize any of the win-

dows).

9. Emulate the “left mouse button click” event

for the active window.

• One of the unexpected problems encountered so far is the timing of the automation
tool and the application under test: in cases where the situation is clear to a human,
the test automation tool may react incorrectly, “not waiting” for a certain state of
the application under test. This causes test cases to fail on a correctly working
application. Compare:

Bad Good

1. Click the “Expand data” link.

2. Select “Unknown” from the list appeared.

1. Click the “Expand data” link.

2. Wait until the “Extended data” list is loaded

(select id=”extended_data”): the list will go

into enabled state.

3. Select “Unknown” from the “Extended data”

list.

Features of automated test cases

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 246/278

• Don’t tempt an automation specialist to put constant values (so called “hardcod-
ing”) into their test cases code. If you can clearly describe in words the value and/or
meaning of a variable, do so. Compare:

Bad Good

1. Open http://application/. 1. Open the application main page.

• If possible, you should use the most universal ways to interact with the application
under test. This will significantly reduce the time of test case support in case the
set of technologies by which the application is implemented changes. Compare:

Bad Good

…

8. Send the set of events WM_KEY_DOWN,

{character}, WM_KEY_UP to the “Search”

field, as a result of which a search query

should be entered into the field.

…

8. Emulate typing the value of the “Search”

field from the keyboard (pasting from the clip-

board or direct assignment of a value is not

suitable!)

• Automated test cases should be independent. There are exceptions to any rule,
but in the vast majority of cases we should assume that we do not know which test
cases will be executed before and after our test case. Compare:

Bad Good

1. From the file created by the previous test

…

1. Set the “Use stream buffer file” checkbox to

checked.

2. Activate the data transfer process (click the

“Start” button).

3. From the buffer file read …

• It is worth remembering that an automated test case is a program, and it is worth
considering good programming practices at least at the level of absence of so-
called “magic values”, “hardcoding” and the like. Compare:

Bad Good

if ($date_value == '2015.06.18')

 {

 …

 }

if ($status = 42)

 {

 …

 }

if ($date_value == date('Y.m.d'))

 {

 …

 }

if (POWER_USER == $status)

 {

 …

 }

• It is worth carefully studying the documentation for the automation tool used, to
avoid a situation where due to an incorrectly selected command, the test case
becomes a “false positive”, i.e., successfully passes in a situation where the appli-
cation does not work correctly.

“False positive” test cases are probably the worst thing that can happen
in test automation: they give the project team a false confidence that the
application works correctly, i.e., they actually hide defects instead of de-
tecting them.

“Hardcoding”

“Magic value”

Syntax error

(= instead of ==)

Actual data Meaningful

constant

The error is corrected, plus the

constant in the comparison is to

the left of the variable

Features of automated test cases

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 247/278

Since Selenium IDE365 is the first test automation tool for many beginner testers,
here is an example with its use. Suppose that at some step of the test case we
needed to check that the checkbox with id=cb is checked. For some reason the
tester selected a wrong command, and now this step is used to check that the
checkbox allows to change its state (enabled, editable) and not that it is checked.

Bad (wrong command) Good (correct command)

… … …

verifyEditable id=cb

… … …

.

… … …

verifyChecked id=cb

… … …

• And finally, let’s consider a mistake that, for some mystical reason, a half of begin-
ner “automators” make — replacing check with action and vice versa. For example,
instead of checking the value of a field, they change the value. Or, instead of
changing the state of a checkbox, they uncheck it. There will be no examples of
good/bad here, because there is no good variant here — it simply shouldn’t be,
because it’s a gross mistake.

To summarize briefly, we note that a test case designed for automation will be
much more like a miniature “set of requirements” for the development of a small program
than a description of the correct behavior of the application under test, understandable to
humans.

And one more feature of automated test cases deserves separate consideration
— these are data sources and ways of data generation. For manually executed test cases
this problem is not so relevant, because when we execute a test case 3–5–10 times we
can also manually prepare the required number of input data variants. But if we plan to
run a test case 50–100–500 times with different input data, we will not be able to prepare
so much variants manually.

The sources of data in this situation may be:

• Random values: random numbers, random symbols, random elements from a set,
etc.

• Generation of (random) data according to an algorithm: random numbers in a given
range, strings of random length from a given range of random characters from a
certain set (for example, a string of 10 to 100 characters long, consisting only of
letters), files with increasing size by some rule (for example, 10 KB, 100 KB, 1000
KB, etc.).

• Getting data from external sources: retrieving data from a database, accessing a
web service, etc.

• Collected working data, that is, data created by real users in the course of their
real work (for example, if we wanted to develop our own text editor, the thousands
of doc(x)-files available to us and our colleagues would be such working data on
which we would test).

• Manual generation — yes, it is also relevant for automated test cases. For exam-
ple, it’s much faster to manually generate ten (or even 50–100) correct and incor-
rect e-mail addresses than to write an algorithm for generating them.

We’ll explore some of these data generation ideas in more detail in the next chap-
ter.

365 Selenium IDE. [https://www.selenium.dev/selenium-ide/]

https://www.selenium.dev/selenium-ide/

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 248/278

3.2.3. Test automation technologies

In this chapter we consider several high-level test automation technologies, each
of which, in turn, is based on a different set of technical solutions (tools, programming
languages, ways of interacting with the application under test, etc.).

Let us start with a brief overview of the evolution of high-level technologies, em-
phasizing that “old” solutions are still used (either as components of “new” ones, or inde-
pendently in some cases).

Table 3.2.a — Evolution of high-level test automation technologies

Approach Essence Advantages Disadvantages

1 Particular solutions A separate program is
written for each indi-
vidual task.

Fast, simple. There is no systema-
ticity, a lot of time is
spent on support. Al-
most impossible to re-
use.

2 Data-driven testing{91}
(DDT).

Test case input data
and expected results
are taken outside the
test case.

The same test case
can be repeated many
times with different
data.

The logic of the test
case is still strictly in-
ternally defined, and
therefore to change it,
the test case must be
rewritten.

3 Keyword-driven test-
ing{91} (KDT).

Test case behavior
specification is taken
outside the test case.

Concentration on
high-level actions.
Data and behaviors
are stored externally
and can be changed
without changing test
case code.

Complexity of per-
forming low-level op-
erations.

4 Use of frameworks. It is a “Lego” allowing
other approaches to
be used.

Power and flexibility. Relative complexity
(especially in the
framework creation).

5 Record and playback. Automation tool rec-
ords the tester’s ac-
tions and can repro-
duce them, controlling
the application under
test.

Easy, high speed test
case creation.

Extremely low quality,
linearity unsupporta-
ble test cases. Seri-
ous revision of the re-
sulting code is re-
quired.

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 249/278

6 Behavior-driven test-
ing{91} (BDT).

Development of test-
ing ideas under data
management and key-
words. The difference
is in focusing on busi-
ness scenarios with-
out performing minor
checks.

High ease of testing
high-level user sce-
narios.

Such test cases miss
a large number of
functional and non-
functional defects, and
therefore should be
supplemented by clas-
sical lower-level test
cases.

At the current stage of testing evolution, the technologies presented in table 3.2.a
can be represented hierarchically as follows (see figure 3.2.b):

Figure 3.2.b — Hierarchy of test automation technologies

Now we will consider these technologies in more detail and with examples, but first
it is worth mentioning a fundamental approach that finds application in almost any auto-
mation technology — functional decomposition.

Functional decomposition

Functional decomposition366 is a process of function determination by dividing
a function into several low-level subfunctions.

Functional decomposition is actively used both in programming and in test auto-
mation in order to simplify the solution of given tasks and to make it possible to reuse
code fragments for solving different high-level tasks.
 Let’s take an example (figure 3.2.c): it is easy to see that some of the low-level
actions (searching and filling in fields, searching and clicking buttons) are universal and
can be used to solve other problems (for example, registration, ordering, etc.).

366 Functional decomposition. The process of defining lower-level functions and sequencing relationships. [“System Engineering

Fundamentals”, Defense Acquisition University Press]

Frameworks

Record and playback

Data-driven testing

Keyword-driven testing

Data- and keyword-driven testing combination

Behavior-driven testing

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 250/278

Figure 3.2.c — Example of functional decomposition in programming and testing

Application of functional decomposition allows us not only to simplify the process
of solving tasks, but also to get rid of the need for independent implementation of actions
at the lowest level, as they, as a rule, have already been solved by the authors of appro-
priate libraries or frameworks.

Back to test automation technologies.

Particular solutions

Sometimes a tester faces a unique (in the sense that there won’t be such a task
anymore) task, for the solution of which there is no need to use powerful tools, but rather
write a small program in any of the high-level programming languages (Java, C#, PHP,
etc.) or even use the capabilities of the operating system’s batch files or similar trivial
solutions.

 The most vivid example of such a problem and its solution is the automation of the
smoke testing of our “File Converter” (the code of batch files for Windows and Linux is
given in the respective appendix{263}). This can also include tasks of the following kind:

• Prepare a database by filling it with test data (for example, adding a million users
with random names to the system).

• Prepare a file system (e.g., create a directory structure and a set of files for test
cases).

• Restart a set of servers and/or bring them to the required state.

The convenience of particular solutions is that they can be implemented quickly,
simply, “right now”. But they also have a huge disadvantage — they are “artisanal solu-
tions” that only a couple of people can use. And when a new problem appears, even if it’s
very similar to a previously solved one, you’re likely to have to automate everything all
over again.

In more detail the advantages and disadvantages of particular solutions in test au-
tomation are shown in table 3.2.b.

Authorization

Input username Input password Send data Check result

Find

the

field

Fill in

the

field

Find

the

field

Fill in

the

field

Find

the

button

Click

the

button

Find

the

label

Com-

pare the

label

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 251/278

Table 3.2.b — Advantages and disadvantages of particular solutions in test automation

Advantages Disadvantages

• Quick and easy to implement.

• Ability to use any available tools that the tester
knows how to use.

• The effect is immediate.

• Possibility to find very effective solutions when
basic tools used on a project for test automation
prove to be of little use for this particular task.

• The ability to quickly create and evaluate proto-
types before using more heavyweight solutions

• Lack of universality and, as a consequence, im-
possibility or extreme complexity of reuse (ad-
aptation for solving other problems).

• Fragmentation and inconsistency of solutions
among themselves (different approaches, tech-
nologies, tools, solution principles).

• Extremely high complexity of development, sup-
port and maintenance of such solutions (in most
cases nobody understands what and why it was
made and how it works, except the author).

• It is a sign of “artisanal production”, it is not wel-
comed in industrial software development.

Data-driven testing (DDT)

 Notice how many lines performing the same action on a set of files there are in the
batch files{263} (and we’re lucky that there aren’t too many files). After all, it would be much
more logical to prepare a list of files in some way and just submit it for processing. This
would be data-driven testing. As an example, here is a small PHP script that reads a CSV
file with test data (names of “files being compared”) and performs file comparison.

function compare_list_of_files($file_with_csv_data)

{

 $data = file($file_with_csv_data);

 foreach ($data as $line)

 {

 $parsed = str_csv($line);

 if (md5_file($parsed[0]) === md5_file($parsed[1])) {

 file_put_contents('smoke_test.log',

"OK! File '".$parsed[0]."' was processed correctly!\n");

 } else {

 file_put_contents('smoke_test.log',

"ERROR! File '".$parsed[0]."' was NOT

processed correctly!\n");

 }

 }

}

An example of a CSV file (the first two lines):

Test_REFERENCE/«Small» reference WIN1251.txt,OUT/«Small» file WIN1251.txt

Test_REFERENCE /«Medium» reference CP866.txt,OUT/«Medium» file CP866.txt

Now we just need to prepare a CSV file with any number of names of the files
being compared, and the test case code will not increase by a single byte.

Other typical examples of data-driven testing include:

• Checking authentication and authorization on a large set of usernames and pass-
words.

• Repeatedly filling in form fields with different data and checking the application
response.

• Test case execution based on data obtained through combinatorial techniques (an
example of such data is presented in the respective appendix{272}).

Data for the data-driven test cases may come from files, databases, and other
external sources, or even be generated while the test case is running (see description of
data sources for automated testing{247}).

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 252/278

The advantages and disadvantages of data-driven testing are shown in table 3.2.c.

Table 3.2.c — Advantages and disadvantages of data-driven testing

Advantages Disadvantages

• Elimination of redundancy in test case code.

• Convenient storage and human-understandable
data format.

• Possibility to assign data generation to a co-
worker with no programming skills.

• Possibility to use one and the same dataset to
perform different test cases.

• Ability to reuse the dataset to solve new prob-
lems.

• Ability to use the same dataset in one and the
same test case but implemented under different
platforms.

• If we have to change the logic of the test case
behavior, its code still has to be rewritten.

• If the format of data presentation is chosen
poorly, its comprehensibility for an untrained
specialist is greatly reduced.

• Necessity to use data generation technologies.

• High complexity of test case code in case of
complex heterogeneous data.

• The risk of test cases working incorrectly when
several test cases work with the same dataset
and it has been modified in a way that some
test cases were not designed for.

• Weak data collection capabilities in case of de-
fect detection.

• The quality of a test case depends on the pro-
fessionalism of the person implementing the test
case code.

Keyword-driven testing

 A logical development of the idea of putting the data outside the test case is to put
the commands (action specification) outside the test case. Let’s extend the example just
shown by adding keywords describing the check to be performed to the CSV file:

• moved — the file is missing in the source directory and present in the destination
directory;

• intact — the file is present in the source directory and is missing in the destination
directory;

• equals — file contents are identical.

Here is the test case code.

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 253/278

function execute_test($scenario)

{

 $data = file($scenario);

 foreach ($data as $line)

 {

 $parsed = str_csv($line);

 switch ($parsed[0])

 {

// Checking that a file was moved

 case 'moved':

 if (is_file($parsed[1]))&&(!is_file($parsed[2])) {

 file_put_contents('smoke_test.log',

"OK! '".$parsed[0]."' file was processed!\n");

 } else {

 file_put_contents('smoke_test.log',

"ERROR! '".$parsed[0]."' file was

NOT processed!\n");

 }

 break;

 // Checking that a file was NOT moved

 case 'intact':

 if (!is_file($parsed[1]))||(is_file($parsed[2])) {

 file_put_contents('smoke_test.log',

"OK! '".$parsed[0]."' file was processed!\n");

 } else {

 file_put_contents('smoke_test.log',

"ERROR! '".$parsed[0]."' file was

NOT processed!\n");

 }

 break;

 // Files comparison

 case 'equals':

 if (md5_file($parsed[1]) === md5_file($parsed[2])) {

 file_put_contents('smoke_test.log',

"OK! File '".$parsed[0]."' Was

processed correctly!\n");

 } else {

 file_put_contents('smoke_test.log',

"ERROR! File '".$parsed[0]."' Was

NOT processed correctly!\n");

 }

 break;

 }

 }

}

An example of a CSV file (the first five lines):

moved,IN/«Small» reference WIN1251.txt,OUT/«Small» file WIN1251.txt

moved,IN/«Medium» reference CP866.txt,OUT/«Medium» file CP866.txt

intact,IN/Picture.jpg,OUT/Picture.jpg

equals,Test_ETALON/«Small» reference WIN1251.txt,OUT/«Small» file WIN1251.txt

equals,Test_ETALON/«Medium» reference CP866.txt,OUT/«Medium» file CP866.txt

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 254/278

The brightest example of a test automation tool that perfectly follows the ideology
of keyword-driven testing is Selenium IDE365, in which each operation of a test case is
described as:

Action (keyword) Optional parameter 1 Optional parameter 2

 Keyword-driven testing was the turning point from which it became possible to in-
volve non-technical experts in test automation. Agree that it is not necessary to have
knowledge of programming and similar technologies in order to fill in CSV-files like the
one just shown, or (which is very often practiced) XLSX-files.

The second obvious advantage of keyword-driven testing (although it is quite typ-
ical for data-driven testing as well) is the ability to use different tools with the same sets
of commands and data. So, for example, nothing prevents us from taking the shown CSV
files and writing new logic for their processing not in PHP, but in C#, Java, Python, or
even using specialized test automation tools.

The advantages and disadvantages of keyword-driven testing are shown in table
3.2.d.

Table 3.2.d — advantages and disadvantages of keyword-driven testing

Advantages Disadvantages

• Maximum elimination of redundancy of test case
code.

• Possibility to build mini-frameworks to solve a
wide range of tasks.

• Increasing the level of abstraction of test cases
and the possibility to adapt them to work with
different technical solutions.

• Convenient storage and human-understandable
format of test case data and commands.

• The possibility to assign the description of test
case logic to an employee with no programming
skills.

• Ability to reuse for new tasks.

• Expandability (ability to add new test case be-
havior on the basis of already implemented be-
havior).

• High complexity (and possibly duration) of de-
velopment.

• High probability of errors in the test case code.

• High complexity (or inability) to perform low-
level operations if the framework does not sup-
port the corresponding commands.

• The effect of using this approach is not immedi-
ate (at first, there is a long period of develop-
ment and debugging of test cases and auxiliary
functionality).

• The implementation of this approach requires
highly qualified personnel.

• It is necessary to train personnel in the lan-
guage of keywords used in test cases.

Use of frameworks

 Test automation frameworks are nothing more than successfully developed and
popular solutions that combine the best aspects of data-driven, keyword-driven testing
and the ability to implement particular solutions at a high level of abstraction.
 There are a lot of test automation frameworks, and they are very different, but they
have a few things in common:

• high code abstraction (no need to describe each elementary action) while still be-
ing able to perform low-level actions;

• universality and transferability of the approaches used;

• sufficiently high quality of implementation (for popular frameworks).

Generally, each framework specializes in its own type of testing, level of testing,
and set of technologies. There are frameworks for unit testing (for example, the xUnit
family), web application testing (for example, the Selenium family), mobile application
testing, performance testing, etc.
 There are free and paid frameworks, designed in the form of libraries in a program-
ming language or as a familiar application with a graphical interface, highly and widely
specialized, etc.

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 255/278

Unfortunately, a detailed description of even one framework can be comparable
in volume to the entire text of this book. But if you’re interested, start with at
least studying Selenium WebDriver367.

The advantages and disadvantages of test automation frameworks are shown in
table 3.2.e.

Table 3.2.e — Advantages and disadvantages of test automation framework

Advantages Disadvantages

• Widespread distribution.

• Versatility within its set of technologies.

• Good documentation and a large community
of experts to consult with.

• High level of abstraction.

• Availability of a large set of ready-made solu-
tions and descriptions of corresponding best
practices of application of this or that frame-
work to solve certain problems.

• It takes time to study a framework.

• If you write your own framework, you get a de-
facto new software development project.

• High complexity of migration to another frame-
work.

• If support for a framework is discontinued, test
cases will sooner or later have to be rewritten
using a new framework.

• High risk of choosing the wrong framework.

Record and playback

Record and playback technology became relevant with the appearance of quite
sophisticated automation tools that provide deep interaction with the application under
test and the operating system. Usually, the use of this technology is reduced to the fol-
lowing basic steps:

1. The tester executes the test case manually, and the automation tool records all of
their actions.

2. The results of the recording are presented in the form of code in a high-level pro-
gramming language (in some tools — a specially designed language).

3. The tester edits the resulting code.
4. The final code of the automated test case is executed for testing in the automated

mode.

You may have recorded macros in office applications. This is also a record and
playback technology, only used to automate office tasks.

 The technology itself, with a fairly high complexity of internal implementation, is
very easy to use by its very nature, so it is often used to train beginners in test automation.
Its main advantages and disadvantages are shown in table 3.2.f.

367 Selenium WebDriver Documentation [https://www.selenium.dev/documentation/en/webdriver/]

https://www.selenium.dev/documentation/en/webdriver/

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 256/278

Table 3.2.f — Advantages and disadvantages of record and playback technology

Advantages Disadvantages

• Extreme ease of learning (it takes just a few
minutes to start using this technology).

• Quick creation of a “test case skeleton” by re-
cording the key actions with the application be-
ing tested.

• Automatic collection of technical data about
the application being tested (identifiers and
locators for elements, labels, names, etc.).

• Automation of routine actions (filling in fields,
clicking links, buttons, etc.).

• In some cases, it can be used by testers with-
out programming skills.

• Linearity of test cases: there will be no loops,
conditions, function calls and other phenomena
typical of programming and automation.

• Recording unnecessary actions (both just erro-
neous accidental actions of the tester with the
application under test, and (in many cases)
switching to other applications and working with
them).

• So-called “hardcoding”, i.e., writing specific val-
ues inside the test case code that will require
manual revision to switch the test case to data-
driven testing technology.

• Inconvenient variable names, inconvenient test
case code formatting, lack of comments and
other drawbacks that complicate test case
maintenance in the future.

• Low reliability of test cases due to the lack of
exception handling, condition checking, etc.

Thus, the technology of record and playback is not a universal tool for all occasions
and cannot replace manual work on writing automated test cases code, but in some situ-
ations can greatly accelerate the solution of simple routine tasks.

Behavior-driven testing

The automation technologies considered above focus as much as possible on
technical aspects of application behavior and have one common drawback: they are dif-
ficult to test high-level user scenarios (which is exactly what customers and end users are
interested in). This gap is addressed by behavior-driven testing, which focuses not on
specific technical details but rather on overall application actions in solving typical user
tasks.

This approach not only simplifies the execution of a whole class of checks, but also
facilitates interaction between developers, testers, business analysts and the customer,
since the approach is based on a very simple formula “given-when-then”:

• “Given” describes the initial situation in which the user finds himself in the context
of working with the application.

• “When” describes a set of user actions in a given situation.

• “Then” describes the expected behavior of the application.

Let’s take our “File Converter” as an example:

• Given, the application is running.

• When I place a file of a supported size and format in the input directory.

• Then the file is moved to the output directory and the text inside the file is con-
verted to UTF-8.

This principle of test description allows even project participants without deep tech-
nical background to participate in test case development and analysis, and for automation
specialists it is easier to create automated test case code, because this form is standard,
unified and yet provides enough information to write high-level test cases. There are spe-
cial technical solutions (e.g., Behat, JBehave, NBehave, Cucumber) that simplify imple-
mentation of behavior-driven testing.

The advantages and disadvantages of behavior-driven testing are shown in table
3.2.g.

Test automation technologies

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 257/278

Table 3.2.g — advantages and disadvantages of behavior-driven testing

Advantages Disadvantages

• Focusing on end-user needs.

• Simplification of cooperation between different
specialists.

• Easy and fast creation and analysis of test
cases (which, in turn, increases the net effect of
automation and reduces overhead costs).

• High-level behavioral test cases miss a lot of
detail, and therefore may not detect some of the
problems in the application or do not provide the
necessary information to understand the de-
tected problem.

• In some cases, the information provided in the
behavioral test case is not enough for its direct
automation.

Classical test automation technologies also include Test-driven Development
(TDD) with its Red-Green-Refactor principle, Behavior-driven Development,
Unit Testing, etc. But these technologies are already on the border of testing
and development, so they are beyond the scope of this book.

Automation beyond direct testing tasks

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 258/278

3.3. Automation beyond direct testing tasks

Throughout this chapter, we have looked at how automation can help in the crea-
tion and execution of test cases. But all the same principles can be transferred to the rest
of a tester’s work, in which there are also long and tedious tasks, routine tasks, or tasks
that require the utmost attention but do not involve intellectual work. All of the above can
also be automated.

Yes, it requires technical knowledge and initial effort and time to implement, but in
the long run this approach can save up to several hours per day. The most typical solu-
tions in this area are:

• Using batch files to perform sequences of operations, from copying several files
from different directories to deploying a test environment. Even within the scope of
the repeatedly considered examples on “File Converter” testing, launching an ap-
plication through a batch file, in which all the necessary parameters are specified,
saves you from having to enter them manually every time.

• Data generation and layout using the capabilities of office applications, databases,
small programs in high-level programming languages. There is no sadder picture
than a tester manually numbering three hundred lines in a table.

• Preparation and design of technical sections for reports. You can spend hours on
scrupulous scrolling through the logs of some automation tool, or you can write a
script that will produce a document with accurate tables and graphs in a moment,
and all you need to do is to run this script and attach the results of its work to the
report.

• Manage your workplace: create and check backups, install updates, clean up disks
from outdated data, etc., etc. The computer can (and should!) do all this by itself,
without human intervention.

• Mail sorting and processing. Even sorting incoming mail into subfolders is guaran-
teed to take you several minutes a day. Assuming that setting up special rules in
your mail client will save you half an hour per week, you could save a day or so
over the course of a year.

• Virtualization as a way to get rid of the need to install and configure the necessary
set of programs every time. If you have several pre-configured virtual machines, it
takes seconds to launch them. And if you need to troubleshoot a failure, deploying
a virtual machine from a backup replaces the entire process of installing and con-
figuring the operating system and all the necessary software from scratch.

In other words, automation objectively facilitates the life of any IT specialist, as well
as broadens their horizons, technical skills and contributes to professional growth.

Chapter 4: appendixes

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 259/278

Chapter 4: appendixes

4.1. Tester’s career368

368 Full-scale picture is available here [https://svyatoslav.biz/wp-pics/testing_career_path_eng.png]

Test automation

Functional testing

Basic self-study

English

Testing

basics

Reading professional

literature

Documentation and

requirements testing

Test cases

creation

Defect-hunting and

defect-reporting

Test results

reporting

Functional and

domain testing

Workload

estimation

Test planning

basics

Time

management

Testing types

Testing methods and

methodologies

Communication

skills

Requirements

management

systems usage

Test management

systems usage

Bug-tracking

systems usage

Networks

Databases and

SQL

Different OSes

Web applications

testing

Programming

basics

Automated testing

basics

Java/C#/

etc.programming
Programming

Business

analysis

Project

experience

Performance

testing

Automated testing

tools

Further development

and/or specialization

Experienced

specialist

Manager

Resource

management

Project

management

Expert

Solutions

architecture

TestNG
Unit

testing

Desktop applications

testing

Special

technologies TDD

BDD

DDT

Tool development

and adaptation

Working with office

applications

Basic understanding

of the chosen IT

career

Basic self-study may take different periods of time. In

general, it is advisable to devote the first 2-3 years of

university to it.

A successful basic self-study allows you to qualify for

the training and absorb the training program.

It takes six months to a year to learn functional

testing.

During this time, a complete set of technical and

specific skills should be acquired in order for a

specialist to start working as a tester.

Since many people without sufficient technical

background come into testing, the relevant topics

should be given special attention.

Test automation study usually takes six months to a

year to be completed.

It is assumed that by this point, the newcomer has

already studied functional testing and has at least a

confident basic knowledge of programming. Test

automation involves programming as part of daily

activities.

Particular attention is paid to tools and specific

technologies at this stage of training.

After a successful employment, a professional builds

up their skills over several years, gaining more and

more in-depth and extensive experience to enable

them both to carry out their direct duties more

effectively and to consider further career prospects.

Further career development involves either digging

deeper into a technical area and becoming an expert

in a particular field, or moving into project or resource

management.

There comes a point of choice: start working as a

functional tester, switch to studying business

analysis, or continue studying testing (in the field of

automation).

Knowledge and skills:

1. Fluent use of Word, Excel.

2. Fluent computer skills at confident user level

(ability to install and set up OS, network, necessary

software).

3. Formed idea of tester s work, desire to be engaged

in this work.

4. English skills at the level of fluent reading of

English documentation.

Main skills:

1. Analysis of technical documentation.

2. Creation of checklists.

3. Development of test cases and test scenarios.

4. Finding and efficiently recording the detected

defects.

5. Generating individual test report fragments.

6. Using auxiliary tools.

7. Understanding of methods and types of testing,

ability to apply them adequately to the situation.

Additional skills:

1. Ability to conduct live business communication,

and use mail and other means of communication.

2. Ability to plan working time and estimate the

workload.

3. Understanding of computer networking principles.

4. Understanding of database basics, ability to write

trivial queries.

5. Ability to work with different versions of Windows

and *nix operating systems.

Main skills:

1. Ability to program at the level sufficient for the

creation of automated tests.

2. Understanding of specific technologies and tools,

ability to select and apply them to the task at hand.

3. Deep understanding of the principles of software

technologies.

Additional skills:

1. Ability to plan, implement and evaluate the

experiment results.

2. Ability to optimize tests and test scenarios.

3. Ability to use supporting software tools used by the

project team to automate daily tasks.

4. Understanding and ability to use multiple high-level

programming languages, layout languages and

technologies.
Web applications and

web services testing

Mobile applications

testing

JUnit

JMock NUnit

SilkTest TestComplete

QTP AutoIt

Selenium RC

& Grid

HtmlUnit

Selenium IDE
Selenium

Web Driver

Soap UI

Jaxb &

Jax-ws

Selenium iOS Driver

Selenium Android Driver
Java

C#

Python

JavaScript

VBScript

Ruby

Scala

4Test

JScript

XML

HTML

WSDL

SOAP

SQL

Cucumber

jBehave

https://svyatoslav.biz/wp-pics/testing_career_path_eng.png

Tasks comments

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 260/278

4.2. Tasks comments

Task Comment

1.1.a{6} Answer: about 2e+42 years, i.e., about 1.66e+32 times the current age of
the Universe.
Solution: (264 * 264 * 264) / (100’000’000 * 31536000seconds per year (approxi-

mately)) = 1.9904559029003934436313386045179e+42 years.

1.1.b{8} To get acquainted with the widest range of testing terminology, it is rec-
ommended to carefully study the ISQB Glossary:
https://glossary.istqb.org/en/search/

1.2.a{9} For a very rough assessment of your level of English, you can use a wide
range of online tests, such as this one:
http://www.cambridgeenglish.org/test-your-english/

1.3.a{11} Please write down your questions. This is not a joke. There are hundreds
of cases in which you hear something like, “I wanted to ask you this and
that, and I forgot ”.

2.1.a{25} If you feel there is much you don’t understand or have forgotten, use this
as a source http://istqbexamcertification.com/what-are-the-software-de-
velopment-models and try to make something like your own outline.

2.2.a{33} Have you considered not only the possibility of your own shortcomings,
but also objective risk factors when compiling the list? For example, the
price of a certain product has gone up, or some product is out of stock.
Have you thought through who is authorized to make the decision in a sit-
uation where “consulting with everyone” is impossible or takes too long?

2.2.b{52} When making a list of questions, it is advisable to rely on two thoughts:
a) How to make a product that best meets the customer’s needs.
b) How to implement and test what the customer requires.
Ignoring any of these points can lead either to the creation of a useless
product, or to working in a situation of uncertainty, when it is still not en-
tirely clear what to develop and how to test it.

2.2.c{55} After you have completed this task, check yourself using the material in
the “Common mistakes in requirements analysis and testing”{61} chapter. If
you find any of the mistakes listed there in your work, correct them.

2.2.d{60} To continue the attention test: have you noticed any typos in the text of
this book? Believe me, there are some.

2.2.e{60} As your requirements set becomes more detailed, your questions may be-
come more and more specific. Also remember that it is worth keeping the
big picture of requirements in mind all the time, because at a low level, a
problem may emerge that affects a large part of the requirements and af-
fects the whole project.

2.3.a{74} After you run out of your own ideas, you can resort to a little trickery:
search the Internet (and books that are referenced extensively) for de-
scriptions of various types of testing, study their applicability, and com-
plete your list based on your knowledge.

2.4.a{109} Once you’ve compiled a list of checklist-specific good requirements prop-
erties, think about what properties the checklist should have in order to be
universal (i.e., so that it can be reused on another project).

2.4.b{112} What were your revisions to the existing checklist based on? Can you ar-
gue the advantages of your ideas?

https://glossary.istqb.org/en/search/
http://www.cambridgeenglish.org/test-your-english/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/

Tasks comments

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 261/278

2.4.c{127} Perhaps one of your fellow testers can recommend a particular tool based
on their own experience. If you do not have such a source of information,
get a list of relevant software from Wikipedia and/or numerous reviews on
the Internet.

2.4.d{130} How high a priority will this test case be? If it detects an error in the appli-
cation, what priority would you assign to it? (Note: the whole idea of “re-
conversion” is meaningless, since reconverting a file that has been con-
verted to UTF8 is essentially no different than simply converting the origi-
nal file to this encoding. Therefore, you can remove this entire test case
by adding a UTF8 encoded file to one of the other test cases for the con-
version input).

2.4.e{143} Have you noticed any differences in the recommendations for writing test
cases and testing in general for projects using “classic” and agile method-
ologies?

2.4.f{145} If you know some programming language well, you can write a program
that automates the checks presented in these batch files.

2.4.g{148} Can you make your automated checks more versatile? Can you take the
data sets out of the command files? And the logic of data processing?

2.5.a{162} Answer: The report refers to requirement DS-2.1, which says that pro-
cessed files are placed in the destination directory, not moved there. Of
course, this is a defect in the requirements, but if you approach strictly for-
mally, the requirements nowhere say to move the processed file, and
therefore the report on application defect can be closed, although the re-
peated processing of the same file is clearly contrary to common sense.
However! It may turn out that the customer meant that the application
should create in the destination directory processed copies of all files from
the source directory... and here you have to rewrite a lot of things, be-
cause there is a significant difference between “process and move all
files” and “process and copy all new files, without affecting any previously
processed files again” (up to having to calculate and store checksums of
all files, since there is no guarantee that some file in the destination direc-
tory has not been replaced by the eponymous one).

2.5.b{176} Perhaps one of your fellow testers can recommend a particular tool from
their own experience. If you do not have such a source of information, get
a list of relevant software from Wikipedia and/or numerous reviews on the
Internet.

2.6.a{202} You can start by looking at this example:
http://www.softwaretestingclass.com/wp-content/uploads/2013/01/Sam-
ple-Test-Plan-Template.pdf

2.6.c{215} What distractions reduced your productivity? What took you the longest
(thinking over test cases, layout, or anything else)? How do you think your
productivity would increase or decrease if you spent hours or even days
studying project requirements?

2.7.a{217} Answer: because here we would already be testing the actual interaction
of the two parameters. This is a good idea, but it goes beyond testing
separate isolated functionality.

http://www.softwaretestingclass.com/wp-content/uploads/2013/01/Sample-Test-Plan-Template.pdf
http://www.softwaretestingclass.com/wp-content/uploads/2013/01/Sample-Test-Plan-Template.pdf

Tasks comments

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 262/278

2.7.b{221} The most effective way to improve the list presented is... programming. If
you know a programming language well enough, write a small program
that just gets the name of the directory from the command line and
checks if it exists and is accessible. And then test your program and com-
plete the list presented in the task with ideas that come to you in the pro-
cess of testing.

2.7.c{229} In the column “Permissions” sometimes there are no values, because if
there is no directory, the concept of “permissions” does not apply to it. As
for unnecessary checks, for example, in lines 18 and 22 paths are given
with “/” as a separator of directory names, which is typical for Linux, but
not for Windows (although it will work in most cases). You can leave such
checks, but you can also remove them as low-priority.

2.7.d{232} What if, besides complexity, we also estimate the time to develop test
cases and perform testing? And then consider the need to repeat the
same tests repeatedly?

2.7.e{233} You can use the example in figure 2.5.e{162} to describe the defect as a
template for solving this problem.

2.7.f{236} Answer: This is a bad solution, because now the application will skip di-
rectory names like “/////C:/dir/name/”. Of course, such a directory will not
be found when checking its existence, but the data filtration will be broken
anyway. But the name “/” will still turn into an empty string.

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 263/278

4.3. Windows and Linux batch files to automate smoke testing

CMD-script for Windows

rem Switching console code table

rem (so that special characters in commands are handled correctly):

chcp 65001

rem Deleting the log file from the last run:

del smoke_test.log /Q

rem Clearing the application input directory:

del IN*.* /Q

rem Application startup:

start php converter.php IN OUT converter.log

rem Placing test files in the application input directory:

copy Test_IN*.* IN > nul

rem Timeout for 10 seconds for the application to have time to process files:

timeout 10

rem Application shutdown:

taskkill /IM php.exe

rem ===

rem Checking the presence of files in the output directory,

rem which are to be processed,

rem and the absence of files that should not be processed:

echo Processing test: >> smoke_test.log

IF EXIST "OUT\«Small» file WIN1251.txt" (

 echo OK! '«Small» file WIN1251.txt' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file WIN1251.txt' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Medium» file CP866.txt" (

 echo OK! '«Medium» file CP866.txt' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file CP866.txt' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Large» file KOI8R.txt" (

 echo OK! '«Large» file KOI8R.txt' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file KOI8R.txt' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Large» file win-1251.html" (

 echo OK! '«Large» file win-1251.html' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file win-1251.html' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Small» file cp-866.html" (

 echo OK! '«Small» file cp-866.html' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file cp-866.html' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Medium» file koi8-r.html" (

 echo OK! '«Medium» file koi8-r.html' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file koi8-r.html' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Medium» file WIN_1251.md" (

 echo OK! '«Medium» file WIN_1251.md' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file WIN_1251.md' file was NOT processed! >> smoke_test.log

)

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 264/278

IF EXIST "OUT\«Large» file CP_866.md" (

 echo OK! '«Large» file CP_866.md' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file CP_866.md' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\«Small» file KOI8_R.md" (

 echo OK! '«Small» file KOI8_R.md' file was processed! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file KOI8_R.md' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\Too big.txt" (

 echo ERROR! 'Too big' file was processed! >> smoke_test.log

) ELSE (

 echo OK! 'Too big' file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\Picture.jpg" (

 echo ERROR! Picture file was processed! >> smoke_test.log

) ELSE (

 echo OK! Picture file was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\Picture as TXT.txt" (

 echo OK! Picture file with TXT extension was processed! >> smoke_test.log

) ELSE (

 echo ERROR! Picture file with TXT extension was NOT processed! >> smoke_test.log

)

IF EXIST "OUT\Empty file.md" (

 echo OK! Empty was processed! >> smoke_test.log

) ELSE (

 echo ERROR! Empty file was NOT processed! >> smoke_test.log

)

rem ===

rem ===

rem Checks the deletion of files from the input directory,

rem that should be processed,

rem and the non-deletion of files that should not be processed:

echo. >> smoke_test.log

echo Moving test: >> smoke_test.log

IF NOT EXIST "IN\«Small» file WIN1251.txt" (

 echo OK! '«Small» file WIN1251.txt' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file WIN1251.txt' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Medium» file CP866.txt" (

 echo OK! '«Medium» file CP866.txt' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file CP866.txt' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Large» file KOI8R.txt" (

 echo OK! '«Large» file KOI8R.txt' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file KOI8R.txt' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Large» file win-1251.html" (

 echo OK! '«Large» file win-1251.html' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file win-1251.html' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Small» file cp-866.html" (

 echo OK! '«Small» file cp-866.html' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file cp-866.html' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Medium» file koi8-r.html" (

 echo OK! '«Medium» file koi8-r.html' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file koi8-r.html' file was NOT moved! >> smoke_test.log

)

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 265/278

IF NOT EXIST "IN\«Medium» file WIN_1251.md" (

 echo OK! '«Medium» file WIN_1251.md' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Medium» file WIN_1251.md' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Large» file CP_866.md" (

 echo OK! '«Large» file CP_866.md' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Large» file CP_866.md' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\«Small» file KOI8_R.md" (

 echo OK! '«Small» file KOI8_R.md' file was moved! >> smoke_test.log

) ELSE (

 echo ERROR! '«Small» file KOI8_R.md' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\Too big.txt" (

 echo ERROR! 'Too big' file was moved! >> smoke_test.log

) ELSE (

 echo OK! 'Too big' file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\Picture.jpg" (

 echo ERROR! Picture file was moved! >> smoke_test.log

) ELSE (

 echo OK! Picture file was NOT moved! >> smoke_test.log

)

IF NOT EXIST "IN\Picture as TXT.txt" (

 echo OK! Picture file with TXT extension was moved! >> smoke_test.log

) ELSE (

 echo ERROR! Picture file with TXT extension was NOT moved! >> smoke_test.log

)

rem ===

cls

rem ===

rem Checking the conversion of files by comparing

rem the results of the application's work with the reference files:

echo. >> smoke_test.log

echo Comparing test: >> smoke_test.log

:st1

fc "Test_REFERENCE\«Small» reference WIN1251.txt" "OUT\«Small» file WIN1251.txt" /B > nul

IF ERRORLEVEL 1 GOTO st1_fail

echo OK! File '«Small» file WIN1251.txt' was processed correctly! >> smoke_test.log

GOTO st2

:st1_fail

echo ERROR! File '«Small» file WIN1251.txt' was NOT processed correctly! >> smoke_test.log

:st2

fc "Test_REFERENCE\«Medium» reference CP866.txt" "OUT\«Medium» file CP866.txt" /B > nul

IF ERRORLEVEL 1 GOTO st2_fail

echo OK! File '«Medium» file CP866.txt' was processed correctly! >> smoke_test.log

GOTO st3

:st2_fail

echo ERROR! File '«Medium» file CP866.txt' was NOT processed correctly! >> smoke_test.log

:st3

fc "Test_REFERENCE\«Large» reference KOI8R.txt" "OUT\«Large» file KOI8R.txt" /B > nul

IF ERRORLEVEL 1 GOTO st3_fail

echo OK! File '«Large» file KOI8R.txt' was processed correctly! >> smoke_test.log

GOTO st4

:st3_fail

echo ERROR! File '«Large» file KOI8R.txt' was NOT processed correctly! >> smoke_test.log

:st4

fc "Test_REFERENCE\«Large» reference win-1251.html" "OUT\«Large» file win-1251.html" /B > nul

IF ERRORLEVEL 1 GOTO st4_fail

echo OK! File '«Large» file win-1251.html' was processed correctly! >> smoke_test.log

GOTO st5

:st4_fail

echo ERROR! File '«Large» file win-1251.html' was NOT processed correctly! >> smoke_test.log

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 266/278

:st5

fc "Test_REFERENCE\«Small» reference cp-866.html" "OUT\«Small» file cp-866.html" /B > nul

IF ERRORLEVEL 1 GOTO st5_fail

echo OK! File '«Small» file cp-866.html' was processed correctly! >> smoke_test.log

GOTO st6

:st5_fail

echo ERROR! File '«Small» file cp-866.html' was NOT processed correctly! >> smoke_test.log

:st6

fc "Test_REFERENCE\«Medium» reference koi8-r.html" "OUT\«Medium» file koi8-r.html" /B > nul

IF ERRORLEVEL 1 GOTO st6_fail

echo OK! File '«Medium» file koi8-r.html' was processed correctly! >> smoke_test.log

GOTO st7

:st6_fail

echo ERROR! File '«Medium» file koi8-r.html' was NOT processed correctly! >> smoke_test.log

:st7

fc "Test_REFERENCE\«Medium» reference WIN_1251.md" "OUT\«Medium» file WIN_1251.md" /B > nul

IF ERRORLEVEL 1 GOTO st7_fail

echo OK! File '«Medium» file WIN_1251.md' was processed correctly! >> smoke_test.log

GOTO st8

:st7_fail

echo ERROR! File '«Medium» file WIN_1251.md' was NOT processed correctly! >> smoke_test.log

:st8

fc "Test_REFERENCE\«Large» reference CP_866.md" "OUT\«Large» file CP_866.md" /B > nul

IF ERRORLEVEL 1 GOTO st8_fail

echo OK! File '«Large» file CP_866.md' was processed correctly! >> smoke_test.log

GOTO st9

:st8_fail

echo ERROR! File '«Large» file CP_866.md' was NOT processed correctly! >> smoke_test.log

:st9

fc "Test_REFERENCE\«Small» reference KOI8_R.md" "OUT\«Small» file KOI8_R.md" /B > nul

IF ERRORLEVEL 1 GOTO st9_fail

echo OK! File '«Small» file KOI8_R.md' was processed correctly! >> smoke_test.log

GOTO st10

:st9_fail

echo ERROR! File '«Small» file KOI8_R.md' was NOT processed correctly! >> smoke_test.log

:st10

fc "Test_REFERENCE\Empty file.md" "OUT\Empty file.md" /B > nul

IF ERRORLEVEL 1 GOTO st10_fail

echo OK! File 'Empty file.md' was processed correctly! >> smoke_test.log

GOTO end

:st10_fail

echo ERROR! File 'Empty file.md' was NOT processed correctly! >> smoke_test.log

:end

echo WARNING! File 'Picture as TXT.txt' has NO reference decision, and it's OK for this file to be

corrupted. >> smoke_test.log

rem ===

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 267/278

Bash-script for Linux

#!/bin/bash

Deleting the log file from the last run:

rm -f smoke_test.log

Clearing the application input directory:

rm -r -f IN/*

Application startup:

php converter.php IN OUT converter.log &

Placing test files in the application input directory:

cp Test_IN/* IN/

Timeout for 10 seconds for the application to have time to process files:

sleep 10

Application shutdown:

killall php

===

Checking the presence of files in the output directory, which are to be processed,

and the absence of files that should not be processed:

echo "Processing test:" >> smoke_test.log

if [-f "OUT/«Small» file WIN1251.txt"]

then

 echo "OK! '«Small» file WIN1251.txt' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Small» file WIN1251.txt' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Medium» file CP866.txt"]

then

 echo "OK! '«Medium» file CP866.txt' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file CP866.txt' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Large» file KOI8R.txt"]

then

 echo "OK! '«Large» file KOI8R.txt' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Large» file KOI8R.txt' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Large» file win-1251.html"]

then

 echo "OK! '«Large» file win-1251.html' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Large» file win-1251.html' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Small» file cp-866.html"]

then

 echo "OK! '«Small» file cp-866.html' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Small» file cp-866.html' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Medium» file koi8-r.html"]

then

 echo "OK! '«Medium» file koi8-r.html' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file koi8-r.html' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Medium» file WIN_1251.md"]

then

 echo "OK! '«Medium» file WIN_1251.md' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file WIN_1251.md' file was NOT processed!" >> smoke_test.log

fi

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 268/278

if [-f "OUT/«Large» file CP_866.md"]

then

 echo "OK! '«Large» file CP_866.md' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Large» file CP_866.md' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/«Small» file KOI8_R.md"]

then

 echo "OK! '«Small» file KOI8_R.md' file was processed!" >> smoke_test.log

else

 echo "ERROR! '«Small» file KOI8_R.md' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/Too big file.txt"]

then

 echo "ERROR! 'Too big' file was processed!" >> smoke_test.log

else

 echo "OK! 'Too big' file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/Picture.jpg"]

then

 echo "ERROR! Picture file was processed!" >> smoke_test.log

else

 echo "OK! Picture file was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/Picture as TXT.txt"]

then

 echo "OK! Picture file with TXT extension was processed!" >> smoke_test.log

else

 echo "ERROR! Picture file with TXT extension was NOT processed!" >> smoke_test.log

fi

if [-f "OUT/Empty file.md"]

then

 echo "OK! Empty file was processed!" >> smoke_test.log

else

 echo "ERROR! Empty file was NOT processed!" >> smoke_test.log

fi

===

===

Checks the deletion of files from the input directory, that should be processed,

and the non-deletion of files that should not be processed:

echo "" >> smoke_test.log

echo "Moving test:" >> smoke_test.log

if [! -f "IN/«Small» file WIN1251.txt"]

then

 echo "OK! '«Small» file WIN1251.txt' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Small» file WIN1251.txt' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Medium» file CP866.txt"]

then

 echo "OK! '«Medium» file CP866.txt' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file CP866.txt' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Large» file KOI8R.txt"]

then

 echo "OK! '«Large» file KOI8R.txt' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Large» file KOI8R.txt' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Large» file win-1251.html"]

then

 echo "OK! '«Large» file win-1251.html' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Large» file win-1251.html' file was NOT moved!" >> smoke_test.log

fi

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 269/278

if [! -f "IN/«Small» file cp-866.html"]

then

 echo "OK! '«Small» file cp-866.html' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Small» file cp-866.html' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Medium» file koi8-r.html"]

then

 echo "OK! '«Medium» file koi8-r.html' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file koi8-r.html' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Medium» file WIN_1251.md"]

then

 echo "OK! '«Medium» file WIN_1251.md' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Medium» file WIN_1251.md' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Large» file CP_866.md"]

then

 echo "OK! '«Large» file CP_866.md' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Large» file CP_866.md' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/«Small» file KOI8_R.md"]

then

 echo "OK! '«Small» file KOI8_R.md' file was moved!" >> smoke_test.log

else

 echo "ERROR! '«Small» file KOI8_R.md' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/Too big file.txt"]

then

 echo "ERROR! 'Too big' file was moved!" >> smoke_test.log

else

 echo "OK! 'Too big' file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/Picture.jpg"]

then

 echo "ERROR! Picture file was moved!" >> smoke_test.log

else

 echo "OK! Picture file was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/Picture as TXT.txt"]

then

 echo "OK! Picture file with TXT extension was moved!" >> smoke_test.log

else

 echo "ERROR! Picture file with TXT extension was NOT moved!" >> smoke_test.log

fi

if [! -f "IN/Empty file.md"]

then

 echo "OK! Empty file was moved!" >> smoke_test.log

else

 echo "ERROR! Empty file was NOT moved!" >> smoke_test.log

fi

===

clear

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 270/278

===

Checking the conversion of files by comparing

the results of the application's work with the reference files:

echo "" >> smoke_test.log

echo "Comparing test:" >> smoke_test.log

if cmp -s "Test_REFERENCE/«Small» reference WIN1251.txt" "OUT/«Small» file WIN1251.txt"

then

 echo "OK! File '«Small» file WIN1251.txt' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Small» file WIN1251.txt' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Medium» reference CP866.txt" "OUT/«Medium» file CP866.txt"

then

 echo "OK! File '«Medium» file CP866.txt' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Medium» file CP866.txt' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Large» reference KOI8R.txt" "OUT/«Large» file KOI8R.txt"

then

 echo "OK! File '«Large» file KOI8R.txt' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Large» file KOI8R.txt' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Large» file win-1251.html" "OUT/«Large» file win-1251.html"

then

 echo "OK! File '«Large» file win-1251.html' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Large» file win-1251.html' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Small» reference cp-866.html" "OUT/«Small» file cp-866.html"

then

 echo "OK! File '«Small» file cp-866.html' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Small» file cp-866.html' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Medium» reference koi8-r.html" "OUT/«Medium» file koi8-r.html"

then

 echo "OK! File '«Medium» file koi8-r.html' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Medium» file koi8-r.html' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Medium» reference WIN_1251.md" "OUT/«Medium» file WIN_1251.md"

then

 echo "OK! File '«Medium» file WIN_1251.md' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Medium» file WIN_1251.md' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Large» reference CP_866.md" "OUT/«Large» file CP_866.md"

then

 echo "OK! File '«Large» file CP_866.md' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Large» file CP_866.md' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/«Small» reference KOI8_R.md" "OUT/«Small» file KOI8_R.md"

then

 echo "OK! File '«Small» file KOI8_R.md' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File '«Small» file KOI8_R.md' was NOT processed correctly!" >> smoke_test.log

fi

if cmp -s "Test_REFERENCE/Empty file.md" "OUT/Empty file.md"

then

 echo "OK! File 'Empty file.md' was processed correctly!" >> smoke_test.log

else

 echo "ERROR! File 'Empty file.md' was NOT processed correctly!" >> smoke_test.log

fi

echo "WARNING! File 'Picture as TXT.txt' has NO reference decision, and it's OK for this file to

be corrupted." >> smoke_test.log

===

Windows and Linux batch files to automate smoke testing

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 271/278

An example of execution results (on one of the first builds, containing
many defects)

Processing test:

OK! '«Small» file WIN1251.txt' file was processed!

OK! '«Medium» file CP866.txt' file was processed!

OK! '«Large» file KOI8R.txt' file was processed!

OK! '«Large» file win-1251.html' file was processed!

OK! '«Small» file cp-866.html' file was processed!

OK! '«Medium» file koi8-r.html' file was processed!

OK! '«Medium» file WIN_1251.md' file was processed!

OK! '«Large» file CP_866.md' file was processed!

OK! '«Small» file KOI8_R.md' file was processed!

OK! 'Too big' file was NOT processed!

OK! Picture file was NOT processed!

OK! Picture file with TXT extension was processed!

Moving test:

ERROR! '«Small» file WIN1251.txt' file was NOT moved!

ERROR! '«Medium» file CP866.txt' file was NOT moved!

ERROR! '«Large» file KOI8R.txt' file was NOT moved!

ERROR! '«Large» file win-1251.html' file was NOT moved!

ERROR! '«Small» file cp-866.html' file was NOT moved!

ERROR! '«Medium» file koi8-r.html' file was NOT moved!

ERROR! '«Medium» file WIN_1251.md' file was NOT moved!

ERROR! '«Large» file CP_866.md' file was NOT moved!

ERROR! '«Small» file KOI8_R.md' file was NOT moved!

OK! 'Too big' file was NOT moved!

OK! Picture file was NOT moved!

ERROR! Picture file with TXT extension was NOT moved!

Comparing test:

ERROR! File '«Small» file WIN1251.txt' was NOT processed correctly!

ERROR! File '«Medium» file CP866.txt' was NOT processed correctly!

ERROR! File '«Large» file KOI8R.txt' was NOT processed correctly!

ERROR! File '«Large» file win-1251.html' was NOT processed correctly!

ERROR! File '«Small» file cp-866.html' was NOT processed correctly!

ERROR! File '«Medium» file koi8-r.html' was NOT processed correctly!

ERROR! File '«Medium» file WIN_1251.md' was NOT processed correctly!

ERROR! File '«Large» file CP_866.md' was NOT processed correctly!

ERROR! File '«Small» file KOI8_R.md' was NOT processed correctly!

OK! File 'Empty file.md' was processed correctly!

WARNING! File 'Picture as TXT.txt' has NO reference decision, and it's OK for this file to be

corrupted.

Pairwise testing data sample

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 272/278

4.4. Pairwise testing data sample

Location / length /
value / character
combination / re-

served or free

Exist-
ence

Permissions OS Family Encod-
ings

1. X:\ Yes To the directory and its con-
tents

Windows 64 bit UTF8

2. smb://host/dir No

Linux 32 bit UTF16

3. ../dir Yes Neither to the directory nor to
its contents

Linux 64 bit OEM

4. [257 bytes for Win-
dows only]

Yes To the directory only Windows 64 bit OEM

5. smb://host/dir/ Yes To the directory and its con-
tents

Linux 64 bit UTF8

6. nul Yes Neither to the directory nor to
its contents

Windows 64 bit OEM

7. \\ No

Linux 64 bit UTF16

8. /dir Yes Neither to the directory nor to
its contents

Linux 32 bit OEM

9. ./dir/ No

Linux 32 bit OEM

10. ./dir No To the directory and its con-
tents

Linux 64 bit UTF8

11. smb://host/dir Yes To the directory only Linux 64 bit UTF8

12. \\host\dir\ Yes To the directory and its con-
tents

Linux 32 bit UTF8

13. host:/dir No

Windows 32 bit UTF8

14. .\dir\ No

Windows 64 bit UTF8

15. [0 characters] No

Windows 32 bit UTF16

16. [4097 bytes for
Linux only]

No

Linux 32 bit UTF16

17. ..\dir\ No

Windows 32 bit UTF16

18. “/spaces and
Кирилица/”

Yes To the directory and its con-
tents

Windows 32 bit OEM

19. smb://host/dir/ Yes To the directory only Linux 32 bit OEM

20. nul Yes

Windows 32 bit UTF8

21. “/spaces and
Кирилица”

No

Linux 32 bit OEM

22. host:/dir/ Yes To the directory only Windows 64 bit UTF8

23. ../dir No

Windows 64 bit UTF16

24. ./dir/ No

Linux 64 bit UTF16

25. [257 bytes for Win-
dows only]

No

Windows 32 bit UTF16

26. “/spaces and
Кирилица/”

No Linux 64 bit UTF8

27. .. No Windows 32 bit UTF8

28. host:/dir/ No Linux 64 bit OEM

29. X:\dir\ Yes To the directory and its con-
tents

Windows 64 bit UTF8

30. \\ Yes Neither to the directory nor to
its contents

Windows 64 bit UTF8

31. // No To the directory only Windows 64 bit UTF8

32. ..\dir\ No Neither to the directory nor to
its contents

Windows 64 bit OEM

33. X:\dir No To the directory only Windows 64 bit OEM

34. “X:\spaces and
Кирилица\”

Yes To the directory only Windows 64 bit UTF16

35. \\host\dir\ No To the directory only Windows 32 bit UTF16

36. [256 bytes for Win-
dows only]

Yes To the directory and its con-
tents

Windows 32 bit UTF8

Pairwise testing data sample

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 273/278

37. [4096 bytes for
Linux only]

No To the directory only Linux 64 bit UTF16

38. /dir/ Yes To the directory and its con-
tents

Linux 64 bit UTF8

39. [256 bytes for Win-
dows only]

Yes To the directory and its con-
tents

Windows 64 bit OEM

40. .\dir No To the directory and its con-
tents

Windows 32 bit UTF16

41. // Yes Neither to the directory nor to
its contents

Windows 32 bit OEM

42. prn Yes Neither to the directory nor to
its contents

Windows 64 bit UTF16

43. ..\dir No Neither to the directory nor to
its contents

Windows 64 bit UTF16

44. \\host\dir\ No To the directory only Windows 64 bit UTF16

45. ../dir/ Yes Neither to the directory nor to
its contents

Linux 64 bit UTF8

46. .. Yes To the directory only Linux 32 bit OEM

47. ..\dir Yes To the directory only Windows 32 bit UTF8

48. /dir Yes To the directory only Linux 64 bit UTF8

49. " No To the directory only Windows 32 bit UTF8

50. ../dir/ No To the directory and its con-
tents

Linux 32 bit UTF16

51. .\dir Yes To the directory only Windows 64 bit OEM

52. host:/dir/ No Neither to the directory nor to
its contents

Linux 32 bit UTF16

53. “/spaces and
Кирилица”

No To the directory and its con-
tents

Linux 64 bit UTF16

54. com1–com9 Yes Neither to the directory nor to
its contents

Windows 64 bit UTF16

55. lpt1–lpt9 Yes To the directory only Windows 32 bit UTF8

56. [0 characters] No To the directory only Linux 64 bit UTF16

57. \\host\dir Yes Neither to the directory nor to
its contents

Windows 32 bit UTF16

58. “X:\spaces and
Кирилица”

Yes To the directory only Windows 64 bit UTF16

59. \\host\dir No To the directory only Linux 64 bit UTF8
60. lpt1–lpt9 Yes To the directory only Windows 64 bit UTF8

61. “X:\spaces and
Кирилица”

No To the directory and its con-
tents

Windows 32 bit OEM

62. host:/dir Yes To the directory and its con-
tents

Linux 32 bit OEM

63. X:\ Yes To the directory only Windows 32 bit OEM

64. \\ No To the directory only Windows 32 bit OEM

65. [4096 bytes for
Linux only]

Yes To the directory and its con-
tents

Linux 32 bit UTF8

66. \\host\dir No To the directory and its con-
tents

Windows 64 bit OEM

67. " No Neither to the directory nor to
its contents

Linux 32 bit OEM

68. con No To the directory and its con-
tents

Windows 32 bit UTF16

69. ../dir No To the directory only Linux 32 bit UTF16

70. X:\dir Yes To the directory and its con-
tents

Windows 32 bit OEM

71. ./dir Yes To the directory and its con-
tents

Linux 32 bit UTF16

72. // Yes To the directory and its con-
tents

Linux 32 bit UTF16

73. host:/dir No Neither to the directory nor to
its contents

Linux 64 bit UTF8

Pairwise testing data sample

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 274/278

74. / No To the directory and its con-
tents

Linux 64 bit UTF8

75. “X:\spaces and
Кирилица\”

Yes Neither to the directory nor to
its contents

Windows 32 bit OEM

76. .\dir\ Yes Neither to the directory nor to
its contents

Windows 32 bit OEM

77. // No To the directory only Linux 64 bit OEM

78. X:\dir\ Yes To the directory only Windows 32 bit UTF8

79. " Yes Neither to the directory nor to
its contents

Linux 64 bit UTF16

80. / Yes To the directory and its con-
tents

Linux 32 bit UTF16

81. .. Yes To the directory and its con-
tents

Windows 64 bit UTF16

82. com1–com9 Yes Neither to the directory nor to
its contents

Windows 32 bit OEM

83. .. Yes Neither to the directory nor to
its contents

Linux 64 bit OEM

84. /dir/ Yes To the directory and its con-
tents

Linux 32 bit UTF16

85. [4097 bytes for
Linux only]

No To the directory and its con-
tents

Linux 64 bit UTF16

List of key definitions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 275/278

4.5. List of key definitions

For ease of reference, the terms are listed in alphabetical order with references to
the place in the book where they are discussed in detail. Here are only the most important,
the most key definitions out of the more than two hundred that are discussed in the book.

Term Definition

Acceptance
testing{86}

A formalized testing aimed at verifying an application from the end-
user and/or customer’s point of view and deciding whether the cus-
tomer accepts the work from the developer (project team).

Alpha testing{83} A testing performed within a development organisation with possi-
ble partial involvement of end-users.

Automated test-
ing{73}

A set of techniques, approaches and tools that allow a person to be
excluded from some tasks in the testing process.

Behavior-driven
testing{91}

A way of automated test case development where the focus is on
the correctness of business scenarios rather than on individual de-
tails of application functioning.

Beta testing{83} A testing performed outside the development organisation with the
active involvement of end-users and/or customers.

Black box test-
ing{71}

A testing where the tester either does not have access to the inter-
nal structure and the application code, or does not have enough
knowledge to understand them, or does not deliberately address
them in the testing process.

Border condi-
tion, boundary
condition{218}

A value that is on the boundary of the equivalence classes.

Checklist{108} A set of ideas [for test cases].

Code review,
code inspec-
tion{95}

A family of techniques for improving code quality by involving sev-
eral people in the process of creating or improving code.

Coverage{198} A percentage expression of the degree to which the coverage item
is affected by the corresponding test suite.

Critical path
test{78}

A level of functional testing aimed at examining the functionality
used by typical users in a typical day-to-day activity.

Data-driven
testing{91}

A way of automated test case development where the input data
and expected results are taken outside the test case and stored
outside it — in a file, database, etc.

Defect report{158} A document that describes and prioritizes the defect detected, and
promotes its elimination.

Defect, anom-
aly{157}

A deviation of an actual result from the observer’s expected result
(that are formed on the basis of requirements, specifications, other
documentation or experience and common sense).

Dynamic test-
ing{70}

A testing with code execution.

Equivalence
class{218}

A set of data processed in the same way and leading to the same
result.

Extended test{78} A level of functional testing focused on all of the functionality stated
in the requirements, even those that are ranked low in terms of im-
portance.

List of key definitions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 276/278

Term Definition

Functional de-
composition{249}

A process of function determination by dividing a function into sev-
eral low-level subfunctions.

Functional re-
quirements{40}

Requirements that describe the behavior of the system, i.e., its ac-
tivities (calculations, transformations, checks, processing, etc.)

Functional test-
ing{85}

A testing that verifies that the application functionality works cor-
rectly (the correct implementation of functional requirements).

Gray box test-
ing{71}

A combination of white box and black box methods, which means
that the tester has access to some of the code and architecture,
but not to others.

Integration test-
ing{75}

A testing of the interaction between several parts of an application
(each of the parts, in turn, is tested separately in the unit testing
phase).

Keyword-driven
testing{91}

A way of automated test case development where not only the in-
put data and expected results are taken outside the test case but
also the logic of the test case behavior, which is described by key-
words (commands).

Man-hours{210} An amount of working time needed to do the work (expressed in
man-hours).

Manual test-
ing{73}

A testing, where test cases are performed manually by a human
being without the use of automation.

Metric{196} A numerical characteristics of a quality indicator.

Negative test-
ing{80}

A testing of an application in situations when whether operations
(sometimes incorrect ones) performed or data used may potentially
lead to errors.

Non-functional
requirements{40}

Requirements that describe the properties of the system (usability,
security, reliability, scalability, etc.).

Non-functional
testing{85}

A testing of non-functional features of an application (correct imple-
mentation of non-functional requirements), such as usability, com-
patibility, performance, security, etc.

Performance
testing{90}

A testing of an application’s responsiveness to external stimuli un-
der varying load types and intensities.

Planning{192} A continuous process of making management decisions and me-
thodically organizing efforts to implement them in order to ensure
the quality of some process over a long period of time.

Positive test-
ing{80}

A testing that examines an application in a situation where all activ-
ities are carried out strictly as instructed, with no errors, deviations,
incorrect data input etc.

Regression test-
ing{86}

A testing aimed at verifying the fact that previously working func-
tionality has not been affected by errors caused by changes in the
application or its environment.

Reporting{192} A process of collecting and distributing performance information
(including status reporting, progress measurement, and forecast-
ing).

Requirement{31} A description of what functions and under what conditions an appli-
cation has to perform while solving a useful task for the user.

Root cause
analysis{234}

A process of investigating and categorizing the root causes of
events with safety, health, environmental, quality, reliability and
production impacts.

List of key definitions

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 277/278

Term Definition

Smoke test{77} A level of functional testing that is aimed at testing the most basic,
most important, most key functionality, the failure of which renders
the very idea of using an application (or other object under testing)
meaningless.

Software devel-
opment model{17}

A framework that systematizes the various project activities, their
interaction and consistency in the software development process.

Software test-
ing{6}

A process of analyzing software and accompanying documentation
in order to identify defects and improve the quality of the product.

Static testing{70} A testing without code execution.

System test-
ing{75}

A testing aimed at checking the entire application as a whole, as-
sembled from the parts tested in the earlier stages.

Test case suite,
test suite, test
set{137}

A suite of test cases selected with some common purpose or by
some common feature.

Test case{113} A set of input data, execution conditions and expected results de-
signed to test a feature or behavior of a software tool.

Test plan{194} A document that describes and regulates a list of testing activities,
as well as related techniques and approaches, strategy, areas of
responsibility, re-sources, timetable and milestones.

Test progress
report, test sum-
mary report{203}

A document that summarizes the results of the test work and pro-
vides information sufficient to compare the current situation with
the test plan and to make necessary managerial decisions.

Test{113} A set of one or more test cases.

Unit testing,
component test-
ing{75}

A testing of individual small parts of an application which (usually)
can be tested in isolation from other small parts.

White box test-
ing{71}

A testing where the tester has access to the internal structure and
application code, and has sufficient knowledge to understand what
they see.

Work break-
down structure,
WBS{212}

A hierarchical decomposition of voluminous tasks into progres-
sively smaller subtasks in order to simplify evaluation, planning and
performance monitoring.

Chapter 5: license and distribution

Software Testing. Base Course. © EPAM Systems, 2015–2024 Page: 278/278

Chapter 5: license and distribution

This book is distributed under the “Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International”369 license.

The text of the book is periodically updated and revised. If you would like to share
this book, please share the link to the most up-to-date version available here:
https://svyatoslav.biz/software_testing_book/.

To ask questions, report errors, or share your impressions of what you’ve read,
please send an e-mail to stb@svyatoslav.biz.

* * *
If you liked this book, check out two others written in the same style:

“Using MySQL, MS SQL Server, and Oracle by examples”

In this book: 3 DBMS, 50+ examples, 130+ tasks, 500+ queries with
explanations and comments. From SELECT * to finding the shortest
path in an or-graph; no theory, just diagrams and code, lots of code. It
will be useful for those who: once studied SQL, but have forgotten a
lot; has experience with one dialect of SQL, but wants to quickly switch
to another; wants to learn to write typical SQL queries in a very short
time.

Download: https://svyatoslav.biz/database_book/

“Relational databases by examples”

All the key ideas of relational DBMS — from the concept of data to the
logic of transactions, the fundamental theory and illustrative practice
of database design: tables, keys, connections, normal forms, views,
triggers, stored procedures, and much more by examples. The book
will be useful to those who: have learned databases some time ago,
but have forgotten something; have not much practical experience, but
wants to expand their knowledge; wants to start using relational data-
bases in their work in a very short time.

Download: https://svyatoslav.biz/relational_databases_book/

In addition to the text of this book, it is recommended that you take a
free online course with a series of video lessons, tests, and self-study
tasks.

The course is intended for about 100 academic hours, of which about
half of your time should be spent on practical tasks.

With Russian voiceover: https://svyatoslav.biz/urls/stc_online_rus/
With English voiceover: https://svyatoslav.biz/urls/stc_online_eng/

369 “Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International”. [https://creativecommons.org/licenses/by-nc-

sa/4.0/legalcode]

https://svyatoslav.biz/software_testing_book/
mailto:stb@svyatoslav.biz
https://svyatoslav.biz/database_book/
https://svyatoslav.biz/relational_databases_book/
https://svyatoslav.biz/urls/stc_online_rus/
https://svyatoslav.biz/urls/stc_online_eng/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

