МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кваліфікаційна наукова праця на правах рукопису

Ше Сяньнін

УДК 658.511.4:621.7

ДИСЕРТАЦІЯ

ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ МЕХАНІЧНОГО ОБРОБЛЕННЯ ДЕТАЛЕЙ З ТИТАНОВИХ СПЛАВІВ НА ОСНОВІ ІМІТАЦІЙНОГО МОДЕЛЮВАННЯ ПРОЦЕСУ ФОРМОУТВОРЕННЯ

Галузь знань 13 – "Механічна інженерія"

131 – "Прикладна механіка"

Подається на здобуття освітньо-наукового ступеня доктора філософії

Дисертація містить результати власних наукових досліджень. Використані ідеї та результати інших авторів мають посилання на відповідні джерела.

Ше Сяньнін

Науковий керівник:

Ступницький Вадим Володимирович, доктор технічних наук, професор

Львів 2022

АНОТАЦІЯ

Ше Сяньнін. Підвищення ефективності механічного оброблення деталей з титанових сплавів на основі імітаційного моделювання процесу формоутворення. – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора філософії за спеціальністю 131 — Прикладна механіка — Національний університет «Львівська політехніка», МОН України, Львів, 2023.

Дисертацію присвячено вирішенню важливої науково-технічної задачі – підвищенню ефективності функціонально-орієнтованого технологічного процесу механічного оброблення виробів з титанового сплаву шляхом вибору раціональних режимів різання, геометрії різального інструменту та технологічного середовища, отриманих внаслідок проблемно-орієнтованого аналізу результатів імітаційного моделювання силового, термодинамічного та напружено-деформаційного стану заготовки та інструменту в процесі формоутворення.

На основі системного аналізу і узагальнення досвіду впровадження наукових засад інженерії механічно оброблених поверхонь, термодинамічного аналізу впливу трибомеханічних чинників процесу різання на формування силових та напруженодеформаційних параметрів виробів, особливостей використання імітаційних моделей та критеріїв руйнування важкооброблюваних матеріалів сформульована, обґрунтована, теоретично та практично реалізована методика рекомендацій щодо раціонального вибору режимів та інструментального забезпечення процесу різання титаномістких сплавів. Отримала подальший розвиток методологія функціональноорієнтованого технологічного проектування, за якою критерієм вибору структури та параметрів технологічної операції механічного оброблення є не мінімізація технологічної собівартості виготовлення деталі, а забезпечення найбільш ефективних параметрів оброблюваноих поверхнонь виробу з точки зору покращення його експлуатаційних властивостей (зносостійкості, втомної міцності тощо).

В дисертаційній роботі запропонована нова методика поєднання результатів аналітичного моделювання вібраційних процесів, що виникають підчас механічного оброблення виробів з титанових сплівів, з результатами імітаційного моделювання процесів різання. Такий симбіоз різних методик дозволить врахувати як фізикомеханічні особливості формоутворення оброблюваних поверхонь виробу з титаномісткого матеріалу, так і реальну систему жорсткостей та демпфуючих властивостей технологічної системи «Верстат-Пристрій-Інструмент-Заготовка» (ВПІЗ) та їх комплексну взаємодію.

Запропонована методика описаного в дисертаційній роботі дослідження трибомеханічних процесів різання титанових сплавів відрізняється від традиційного підходу і полягає в наступному. По-перше, в якості вихідних даних для моделювання пропонується щоразу інший декларований коефіцієнт тертя, і кожна така задача імітаційного моделювання процесу механічного оброблення вирішується для різних параметрів та режимів різання. На другому етапі проводиться аналіз впливу цих наперед заданих коефіцієнтів на напружено-деформований (в тому числі залишковий) і термодинамічний стан заготовки та інструменту при різанні, а також на динаміку зношування інструменту тощо. На третьому етапі дослідження пропонуються шляхи забезпечення аналітично обґрунтованих триботехнічних умови різання. Результати аналізу дають можливість вибрати такі конструктивні, технологічні або організаційні рішення, які реалізують оптимальні умови оброблення найбільш ефективним способом.

В результаті теоретичних та експериментальних досліджень доведено, що характерна саме для механічного оброблення титанових сплавів динаміка дисонансної циклічної зміни складових сил різання є наслідком адіабатичного зсуву в зоні стружкоутворення, що і підтверджується зубчастоподібною формою стружки. Механізм такого стружкоутворення при механічному обробленні титанових сплавів обумовлений втратою термопластичної стабільності в межах зони первинного зсуву. Результати теоретичних та експериментальних досліджень підтверджуюють те, що циклічність та інтенсивність динамічного процесу навантаження та зношування різального інструменту при механічному обробленні титанового сплаву приорітетно залежить від швидкості та глибини різання.

Впровадження запропонованих методик аналізу результатів імітаційних, аналітичних та експериментальних досліджень трибомеханічних, силових, термодинамічних та напружено-деформаційних параметрів дозволяє реалізовувати процес логічного науково-обґрунтованого направленого вибору режимів різання та інструментального забезпечення технологічних операцій механічного оброблення титаномістких виробів, що базується на вирішенні проблем, причини формування яких є однозначно зрозумілими, чисельно та якісно оціненими та адекватними.

У першому розділі проведено огляд літературних джерел щодо сучасного стану технологічного забезпечення та розроблення методів прогнозуючого моделювання процесів механічного оброблення виробів з титанових сплавів.

Було встановлено, що потенціал технологічних можливості процесів різання виробів з титанових сплавів в реальних виробничих умовах, як правило, використовуються не в повному обсязі. Найчастіше це пов'язано з тим, що дослідження умов зниження параметрів силового напруження процесу різання є малоефективними. Це вкрай важливо при механічному обробленні титанових сплавів, оскільки цей матеріал коштує дорого, вироби з нього є дуже якісні, а експлуатаційні вимоги - високі. У зв'язку з цим, актуальними є подальші дослідження цих процесів на основі моделювання та системного аналізу механіки процесу різання. Такий підхід дасть можливість оцінити з системної точки зору технологічні можливості підвищення продуктивності і якості обробки. Найбільш значущою причиною складності оброблювання вищеназваних матеріалів € значне змішнення оброблюваного шару заготовки в зоні первинної та вторинної деформації, як результат процесу пластичної деформації металу підчас різання. Таке явище пояснюється специфічними особливостями будови кристалічної гратки титаномістких матеріалів. Ще одна важлива причина низької оброблюваності титанових сплавів полягає у відносно малій теплопровідності, що призводить до підвищеної температурі в зоні контакту, а отже, до активації явищ дифузії, інтенсивному схоплюванню контактних поверхонь і руйнування різальної частини інструменту. Тобто, аналіз літературних джерел показав, що важливою причиною незадовільної оброблюваності більшості титанових сплавів є здатність зберігати вихідну міцність і твердість при підвищених температурах. Така властивість призводить до високого питомого навантаженням на контактні поверхні інструменту в процесі різання.

Встановлено, що знижена вібростійкість системи «Верстат-Пристрій-Інструмент-Заготовка» зумовлена високим коефіцієнтом зміцнення титаномістких матеріалів при нерівномірності протікання процесу їх пластичного деформування. Виникнення вібрацій призводить до високочастотних коливань силових і теплових параметрів різання, а отже посиленого вібраційного навантаження на інструмент. Цей процес супроводжується інтенсивфікацією мікро- і макро- викришуванням різального леза внаслідок зростання втомних напружень інструменту. Явища схоплювання стружки з передньою поверхнею інструменту також інтенсифікуються при наявності вібрацій підсистеми «різальне лезо-заготовка», що, в свою чергу, обумовлює особливо несприятливий вплив на стійкість інструменту.

На основі аналізу існуючих методик дослідження технології оброблення титаномістких сплавів, новітніх досягнень у теоретичних засадах інженерії поверхонь, можливостей сучасних систем імітаційного моделювання процесів механічного оброблення, доведено актуальність дисертаційного дослідження, визначено мету роботи та завдання, що необхідно виконати для її досягнення, розроблено її структурно-логічне наповнення.

У другому розділі описана використана в дисертаційній роботі методологія досліджень функціонально-орієнтованого технологічного процесу механічного оброблення деталей з титанового сплаву.

особливості імітаційних Наведено створення моделей напруженодеформованого та термодинамічного стану заготовки з титанового сплаву в зоні різання на основі теорії скінчених елементів, реологічної моделі оброблюваного матеріалу та приорітетність використання енергетичних, деформаційних та силових критеріїв руйнування титанових сплавів (Райса-Трейсі, Мак-Клінтока, Кокрофта-Лейтема тощо) в процесі їх механічного оброблення. Проаналізована доцільність використання типу моделювання деформації (Lagrange Incremental або Steady-State Machining), ітераційного методу дослідження (прямий ітераційний чи метод Ньютона-Рафсена), типу розв'язувача деформації та температури (метод Skyline або метод розріджених матриць), а також похибки збіжності рішення (по силовому вектору та по вектору швидкості деформації).

Запропоновано методику досліджень динамічних процесів системи ВПІЗ підчас оброблення виробів з титаномістких сплавів. Аналізуючи причини коливань, в даній роботі основну увагу приділяється генеруючим коливання чинникам, що виникають внаслідок специфіки механічного оброблення титанових сплавів – наприклад, явищу адіабатичного зсуву підчас різання саме титанових сплавів.

Складність у формалізації силової характеристики процесу різання полягає у значній зашумленості результатів розрахунків, виконаних методом скінченних елементів для більшості високочастотних динамічних задач. Для ефективного опрацювання результатів роботи системи DEFORM 2D в дисертаційній роботі поставлено завдання щодо вирішення 2-х важливих задач – по-перше, це фільтрація шумового сигналу із збереженням граничних значень силових параметрів різання та максимуму чутливості; по-друге, вирішення задачі апроксимації та інтерполяції фільтрованої функції сили різання за часом (перетворенням Фур'є). В якості забезпечення фільтраційної процедури згладжування математичного даних реологічного моделювання, тобто підвищення точності даних без спотворення тенденції сигналу, розроблено методику, що базується на математичному апараті Савицького-Гола. Описана програмна реалізація цього методу фільтрації даних силового та термодинамічного розрахунку параметрів для DEFORM 2D у інтерпретованій об'єктно-орієнтованій мові програмування Python 3.10.

У третьому розділі проведено оцінку впливу силових та термодинамічних чинників механічного оброблення деталей з титанових сплавів на напруженодеформаційний стан обролюваних поверхонь та аналіз формування зони адіабатичного зсуву підчас різання.

Проаналізовано вплив швидкості збігу стружки по передній поверхні різця на формування 30H інтенсивного зношування передньої поверхні різального інструменту. Визначені залежності коефіцієнта усадки стружки від швидкості різання, глибини різання титанового сплаву та переднього кута різального інструменту. цих залежностей показав, що із збільшення швидкості різання, середнє Аналіз значення величини усадки практично не зазнає змін, проте суттєво зростає амплітуда його коливання, що еквівалентно зміні кута зсуву, який динамічно змінюється внаслідок специфічного для титанового сплаву процесу стружкоутворення. Практично аналогічним є вплив глибини різання на коефіцієнт усадки стружки. А саме: із зростанням глибини різання середнє значення усадки суттєво не змінюється, а от амплітуда коливань цього параметра зростає суттєво. Якісно інша картина спостерігається у випадку зміни геометрії інструменту. Збільшення переднього кута різального леза призводить до суттєвого збільшення коефіцієнта усадки стружки. Аналізуючи результати досліджень, зроблено висновки: швидкість різання приблизно 150 м/хв, при якій довжина контакту максимальна, лежить в межах перехідного діапазону між звичайним і високошвидкісним режимом обробки титанових сплавів. Таке початкове зростання, а потім зменшення довжини контакту для титанового сплаву Ti6Al4V при більш високих швидкостях подачі можна пояснити явищем зміни геометрії стружки внаслідок прояву явища адіабатичного зсуву.

Проведено аналіз впливу силових чинників на формування напруженодеформованого стану заготовки. Так, виявлено, що Глибина різання суттєво впливає на силу різання. Наприклад, зміна глибини різання від 1,0 мм до 2,5 мм збільшує силу різання приблизно в 2 рази. Особлива зміна цих параметрів відбувається, якщо глибина різання збільшується понад 2 мм. Однак зміна глибини різання суттєво не впливає на еквівалентне напруження в зоні формоутворення. Швидкість різання найбільше впливає на частоту зміни навантаження. Наприклад, зміна V від 50 до 200 м/с збільшує період зміни сили різання приблизно в 8 разів (від 0,3 до 2,5 мс). Це може бути причиною високочастотного коливання інструменту. Однак сила різання значно зменшується із збільшенням швидкості різання. Наприклад, 4-кратна зміна швидкості (від 50 до 200 м/хв) призводить до зменшення сили різання на 25% (від 3,2 кН до 2,4 кН). Проте швидкість різання не має суттєвого впливу на еквівалентне напруження в зоні різання, як і у випадку зміни глибини різання, змінюючись із збільшенням швидкості різання до зменшення сили різання.

Доведено, що геометрія різального леза інструменту суттєво впливає на узагальнену силу різання. Наприклад, зміна кута нахилу з (+10°) до (-5°) збільшує середню силу різання приблизно на 80% і збільшує коефіцієнт усадки стружки на 27%. Крім того, збільшення переднього кута різального леза призводить до зростання інтенсивності частоти коливань сили різання, особливо для інструменту з від'ємним переднім кутом. Проте, зміна геометричних параметрів різальної кромки має незначний вплив на еквавалентне напруження.

Дослідження залежності термодинамічного стану заготовки з титанового сплаву ВТ6 від глибини та швидкості різання, а також від геометричних параметрів різального леза інструменту проведено в Deform 2D. Встановлено, що зміна глибини різання суттєво не впливає на температуру в зоні різання (збільшення глибини в 7 разів (з 0,5 мм до 3,5 мм) призводить до зміни цього параметру лише на 5-7%). Аналогічно, температура різання сильно не змінюються від зростання швидкості різання, змінюючись із збільшенням швидкості різання з 50 до 200 м/хв лише на 7-10%. Проте, геометрія різального леза інструменту суттєво впливає на температуру обробки. Наприклад, зміна переднього кута різального леза з 10° до (-5°)

у усталеному режимі різання збільшує температуру приблизно на 26% (830°С до 1050°С). Цей ефект пояснюється суттєвим збільшенням питомого тиску стружки на передню поверхню інструменту.

Запропонована оригінальна методика моделювання залишкових деформацій та напружень І роду в системі Deform 2D, що передбачає використання сітки референтних точок вздовж обробленої поверхні та по глибині заготовки в зоні її термостабілізації. Крива залишкових напружень І роду відображає інтерференційну картину прояву флуктаційних розтягувальних (температурних та фрикційних) та стискаючих (силових) навантажень. Аналіз впливу силових та термічних явищ, що супроводжують процеси різання у змінних умовах, доводить, що із збільшенням сили та температури в зоні різання залишкові напруження зростатимуть і до певної межі носить майже лінійний характер

У четвертому розділі наведені результати імітаційного та експериментального дослідження впливу трибологічних чинників на напружено-деформований і термодинамічний стан заготовки при механічному обробленні титанових сплавів. Запропонована в даному розділі методика відрізняється від традиційного підходу і полягає в наступному. По-перше, у вихідних даних для моделювання щоразу пропонується інший декларований коефіцієнт тертя, і кожна така задача моделювання процесу різання розв'язується для різних параметрів різання. На другому етапі проводиться аналіз впливу цих коефіцієнтів на напружено-деформований (в тому числі залишковий) і термодинамічний стан заготовки та інструменту при різанні, а також на динаміку зношування інструменту тощо. На третьому етапі дослідження пропонується забезпечити ці аналітично обгрунтовані триботехнічні умови різання. Результати аналізу дають можливість вибрати такі конструктивні, технологічні або організаційні рішення, які реалізують оптимальні умови оброблення найбільш ефективним способом.

Проведені дослідження довели, що циклічність динамічного процесу навантаження різального інструменту при механічному обробленні титанового сплаву ВТ6 залежить від швидкості та глибини різання і становить 1-1,2 с при швидкості 50 м/хв та 0,6-0,8 мілісекунди при швидкості 100 м/хв. Наприклад, при швидкості 50 м/хв середнє значення сили різання збільшується на 5,8% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 13,0% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 17,6% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 13,0% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 17,6% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення приблизно однакові і складають 6,6%, 14,9% і 16,6% відповідно.

Встановлено, що коефіцієнт тертя в системі «Стружка-інструмент» також має значний вплив на термодинамічний стан процесу різання. Як показали дослідження, коефіцієнта тертя між інструментом та матеріалом заготовки має досить суттєвий вплив на напружено-деформований стан зони різання при механічному обробленні титанового сплаву BT6.

Зношування інструменту як по передній, так і по задній поверхні, безумовно, залежить від триботехнічних умов при різанні титанового сплаву. Причому, коливання навантаження на інструмент призведе до синхронної зміни швидкості зношування. Використання різних аналітичних моделей дає можливість визначити різні екстремальні значення зношування інструменту. Максимальні результати зношування знаходяться в діапазоні швидкостей різання приблизно 60-70 м/хв за критерієм Арчарда та 100-120 м/хв за критерієм Усуї. Таку різницю можна пояснити різними пріоритетами в описі фізичної моделі процесу зношування інструменту. На основі порівняння з відомими експериментальними даними зроблено висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при механічному обробленні титанового сплаву.

У п'ятому розділі здійснений аналіз результатів дослідження вібраційних процесів різання виробів з титанових сплавів, як за аналітичними залежностями, так і на базі експериментальних робіт. Встановлено, що класичні моделі дослідження коливань під час процесів різання саме підчас механічного оброблення титанових сплавів не враховують складні напружено-деформовані та термодинамічні процеси формоутворення. Такі дослідження можуть бути реалізовані з використанням імітаційного моделювання. В свою чергу, результати реологічного моделювання в САF-системах (Computer Aided Forming) не враховують той факт, що початковий стан заготовки та інструменту апріорі приймається "жорстким", а демпфуючі властивості пристосування, інструменту та елементів верстата у вихідній імітаційній моделі взагалі не враховуються. Тому поєднання результатів аналітичного моделювання динаміки процесу різання з результатами імітаційного моделювання покладено в основу запропонованої методики досліджень.

З метою реалізації такої методики розроблено та досліджено математичну модель чотиримасової автоколивальної схеми металорізального верстата з урахуванням результатів імітаційного моделювання процесу різання титанових сплавів. Проведено проблемно-орієнтовані дослідження динаміки процесу різання та виявлено резонансні амплітудно-частотні характеристики підчас механічного оброблення таких матеріалів з різними режимами оброблення та схемами закріплення заготовки.

Для проведення експериментальних досліджень з вивчення динаміки процесу різання титанового сплаву розроблено та створено експериментальну установку. Експериментальні дослідження проводилися для режиму чорнового оброблення та режиму чистовогої оброблення. Порівняння результатів моделювання та експериментальних даних показало високий рівень адекватності теоретичного та реального представлення вібраційних процесів підчас механічного оброблення титанових сплавів

Ключові слова: титановий сплав, імітаційна модель, процес різання, напруженодеформований стан, термодинамічний стан, зношування інструменту, трибомеханічні чинники, вібраційні явища, залишкове напруження.

СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. Stupnytskyy V., She Xianning. Methodology of Machining Simulation with Computer Aided Forming Systems. Proceedings of 1st Int. Conf.: Drives of vehicles, computer modeling of constructions and technological systems. (Санок, Польща. Вересень 22-24, 2019). Видавництво Жешувського університету, Жешув, Польща, Vol.1,- 2019, p. 288-299.

2. Stupnytskyy V., Xianning S. Comparative analysis of simulation results of hardto-cut materials machining by coated cutting tools // Journal of Mechanical Engineering – Strojnicky Casopis. – 2020. – Vol. 70, iss. 2. – P. 153–166. (**Scopus**)

3. Stupnytskyy V., Xianning S. Research and Simulation of the Machining Process of Difficult-To-Cut Materials // Ukrainian Journal of Mechanical Engineering and Materials Science. – 2020. – Vol. 6, № 3/4. – P. 41–50.

4. Xianning S., Stupnytskyy V. Simulation and analysis of cutting mechanisms when machining titanium alloys // Прогресивні технології в машинобудуванні : збірник

наукових праць IX Міжнародної науково-практичної конференції, (Львів–Плай, 3–7 лютого, 2020 року). – 2020. – С. 36–39.

5. Stupnytskyy V., Xianning S. Comprehensive analysis of tribological factor influence on stress-strain and thermal state of workpiece during titanium alloys machining // Archive of Mechanical Engineering. – 2021. – vol.68, iss. 2. – P. 227–248. (Scopus, Web of Science)

6. Stupnytskyy V., Hrytsay I., Xianning S. Finite element analysis of thermal state and deflected mode during titanium alloys machining // Lecture Notes in Mechanical Engineering. – 2021. – Advanced manufacturing processes. – P. 629–639. (Scopus)

7. Stupnytskyy V., Hrytsay I., Xianning S. Simulation research of machining-induced surface layer operational characteristics // Lecture Notes in Mechanical Engineering.
2021. – Advances in design, simulation and manufacturing IV. – Vol. 1 : Manufacturing and Materials Engineering. – P. 501–512. (Scopus)

8. Stupnytskyy V., Dragašius E., Baskutis S., Xianning S. Modeling and simulation of machined surface layer microgeometry parameters // Ukrainian Journal of Mechanical Engineering and Materials Science. -2022. -Vol. 8, No 1. -P. 1-11.

9. Xianning S., Stupnytskyy V. Analysis of cutting force and friction coefficient influence on titanium alloys machining // Молода наука - роботизація і нано-технології сучасного машинобудування: збірник наукових праць міжнародної молодіжної науково-технічної конференції (14–15 квітня 2021 р., Краматорськ). – 2021. – С. 30–35.

10. Stupnytskyy V., Xianning S., Stupnytska N. Thermodynamic simulation pattern of titanium alloy cutting process // Прогресивні технології у машинобудуванні РТМЕ–2022: матеріали X Міжнародної науково-технічної конференції (Івано-Франківськ; Яремче, 1–5 лютого 2022 р.). – 2022. – С. 33–35.

 Xianning S., Stupnytskyy V. Influence of tribological factors on tool wear during machining of titanium alloys // Сучасні технології у промисловому виробництві: матеріали та програма IX Всеукраїнської науково-технічної конференції (Суми, 19– 22 квітня 2022 р.). – 2022. – С. 55–56

12. Ступницький В.В., Ше Сяньнін. Методика фільтрації та згладжування цифрових результатів імітаційного моделювання в системі DEFORM 2D. Матеріали XX Міжнародної науково-технічної конференції «Важке машинобудування. Проблеми та перспективи розвитку» (Тернопіль-Краматорськ, 01 — 03 вересня 2022 року).- С.192-193.

ABSTRACT

She Xianning. Increasing the technological process efficiency of mechanical machining of parts from titanium alloys based on simulation modeling of the forming process. - Manuscript.

Thesis for the degree of Doctor of Philosophy in the specialty 131 - Applied Mechanics – Lviv Polytechnic National University, Ministry of Education and Science of Ukraine, Lviv.- 2023.

The dissertation is devoted to solving an important scientific and technical problem increasing the efficiency of the functionally-oriented technological process of machining titanium alloy products by choosing rational cutting parameters, tool geometry, and technological environment obtained as a result of problem-oriented analysis of the results of simulation modeling of the power, thermodynamic and stress-strain state of the workpiece and tool in the machining process.

Based on system analysis and generalization of the experience of implementation of scientific principles of engineering of machined surfaces, thermodynamic analysis of the influence of tribomechanical factors of the cutting process on the formation of the force and stress-strain parameters of products, features of the use of simulation models and criteria for the destruction of hard-to-machine materials, the methodology of recommendations for the rational choice of modes and tooling of the titanium cutting process was formulated, substantiated, theoretically and practically implemented. The methodology of the functionally-oriented technological design was further developed, according to which the criterion for choosing the structure and parameters of the technological operation of machining is not to minimize the technological cost of manufacturing a part but to ensure

the most influential parameters of the machined surfaces of the product in terms of improving its operational properties (wear resistance, fatigue strength, etc.).

The implementation of the proposed methods of analysis of the results of the simulation, analytical and experimental studies of tribomechanical, power, thermodynamic, and stress-strain parameters allows implementation of the process of logical, scientifically based directed choice of cutting modes and tooling of technological operations of machining of titanium-containing products, based on solving problems, the causes of formation of which are understandable, quantitatively and adequately assessed.

In the first section, a review of literature sources on the current state of technological support and the development of methods for predictive modeling of machining processes of products from titanium alloys was carried out.

It was found that the potential technological capabilities of cutting processes of products from titanium alloys in real production conditions, as a rule, are not fully used. Most often, this is because studying the conditions for reducing the parameters of the power stress of the cutting process is ineffective. This is extremely important in the machining of titanium alloys since this material is expensive, the products made of it are of very high quality, and the operational requirements are high. In this regard, further studies of these processes based on modeling and system analysis of the mechanics of the cutting process are relevant. This approach will make it possible to evaluate from a systematic point of view the technological possibilities of increasing productivity and quality of processing. The most significant reason for the complexity of machining the above materials is a significant strengthening of the machined layer of the workpiece in the zone of primary and secondary deformation as a result of the process of plastic deformation of the metal during cutting. This phenomenon is explained by specific features of the structure of the crystal lattice of titanium-containing materials. Another important reason for the low machinability of titanium alloys is the relatively low thermal conductivity, which leads to an increased temperature in the contact zone and hence to the activation of diffusion phenomena, intensive adhesion of contact surfaces, and destruction of the cutting part of the tool. That is, the analysis of literature sources showed that an essential reason for the unsatisfactory machinability of most titanium alloys is the ability to maintain the initial strength and hardness at elevated temperatures. This property leads to a high specific load on the contact surfaces of the tool during the cutting process.

Based on the analysis of existing methods of research of technology of processing of titanium-containing alloys, the latest achievements in the theoretical foundations of surface engineering, the capabilities of modern systems of simulation modeling of machining processes, the relevance of the dissertation research is proved, the purpose of the work and the tasks to be performed to achieve it are determined, its structural and logical content is developed.

The second section describes the methodology used in the thesis research methodology of the function-oriented technological process of machining parts from titanium alloy.

The peculiarities of creating simulation models of stress-strain and thermodynamic state of a titanium alloy workpiece in the cutting zone based on the finite element theory, rheological model of the processed material, and the priority of using energy, deformation and force criteria for the destruction of titanium alloys (Rice-Tracy, McClintock, Cockcroft-Latham, etc.) in the process of their machining are given. The expediency of using the type of deformation modeling (Lagrange Incremental or Steady-State Machining), the iterative method of research (direct iterative or Newton-Raphsen method), the type of strain and temperature solver (Skyline method or sparse matrix method), as well as the error of convergence of the solution (on the force vector and the strain rate vector), is analyzed.

A methodology for studying the dynamic processes of the "Machine-Fixture-Tool-Workpiece" MXTW system during the processing of products from titanium-containing alloys is proposed. Analyzing the causes of oscillations, in this research, the primary attention is paid to the factors generating oscillations that arise due to the specifics of machining of titanium alloys - for example, the phenomenon of adiabatic shear during the cutting of titanium alloys.

The difficulty in formalizing the force characteristic of the cutting process lies in the significant noise of the results of calculations performed by the finite element method for most high-frequency dynamic problems. For the effective processing of the results of the DEFORM 2D, the thesis sets the task of solving 2 significant problems - firstly, filtering the noise signal while preserving the boundary values of the cutting force parameters and the maximum sensitivity; secondly, solving the problem of approximation and interpolation of the filtered cutting force function over time (Fourier transform). As mathematical support of the filtering procedure for smoothing the rheological modeling data, i.e., improving the accuracy of the data without distorting the signal trend, a technique based on the Savitzky-Golay filtering has been developed. The software implementation of this method of filtering data of force and thermodynamic calculation of parameters for DEFORM 2D in the interpreted object-oriented programming language Python is described.

In the third section, the influence of power and thermodynamic factors of machining of parts made of titanium alloys on the stress-strain state of the treated surfaces and the analysis of the formation of the adiabatic shear zone during cutting are evaluated. The influence of the speed of chip convergence on the rake face of the cutter on the formation of zones of intensive wear of the cutting tool is analyzed. The dependences of the chip thickness ratio on the cutting speed, cutting depth of the titanium alloy, and the front angle of the cutting tool are determined. The analysis of these dependencies showed that with the increase in cutting speed, the average chip thickness ratio is practically unchanged. Still, the amplitude of its oscillation increases significantly, which is equivalent to a change in the shear angle, which dynamically changes due to the chip formation process specific to the titanium alloy. The influence of cutting depth on the chip shrinkage coefficient is almost similar. It is as follows: the average chip thickness ratio does not change significantly with increasing cutting depth, but the amplitude of oscillations of this parameter increases significantly. A qualitatively different picture is observed in the case of changing the geometry of the tool. Increasing the front angle of the cutting edge leads to a significant increase in the chip thickness ratio.

The analysis of the influence of force factors on the formation of the stress-strain state of the workpiece is carried out. Thus, it was found that the depth of cutting significantly affects the cutting force. For example, changing the cutting depth from 1.0 mm to 2.5 mm increases the cutting force by about 2 times. A particular change in these parameters occurs if the cutting depth is increased above 2 mm. However, the change in cutting depth does not significantly affect the equivalent stress in the forming zone. Cutting speed has the most significant influence on the frequency of load change. However, the cutting speed does not have a significant effect on the equivalent stress in the cutting zone, as in the case of changing the depth of cut, changing with increasing cutting speed by only 7-9%.

It is proved that the geometry of the tool cutting edge significantly affects the generalized cutting force. For example, changing the angle of inclination from $(+10^{\circ})$ to (-5°) increases the average cutting force by about 80% and increases the chip shrinkage factor by 27%. In addition, an increase in the cutting blade rake angle leads to an increase in the

intensity of the cutting force oscillation frequency, especially for tools with a negative rake angle. However, changing the geometric parameters of the cutting edge has a negligible effect on the equivalent stress. The study of the dependence of the thermodynamic state of the workpiece of titanium alloy on the depth and speed of cutting, as well as on the geometric parameters of the cutting edge of the tool, was carried out in Deform 2D. An original method of modeling residual deformations and stresses of the first kind in the Deform 2D is proposed, which involves the use of a grid of reference points along the machined surface and along the depth of the workpiece in the zone of its thermal stabilization.

The fourth section presents the results of the simulation and experimental study of the influence of tribological factors on the stress-strain and thermodynamic state of the workpiece during the machining of titanium alloys. The methodology proposed in this section differs from the traditional approach and is as follows. First, in the initial data for modeling, each time different declared friction coefficient is proposed, and each such problem of modeling the cutting process is solved for different cutting parameters. In the second stage, the analysis of the influence of these coefficients on the stress-strain (including residual) and thermodynamic state of the workpiece and tool during cutting, as well as on the dynamics of tool wear, etc. At the third stage of the study, it is proposed to provide these analytically substantiated tribotechnical cutting conditions. The results of the analysis make it possible to choose such constructive, technological, or organizational solutions that implement the optimal machining conditions most efficiently.

The studies have shown that the cyclicity of the dynamic process of loading the cutting tool during the machining of titanium alloy depends on the speed and depth of cut and is 1-1.2 s at a speed of 50 m/min and 0.6-0.8 milliseconds at a speed of 100 m/min. It is established that the coefficient of friction in the system "Chip-Tool" also has a significant impact on the thermodynamic state of the cutting process.

Tool wear on both the rake and the flank surface, of course, depends on the tribotechnical conditions when cutting titanium alloy. Moreover, fluctuations in the load on the tool will lead to a synchronous change in the wear rate. The maximum wear results are in the range of cutting speeds of approximately 60-70 m/min according to the Archard criterion and 100-120 m/min according to the Usui criterion. This difference can be explained by different priorities in describing the physical model of the tool wear process. Based on a comparison with known experimental data, it can be concluded that the Usui model is more adequate to describe the process of tool wear during the machining of titanium alloy.

The fifth section analyzes the results of studying the vibration processes of cutting products from titanium alloys, both by analytical dependences and based on experimental work. It has been established that classical models for studying vibrations during cutting processes during the machining of titanium alloys do not consider complex stress-strain and thermodynamic processes of forming. Such studies can be implemented using simulation modeling. In turn, the results of rheological modeling in Computer Aided Forming (CAF) systems do not take into account the fact that the initial state of the workpiece and tool is a priori assumed to be "rigid," and the damping properties of the fixture, tool and machine elements in the initial simulation model are not taken into account at all. Therefore, the combination of the results of analytical modeling of the dynamics of the cutting process with the results of simulation modeling is the basis of the proposed research methodology. Such a symbiosis of different techniques will take into account both the mechanical aspects of the formation of the machined surface and the actual conditions of stiffness and damping properties of the system of the MXTW.

To implement such a technique, a mathematical model of a four-mass self-oscillatory scheme of a metal-cutting machine was developed and investigated, taking into account the

results of simulation modeling of the cutting process of titanium alloys. Problem-oriented studies of the dynamics of the cutting process were carried out. The resonant amplitude-frequency characteristics were revealed during the machining of such materials with different machining modes and schemes of workpiece fixing. To implement experimental studies on the dynamics of the titanium alloy cutting process, an experimental setup was developed and created. Experimental studies were conducted for the roughing mode and the finishing mode. A comparison of simulation results and experimental data showed a high level of adequacy of theoretical and accurate representation of vibration processes during the machining of titanium alloys

Keywords: titanium alloy, simulation model, cutting process, stress-strain state, thermodynamic state, tool wear, friction factors, vibration effects, residual stress

LIST OF PUBLICATIONS ON THE SUBJECT OF THE THESIS

1. Stupnytskyy V., She Xianning. Methodology of Machining Simulation with Computer Aided Forming Systems. Proceedings of 1st Int. Conf.: Drives of vehicles, computer modeling of constructions and technological systems. (Sanok, Poland. September 22-24, 2019). Rzeszow University Press, Rzeszow, Poland, Vol.1,- 2019, p. 288-299.

Stupnytskyy V., Xianning S. Comparative analysis of simulation results of hard-to-cut materials machining by coated cutting tools // Journal of Mechanical Engineering –
 Strojnicky Casopis. – 2020. – Vol. 70, iss. 2. – P. 153–166. (Scopus)

3. Stupnytskyy V., Xianning S. Research and Simulation of the Machining Process of Difficult-To-Cut Materials // Ukrainian Journal of Mechanical Engineering and Materials Science. – 2020. – Vol. 6, № 3/4. – P. 41–50.

4. Xianning S., Stupnytskyy V. Simulation and analysis of cutting mechanisms when machining titanium alloys // Progressive technologies in mechanical engineering: proceedings of the IX International Scientific and Practical Conference, (Lviv-Play, February 3-7, 2020). – 2020. – C. 36–39.

5. Stupnytskyy V., Xianning S. Comprehensive analysis of tribological factor influence on stress-strain and thermal state of workpiece during titanium alloys machining // Archive of Mechanical Engineering. –vol.68, – iss. 2. 2021. –P. 227–248. (Scopus, Web of Science)

6. Stupnytskyy V., Hrytsay I., Xianning S. Finite element analysis of thermal state and deflected mode during titanium alloys machining // Lecture Notes in Mechanical Engineering. –Advanced manufacturing processes. 2021. – P. 629–639. (Scopus)

7. Stupnytskyy V., Hrytsay I., Xianning S. Simulation research of machininginduced surface layer operational characteristics // Lecture Notes in Mechanical Engineering.
— Advances in design, simulation and manufacturing IV . – Vol. 1 : Manufacturing and Materials Engineering. 2021. – P. 501–512. (Scopus)

8. Stupnytskyy V., Dragašius E., Baskutis S., Xianning S. Modeling and simulation of machined surface layer microgeometry parameters // Ukrainian Journal of Mechanical Engineering and Materials Science. -2022. - Vol. 8, N_{2} 1. - P. 1–11.

9. Xianning S., Stupnytskyy V. Analysis of cutting force and friction coefficient influence on titanium alloys machining // Young science - robotization and nanotechnologies of modern engineering: proceedings of the international youth scientific and technical conference (April 14-15, 2021, Kramatorsk). -2021. -C. 30–35.

10. Stupnytskyy V., Xianning S., Stupnytska N. Thermodynamic simulation pattern of titanium alloy cutting process // Progressive Technologies in Mechanical Engineering

(PTME-2022): Proceedings of the X International Scientific and Technical Conference (Ivano-Frankivsk; Yaremche, February 1-5, 2022). – 2022. – C. 33–35.

11. Xianning S., Stupnytskyy V. Influence of tribological factors on tool wear during machining of titanium alloys // Modern technologies in industrial production: theses of the IX All-Ukrainian Scientific and Technical Conference (Sumy, April 19-22, 2022). – 2022.
– C. 55–56

12. Stupnytskyy V., She Xianning. Method of filtering and smoothing of digital results of simulation modeling in DEFORM 2D. Proceedings of the XX International Scientific and Technical Conference "Heavy Engineering. Problems and prospects of development" (Ternopil-Kramatorsk, September 01 - 03, 2022).- P.192-193.

2N/I	СТ
JIVI	

АНОТАЦІЯ 1
ABSTRACT
ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СИМВОЛІВ, ОДИНИЦЬ
ВИМІРЮВАННЯ, СКОРОЧЕНЬ
ВСТУП
РОЗДІЛ 1 СУЧАСНИЙ СТАН ТЕХНОЛОГІЧНОГО ЗАБЕЗПЕЧЕННЯ ТА
РОЗРОБЛЕННЯ МЕТОДІВ ПРОГНОЗУЮЧОГО МОДЕЛЮВАННЯ ПРОЦЕСІВ
МЕХАНІЧНОГО ОБРОБЛЕННЯ ВИРОБІВ З ТИТАНОВИХ СПЛАВІВ 40
1.1. Аналіз літературних джерел за станом питання оброблюваності
титанових сплавів
1.2. Основні напрямки сучасних досліджень інженерії поверхонь підчас
оброблення титанових сплавів53
1.3. Аналіз результатів досліджень динамічних процесів різання
титаномістких сплавів
1.4. Аналіз впливу трибомеханічних чинників на формування силових та
напружено-деформаційних параметрів різання титанових сплавів та
зносостійкість різального інструменту 68
1.5. Мета і задачі дослідження74
РОЗДІЛ 2 МЕТОДИКА ДОСЛІДЖЕНЬ ФУНКЦІОНАЛЬНО-
ОРІЄНТОВАНОГО ТЕХНОЛОГІЧНОГО ПРОЦЕСУ МЕХАНІЧНОГО
ОБРОБЛЕННЯ ДЕТАЛЕЙ З ТИТАНОВОГО СПЛАВУ
2.1. Методика імітаційного моделювання напружено-деформованого та
термодинамічного стану заготовки з титанового сплаву в зоні різання на основі
теорії скінчених елементів78
2.2. Особливості імітаційного моделювання процесу механічного
оброблення виробів з титанового сплаву в системі DEFORM 2D 85
2.3. Методика досліджень динамічних процесів системи ВПІЗ підчас
оброблення виробів з титаномістких сплавів

Висновки до розділу 2 102 ДОСЛІДЖЕННЯ СИЛОВИХ ТА ТЕРМОДИНАМІЧНИХ РОЗДІЛ З ЧИННИКІВ МЕХАНІЧНОГО ОБРОБЛЕННЯ ДЕТАЛЕЙ З ТИТАНОВИХ СПЛАВІВ 3.1. Імітаційні та аналітичні дослідження процесів формоутворення 3.2. Аналіз впливу силових чинників на формування напруженодеформованого стану заготовки 121 3.3. Аналіз впливу термодинамічних чинників на формування напруженодеформованого стану заготовки 127 3.4. Особливості процесу стружкоутворення підчас механічного оброблення титанових сплавів та його вплив на формування залишкових Висновки до розділу 3 138 РОЗДІЛ 4 ДОСЛІДЖЕННЯ ВПЛИВУ ТРИБОТЕХНІЧНИХ ФАКТОРІВ НА НАПРУЖЕНО-ДЕФОРМОВАНИЙ І ТЕРМОДИНАМІЧНИЙ СТАН ЗАГОТОВКИ ПРИ МЕХАНІЧНОМУ ОБРОБЛЕННІ ТИТАНОВИХ СПЛАВІВ 143 4.1. Особливості постановки задачі аналізу впливу трибології різання 4.2. Аналіз результатів імітаційного моделювання впливу триботехнічних параметрів на силові та термодинамічні процеси різання титанових сплавів.. 145 4.3. Імітаційні та експериментальні дослідження зношування інструменту підчас оброблення титанових сплавів......154 4.4. Експериментальні дослідження зношування різального інструменту Висновки до розділу 4 165 РОЗДІЛ 5 ДОСЛІДЖЕННЯ ВІБРАЦІЙНИХ ПРОЦЕСІВ РІЗАННЯ ВИРОБІВ З ТИТАНОВИХ СПЛАВІВ 170 5.1. Особливості моделювання динамічної картини системи ВПІЗ підчас

механічного оброблення виробів з титанових сплавів...... 170

5.2. Моделювання динамічних процесів різання титанових сплавів в
Deform 2D
5.3. Аналітичне моделювання динамічних процесів різання титанових
сплавів
5.4. Експериментальні дослідження186
Висновки до розділу 5191
ЗАГАЛЬНІ ВИСНОВКИ 194
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ДОДАТКИ
Додаток А. Код для двохвимірної фильтрації даних силового та термолинамічного розрахунку параметрів для DEFORM 2D
Лодаток Б Результати моделювання коефіцієнту усалки стружки від
швилкості різання 219
Лодаток В Результати моделювання температури різання від глибини
різання 294
Лолаток Г Результати молепювання сили різання від глибини різання
312
Додаток Д. Результати моделювання температури різання від переднього
кута різального інструменту
Лолаток Е. Результати молелювання сили різання від переднього кута
різального інструменту
Лодаток Ж. Програма опрацювання результатів експериментальних
лоспілжень молепювання линамічних процесів різання титанових сплавів в
системі MATLAB/SIMULINK

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СИМВОЛІВ, ОДИНИЦЬ

ВИМІРЮВАННЯ, СКОРОЧЕНЬ

ВПІЗ	Верстат-Пристрій-Інструмент-Заготовка
MFTW	Machine-Fixture-Tool-Workpiece
CAF	Computer Aided Forming
САПР	Система автоматизованого проектування
ΤП	Технологічний процес
ккд	Коефіцієнт корисної дії
ЧПК	Числове програмне керування
ТУ	Технічні умови
АЧХ	Амплітудно-частотна характеристика
ШПФ	Швидке перетворення Фур' ϵ
FFT	Fast Fourier transform

ВСТУП

Актуальність теми. Широке застосування титаномістких матеріалів у авіаційній, автомобілебудівній, військово-технічній та інших високотехнологічних галузях промисловості обумовлено унікальним ефективних комплексом експлуатаційних властивостей цих сплавів, таких як висока питома міцність при малій густині, корозійна стійкість, діамагнітність, висока терморезистивність тощо. Однак висока вартість вихідного заготівельного матеріалу та складність механічного оброблення значно скорочує можливості їх застосування. Оскільки зміна вартості титанових сплавів є непідвладною споживачу, то більш ефективне застосування титанових сплавів у різних галузях промисловості можливе лише за умови зменшення витрат на виготовлення виробів з цих матеріалів. Таким чином, оптимізація технологічної собівартості деталей із титанових сплавів за умови забезпечення комплексу їх функціональних властивостей у потенційних умовах експлуатації є функціонально-орієнтованого науково-практичним завданням важливим технологічного проєктування.

Для наукомісткого машинобудівного виробництва важливим етапом забезпечення його ефективності є технологічне проєктування, що базується на результатах дослідження процесів формоутворення матеріалів в умовах, для яких технологічні системи або їх елементи лише створюються. Наприклад, вивчаються процеси різання інструментами з нових надтвердих матеріалів, новітні покриття та модернізована геометрія різального леза, нанообробка тощо. Ці завдання найкраще вирішувати, використовуючи поєднання імітаційного, аналітичного та досвіднодослідження процесів механічного оброблення виробів. експерименталього Особливо важливо реалізовувати такі результати для високовартісних матеріалів,

якими, безумовно, є титанові сплави. Тобто, створення адекватних імітаційних моделей різання є одним з найбільш ефективних сучасних методів наукових досліджень в технології машинобудування. У зв'язку з цим, теоретичне вивчення та прогнозне моделювання напружено-деформаційного, термодинамічного стану та формування поверхневого шару виробів в процесі та після механічного оброблення, використання обгрунтованих критеріїв деформації та руйнування для опису поведінки матеріалів під час формоутворення поверхонь з урахуванням фактичного стану поверхонь контакту інструменту після експериментальних підтверджень адекватності, є важливим науково-практичним завданням.

Зв'язок роботи з науковими програмами, планами, темами.

Дисертаційна робота виконувалася відповідно до плану наукових робіт кафедри «Робототехніка та інтегровані технології машинобудування» Національного університету «Львівська політехніка» в рамках держбюджетної роботи МОН України «Комплексна система функціонально-орієнтованого проектування механічного оброблення деталей з титанових та хромонікелевих сплавів» (№ держреєстрації 0119U101127), де автор був виконавцем проекту. Здобувач приймав участь у НДР «Комплексна система функціонально-орієнтованого проектування механічного оброблення деталей з важкооброблюваних матеріалів для військово-промислового комплексу» згідно з наказом Міністерства освіти і науки України від 20.03.2022 №264 «Про затвердження плану заходів з реалізації міжнародних наукових та науковотехнічних програм і проектів за напрямом «Наука» на 2022 рік» та наказом Міністерства освіти і науки України від 14.04.2022 № 335 «Про фінансування спільних українсько-литовських науково-дослідних проектів у 2022 році».

Дисертаційні дослідження узгоджуються із Законом України про пріоритетні напрями інноваційної діяльності в Україні (Відомості Верховної Ради України (ВВР), 2012, № 19-20, ст. 166 (із змінами внесеними згідно із Законом № 5460-VI від 16.10.2012, ВВР, 2014, № 2-3, ст. 41)), де в статті 4 "Стратегічні пріоритетні напрямки інноваційної діяльності на 2011-2021 роки", декларується освоєння нових техно-логій транспортування енергії, впровадження енергоефективних, ресурсозбері-гаючих технологій, освоєння альтернативних джерел енергії.

Метою дисертаційної роботи є підвищення ефективності механічного оброблення виробів з титанових сплавів шляхом вибору структури та параметрів технологічних операцій на основі імітаційного реологічного моделювання процесів різання з врахуванням напружено-деформаційних та термодинамічних особливостей формоутворення виробів.

Для досягнення поставленої мети необхідно вирішити наступні задачі досліджень:

1. Вдосконалити проблемно-орієнтовану методику реологічного імітаційного моделювання процесів різання та аналізу фізико-механічних параметрів формоутворення поверхонь виробів з титанового сплаву з використанням програмного забезпечення на основі методу скінченних елементів.

2. Провести аналіз впливу технологічних параметрів операцій механічного оброблення на формування силових, термодинамічних, напружено-деформаційних параметрів різання виробів з титаномістких сплавів. Результатами такого проблемноорієнтованого моделювання є прогнозування впливу параметрів технологічного процесу на формування експлуатаційних властивостей продукту.

3. Дослідити вплив трибомеханічних чинників процесу механічного

оброблення виробів на показники зношування різального інструменту та провести комплексний аналіз ефективного вибору зносостійкого інструментального покриття, геометрії інструментального клина та використання мастильно-охолоджувальних рідин підчас оброблення виробів з титанових сплавів. Провести експериментальний аналіз верифікації цих досліджень.

4. Провести теоретичні та експериментальні дослідження динамічних процесів механічного оброблення титанових сплавів з використанням результатів імітаційного моделювання та врахуванням фізико-механічних особливостей формоутворення оброблюваних поверхонью

Об'єкт дослідження – функціонально-орієнтований технологічний процес механічного оброблення виробів з титаномісткого матеріалу.

Предмет дослідження – напружено-деформаційні та термодинамічні процеси формоутворення виробів з титанових сплавів.

Методи дослідження. При проведенні досліджень були застосованікласичні положення технології машинобудування, теорії різання та теорії механічних коливань. Під час виконання дисертаційної роботи застосовувалися сучасні методи модельних та натурних досліджень. Для імітаційного моделювання напруженодеформованого стану заготовки зоні різання в роботі використано метод скінченних елементів. Аналіз формування вихідних параметрів імітаційних досліджень деформаційних, термодинамічних та залишково-напружених параметрів основі оброблюваних поверхонь виконувався на результатів реологічного моделювання в системі Deform 2D. У методиках опрацювання результатів досліджень застосовано числові методи розв'язання систем диференціальних рівнянь та чисельного інтегрування.

Наукова новизна отриманих результатів.

1. На основі системного аналізу і узагальнення досвіду впровадження термодинамічного наукових засад інженерії поверхонь, аналізу впливу трибомеханічних чинників процесу різання на формування силових та напруженодеформаційних параметрів виробів, особливостей використання імітаційних моделей критеріїв руйнування важкооброблюваних матеріалів сформульована, та обґрунтована, теоретично та практично реалізована методика рекомендацій щодо раціонального вибору режимів та інструментального забезпечення процесу різання титаномістких сплавів.

імітаційного 2. Запропонована i нова методика поєднання експериментального дослідження трибомеханічних процесів різання титанових сплавів. Відмінність даного підходу вирішення задачі вибору найбільш ефективних умов та режимів різання з трибомеханічної точки зору полягає в тому, що, в якості вихідних даних для моделювання пропонується щоразу інший коефіцієнт тертя, і кожна така задача імітаційного моделювання процесу механічного оброблення вирішується для різних параметрів та режимів різання. На другому етапі проводиться аналіз впливу цих наперед заданих коефіцієнтів на напружено-деформований і термодинамічний стан заготовки та інструменту при різанні, а також на динаміку зношування інструменту, а на третьому етапі дослідження пропонуються шляхи забезпечення аналітично обґрунтованих триботехнічних умови різання.

3. В результаті теоретичних та експериментальних досліджень доведено, що характерна саме для механічного оброблення титанових сплавів динаміка дисонансної циклічної зміни складових сил різання є наслідком адіабатичного зсуву в зоні стружкоутворення, що і підтверджується зубчастоподібною формою стружки.

Встановлено, що механізм такого стружкоутворення при механічному обробленні титанових сплавів обумовлений втратою термопластичної стабільності в межах зони первинного зсуву. Результати теоретичних та експериментальних досліджень підтверджуюють те, що циклічність та інтенсивність динамічного процесу навантаження та зношування різального інструменту при механічному обробленні титанового сплаву приорітетно залежить від швидкості та глибини різання.

4. Теоретично та експериментально підтверджено, що коливання навантаження на інструмент призводить до синхронної зміни швидкості зношування як по передній, так і по задній поверхні, що обумовлено специфікою триботехнічних умов при різанні титанового сплаву. Встановлено, що максимальні результати імітаційного моделювання процесів зношування знаходяться в діапазоні швидкостей різання приблизно 60-70 м/хв за критерієм Арчарда та 100-120 м/хв за критерієм Усуї. На основі порівняння з проведеними експериментальними результатами та відомими з літературних джерел даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при механічному обробленні титанового сплаву.

5. Вперше запропонована нова методика поєднання результатів аналітичного моделювання вібраційних процесів, що виникають підчас механічного оброблення виробів з титанових сплівів, з результатами імітаційного моделювання процесів різання. Такий науковий підхід дозволить врахувати як фізико-механічні особливості формоутворення оброблюваних поверхонь виробу з титаномісткого матеріалу, так і реальну систему жорсткостей та демпфуючих властивостей технологічної системи «Верстат-Пристрій-Інструмент-Заготовка» (ВПІЗ) та їх комплексну взаємодію.

6. На основі експериментальних та аналітичних досліджень чотиримасової автоколивальної схеми металорізального верстата з урахуванням результатів

імітаційного моделювання процесу різання титанових сплавів виявлено резонансні амплітудно-частотні характеристики при обробці таких матеріалів з різними режимами оброблення та схемами закріплення заготовки. Доведено, що амплітудне переміщення супорту зміщується по частоті в протифазі відносно заготовки та шпинделя в результаті впливу на них сили різання. Величина цього зміщення прямо пропорційна силі різання і обернено пропорційна їх жорсткостям. Причому відгук окремих елементів системи ВПІЗ є змінним для різних частот збудження і залежить від близькості до власного резонансу її елементів.

Впровадження запропонованих методик аналізу результатів імітаційних, аналітичних та експериментальних досліджень трибомеханічних, силових, термодинамічних та напружено-деформаційних параметрів дозволяє реалізовувати процес логічного науково-обґрунтованого направленого вибору режимів різання та інструментального забезпечення технологічних операцій механічного оброблення титаномістких виробів, що базується на вирішенні проблем, причини формування яких є однозначно зрозумілими, чисельно та якісно оціненими та адекватними.

Практичне значення отриманих результатів:

1. Наведено особливості створення імітаційних моделей напруженодеформованого та термодинамічного стану заготовки з титанового сплаву в зоні різання на основі теорії скінчених елементів, реологічної моделі оброблюваного матеріалу та приорітетність використання енергетичних, деформаційних та силових критеріїв руйнування титанових сплавів (Райса-Трейсі, Мак-Клінтока, Кокрофта-Лейтема тощо) в процесі їх механічного оброблення. Проаналізована доцільність використання типу моделювання деформації (Lagrange Incremental або Steady-State
Machining), ітераційного методу дослідження (прямий ітераційний чи метод Ньютона-Рафсена), типу розв'язувача деформації та температури (метод Skyline або метод розріджених матриць), а також похибки збіжності рішення (по силовому вектору та по вектору швидкості деформації).

2. Складність формалізації термічних силових, та напруженоy деформаційних результатів імітаційного моделювання процесу різання полягає у значній зашумленості результатів розрахунків, виконаних методом скінченних елементів, що характерно для більшості високочастотних динамічних задач. Для ефективного опрацювання результатів роботи системи DEFORM 2D в дисертаційній роботі вирішено 2 найважливіші задачі – по-перше, це фільтрація шумового сигналу із збереженням граничних значень результатів імітаційного дослідження максимуму чутливості; по-друге, вирішення задачі апроксимації та інтерполяції фільтрованої функції параметрів різання за часом (перетворенням Фур'є). В якості математичного забезпечення фільтраційної процедури згладжування даних реологічного моделювання в системі DEFORM 2D, тобто підвищення точності даних без спотворення тенденції сигналу, запропоновано використати математичний апарат Савицького-Гола. Розроблена програмна реалізація цього методу фільтрації даних силового та термодинамічного розрахунку параметрів для DEFORM 2D у інтерпретованій об'єктно-орієнтованій мові програмування Python 3.10.

3. Запропонована оригінальна методика моделювання залишкових деформацій та напружень І роду в системі Deform 2D, що передбачає використання сітки референтних точок вздовж обробленої поверхні та по глибині заготовки в зоні її термостабілізації. Крива залишкових напружень І роду відображає інтерференційну картину прояву флуктаційних розтягувальних (температурних та фрикційних) та стискаючих (силових) навантажень. Середньостатистичне значення залишкових

напружень в зоні термічної стабілізації (при температурі близько 100°С) складатиме приблизно 34 МПа при обробленні деталі з сплаву з використанням режимів різання - S=0,25 мм; t=0,5 мм; V=50 м/хв. Аналогічні дослідження формування залишкових напружень були проведені також для інших режимів оброблення. Аналіз впливу силових та термічних явищ, що супроводжують процеси різання у змінних умовах, доводить, що із збільшенням сили та температури в зоні різання залишкові напруження зростатимуть і до певної межі носить майже лінійний характер.

4. Аналіз амплітудно-частотних характеристик коливань верстата та заготовки при різних умовах закріплення (закріплення в 3-х кулачковому самоцентрувальному патроні токарного верстата в порівнянні із закріпленням в центрах) показав, що наближення частоти власних коливань елемента системи ВПІЗ до частоти збуджуючої сили (локального максимуму) призводить до значного збільшення амплітуди коливань інструмента та заготовки (приблизно в 12 разів). Це суттєво впливає на точність і якість оброблення (в першу чергу, на вібраційну складову шорсткості). Встановлено, що максимальна амплітуда коливань шпинделя вдвічі перевищує максимальну амплітуду коливань супорта. Причиною цього є різне співвідношення значень власних частот коливань супорта і шпинделя (fs =176 Гц; fh =393 Гц) до локального максимуму амплітудно-частотної характеристики сили різання (f=150 Гц)

5. Результати дисертаційної роботи використовуються в навчальному процесі кафедри «Робототехніка та інтегровані технології машинобудування» Національного університету «Львівська політехніка» при підготовці бакалаврів і магістрів за спеціальністю 131 «Прикладна механіка».

Особистий внесок здобувача. Основні наукові положення і результати, які виносяться на захист дисертаційної роботи, одержано автором самостійно. Серед

них: розробка методик; проведення експериментальних досліджень; обробка отриманих результатів і їх аналіз; розробка практичних рекомендацій для впровадження результатів досліджень. При цьомуавтором виконано розрахунки та обробку результатів експериментів. Основні результати досліджень викладено в роботах, опублікованих у співавторстві, в яких автор розробив і теоретично обґрунтував методики досліджень, обробив та систематизував одержані результати експериментів.

Апробація результатів дисертації. Основні результати роботи докладались і обговорювались на науково-практичних та науково-технічних конференціях: 1st International Conference "Drives of vehicles, computer modeling of constructions and technological systems» (Санок, Польща 22-24 вересня, 2019 р); IX Міжнародна науково-практична конференція «Прогресивні технології в машинобудуванні (Львів-Плай, 3-7 лютого, 2020 p.); Grabchenko's International Conference on Advanced Manufacturing Processes (InterPartner-2020) (Одеса, 8-11 вересня, 2020 р.); XIX-XX Міжнародна науково-технічна конференція «Машинобудування очима молодих: прогресивні ідеї – наука – виробництво» (Суми, 25-26 листопада 2020 р.), International Youth Scientific and Technical Conference «Young science - robotics and nano-technologies of modern mechanical engineering» (Краматорськ, 14-15 квітня, 2021 p.); 4-th International Conference «Advances in Design, Simulation and Manufacturing. DSMIE-2020» (Львів, 8-11 червня 2021 р.); Х Міжнародна науково-практична конференція «Прогресивні технології в машинобудуванні» (Івано-Франківськ -Яремче, 1-5 лютого 2022 р.); IX Всеукраїнська науково-технічна конференція «Сучасні технології у промисловому виробництві» (Суми, 19-22 квітня 2022 р.); 5-th International Conference "Advances in Design, Simulation and Manufacturing. DSMIE-2020" (Познань, Польща 7-10 червня 2022 р.); XX Міжнародна науково-технічна

конференція «Важке машинобудування. Проблеми та перспективи розвитку» (Краматорськ-Тернопіль, 1 - 3 вересня 2022 р.)

Публікації за матеріалами дисертації. Основний зміст дисертації відображено у 12 наукових працях, з них: 1 стаття у наукових фахових виданнях України, 4 - у виданнях, включених до міжнародної наукометричної бази Scopus та Web of Science i 7 тез доповідей.

Структура і обсяг дисертації. Дисертаційна робота складається з анотації дво ма мовами, переліку умовних позначень, символів, одиниць вимірювання, скорочеь, вступу, п'яти розділів, висновків, списку використаних джерел, додатків. Загальний обсяг дисертації становить 378 сторінок, основна частина дисертації займає 215 сторінок, з них 68 рисунків по тексту; 1 таблиць по тексту; списку використаних джерел з 139 найменувань на 206 - 215 сторінках, 7 додатків на 216 - 378 сторінках.

РОЗДІЛ 1

СУЧАСНИЙ СТАН ТЕХНОЛОГІЧНОГО ЗАБЕЗПЕЧЕННЯ ТА РОЗРОБЛЕННЯ МЕТОДІВ ПРОГНОЗУЮЧОГО МОДЕЛЮВАННЯ ПРОЦЕСІВ МЕХАНІЧНОГО ОБРОБЛЕННЯ ВИРОБІВ З ТИТАНОВИХ СПЛАВІВ

1.1. Аналіз літературних джерел за станом питання оброблюваності титанових сплавів

Титанові сплави належать до конструктивних матеріалів, які активно використовуються в високотехнологічних галузях машинобудування, таких як аерокосмічна галузь, автомобілебудування, військово-промисловий комплекс тощо, на передусім завдяки таким перевагам як: висока питома міцність у поєднанні з незначною густиною; висока термостійкість; ефективне протистояння корозійному руйнуванню при експлуатації у різноманітних агресивних середовищах. Очевидно, що аналіз механічних та фізико-хімічних параметрів матеріалу, що забезпечують ці властивості, дозволяють віднести титаномісткі сплави до класу важкооброблюваних матеріалів.

Вивченню методів та способів механічного оброблення важкооброблюваних матеріалів на основі титану присвячено низку фундаментальних досліджень таких відомих вчених, як А.І. Грабченко, В.О. Залога, Ю.М Внуков, В.М. Подураєв, І.Г. Жарков, П. Давім, Дж. І. Армарего, П.П. Армстронг, Л.В. Бергер, Р.Х. Браун, В.Л. Вейц, Б.К. Вульф та ін.

Аналіз використання сучасних наукових методів оптимізації параметрів різання важкооброблюваних матеріалів та вибору різального інструменту у високотехнологічних галузях машинобудування все ще є недосконалими. Так, В.П. Астахов наводить такі результати аналізу операцій механічного оброблення в автомобільній промисловості США [1]:

1) правильна геометрія обрана тільки менш ніж 30% різального інструменту;

оптимальні параметри механічного оброблення використовуються лише для
48% операцій;

 лише 57% інструментів використовуються до досягнення повної розрахункової стійкості;

4) правильний інструментальний матеріал обраний тільки для менш ніж 30% використовуваних інструментів;

5) раціональні марки мастильно-охолоджуючих рідин (МОР) та умови їхподачі в зону оброблення застосовуються лише для 42% операцій.

Такі недоліки технологічної підготовки виробництва пояснюються тим, що існуючі теорії та засновані на них моделі різання металів не відповідають дійсності навіть у першому наближенні [2]. Тому проектування структури та параметрів операцій механічного оброблення все ще ґрунтується на суто емпіричних даних та на виробничому досвіді. Адекватний опис та моделювання процесу різання має особливе значення при оптимізації обробки титанових сплавів.

Дослідження щодо визначення умов, що забезпечують зниження собівартості машин [3], показало, що зменшення кількості різального інструменту на 20% призводить до зниження собівартості виробу лише на 0,6%. Дворазове збільшення терміну служби різального інструменту також сприяє незначному зниженню собівартості виробу (на 1,5%). Але збільшення продуктивності обробки за рахунок використання більш ефективних параметрів різання та правильної геометрії різальних лез на 20% призводить до зниження собівартості виробу на 15%!

Таким чином, можна дійти висновку, що технологічні можливості процесів різання в реальних виробничих умовах, як правило, використовуються не в повному обсязі. Найчастіше це пов'язано з тим, що дослідження умов зниження параметрів силового напруження процесу різання є малоефективні. Це вкрай важливо при обробці титанових сплавів, оскільки цей матеріал коштує дорого, вироби дуже якісні, а експлуатаційні вимоги високі. У зв'язку з цим, актуальними є подальші дослідження цих процесів на основі моделювання та системного аналізу механіки процесу різання. Це дасть можливість оцінити з системної точки зору технологічні можливості підвищення продуктивності і якості обробки.

Перевагами титанових сплавів у порівнянні з альтернативними алюмінієвими та магнієвими сплавами є висока термостійкість, яка в умовах інтенсивного використання у складних термодинамічних умовах з надлишком компенсує різницю у густині (щодо сплавів на основі магнію ця різниця становить 1,8 рази, алюмінію - 2,7 рази) [4]. Причому більш суттєва перевага титанових сплавів над алюмінієвими та магнієвими сплавами спостерігається при експлуатаційних температурах вище 300°С, враховуючи те, що з підвищенням температури міцність алюмінієвих та магнієвих сплавів суттєво зменшується, а питома міцність титанових сплавів залишається практично незмінною. З іншої сторони, титанові сплави переважають більшість нержавіючих та термостійких сталей за параметром відношення міцності до густини при експлуатаційних температурах до 400-500°С. Крім того, якщо зважати, що використання повного потенціалу міцності термостійких сплавів є неможливим через необхідність забезпечення жорсткості конструкцій, а для виробів авіаційної техніки – забезпечення аеродинамічної конфігурації окремих поверхонь (наприклад, профіля лопатки турбіни тощо), то виявляється, що за умови заміни сталевих деталей на титанові може бути забезпечена суттєва економія ваги виробу без втрати параметрів міцності таких виробів.

При цьому для більшості високотехнологічних виробів з титанових сплавів на стадії механічного оброблення та термічного зміцнення необхідно забезпечити такі експлуатаційні вимоги [5]:

 Забезпечення стабільності високих параметрів міцності протягом короткочасного та тривалого експлуатаційного термодинамічного навантаження. Дотримання лімітуючих вимог щодо границі міцності виробів титанового сплаву при температурі 20°С не менше 100 Па; протягом 100-годинного терміну функціонування виробу при 400°С - 75 Па, а при 500° С - 65 Па.

 Забезпечення наступних пластичних властивостей виробів з титанового сплаву, які підлягають значним динамічним навантаженням (лопатки турбін тощо) при кімнатній температурі: відносного видовження – не менше 10%, поперечного звуження – до 30%, ударної в'язкості - 3 Па·м.

3. Термостійкість титанового сплаву забезпечується шляхом тривалої (не менше 100 годин експлуатації в умовах високих температур і ударних, циклічних та знакозмінних напружень) підтримки пластичних властивостей, тобто сплав не повинен набувати більше 5% надлишкової крихкості підчас 100-годинного експлуатаційного термічного навантаження в діапазоні до 500° С.

4. Вимоги щодо втомної міцності при високих температурах гарантуються шляхом забезпечення ліміту витривалості виробів без концентраторів напружень при експлуатації без термічного навантаження (20° С) - не менше 45% від межі міцності, а при 400° С - щонайменше 50% межі міцності.

5. Висока межа стійкості щодо повзучості повинна забезпечуватись для виробів, які підлягають домінуючим напруженням на розтяг (наприклад, компресорні диски),

при експлуатаційній температурі до 400° С шляхом гарантування залишкової деформації протягом 100 годин роботи до 0,2%.

В роботі [6] наведено взаємозв'язок між фізико-механічними властивостями титанових сплавів та оброблюваністю матріалу (рис. 1.1).

Рис. 1.1 Взаємозв'язок між властивостями матеріалу та проблеми щодо оброблюваності титанового сплаву

Технологічне забезпечення цих вимог ускладнене тим, що титанові сплави належать до групи важкооброблюваних матеріалів завдяки високому відношенню межі текучості до тимчасової стійкості до руйнування [7, 8]. Наприклад, це співвідношення для титанових сплавів знаходиться в межах 0,85-0,95, а для сталей - лише 0,65-0,75. У той же час механічні характеристики титанових сплавів (відносне видовження та зменшення площі у поперечному перерізі виробу) порівняно з жароміцними сталями значно менші (на 8-12%). Проте, зниження пластичних властивостей оброблюваного шару заготовки під час механічного оброблення сприяє появі мікро- та макротріщин перед лезом різального інструменту [9]. Це явище значно

ускладнює процес пластичного зсуву в процесі формоутворення оброблюваної поверхні та створює ризик появи циклічних залишкових напружень розтягу [10].

Відтак, стружка, утворена в процесі оброблення титанового сплаву, має чітко виражені дефекти циклічної зубчастої форми (serrated chip – *англ*.), яка поділяє її на дуже слабо деформовані елементи, з'єднані тонким і сильно деформованим контактним шаром [11] (рис. 1.2).

Рис. 1.2. Зубчастоподібна форма стружки, утвореної підчає оброблення титанового сплаву Ті-6АІ-4V [12]

Оскільки процес стружкоутворення € узагальненим відображенням комплексної дії силових, термодинамічних та напружено-деформаційних процесів різання, то важливо мати більш поглиблене уявлення про основні чинники, які формують механізм утворення стружки. Багато досліджень приділяли увагу механізму утворення зубчастого механізму формоутворення стружки, які, в основному, можна узагальнити як теорію адіабатного зсуву [13, 14] та теорію періодичних тріщин [14, 15, 16]. У формуванні стружки домінують чинники механічних властивостей матеріалу та силові фактори під час процесу різання, при якому матеріал зазнає великої локалізованої деформації в зоні первинного зсуву. Проте, динамічна механічна поведінка матеріалів під впливом перодичності проявів великих та високочастотних деформацій, ще й в умовах підвищених температур все

ще недостатньо вивчена, і відповідний теоретичний аналіз важко провести. Аналіз поведінки матеріалу в процесі формування стружки зручніше та доцільніше аналізувати методом скінченних елементів [17].

Рис. 1.3. Результати моделювання процесу формоутворення стружки в системі Abaqus/CAE [18]

З іншої сторони, внаслідок сильної адгезії та високих температур матеріал титанового сплаву, що підлягає обробці, прилипає до різального інструменту, що спричинює значне зростання сили тертя та невизначеності у мікрогеометричній формі різального леза (рис. 1.3). Кут зсуву при різанні титанових сплавів досягає 38 ... 44°. Проте, коли швидкість різання перевищує 60 м/хв, стружка формується в умовах коефіцієнту усадки більше 1, тобто стружка має меншу довжину, ніж шлях різання. Причому, у [19] відзначається, що температура в зоні різання суттєво зростає із збільшенням швидкості різання та меншою мірою із збільшенням подачі. Це є наслідком характерного для титанового сплаву поєднання високої границі питомої міцності з великою термостійкістю матеріалу.

Рис. 1.4. Формування наросту під час оброблення титанового сплаву [20]

роботі І. Дж. І. Армарего та Р.Х. Брауна розглянуто специфіку У стружкоутворення при обробці різанням важкооброюлюваних титаномістких сплавів. Виходячи з особливих умов різання таких матеріалів, зроблено висновок, що головною причиною зношування різальних інструментів є специфіка пластичного зсуву. В роботах [21] наведено модель зони деформації металу, що має два види модель з однією площиною зсуву і модель з розвиненою площиною. Оскільки оброблюваність титанових сплавів у 3-4 рази менше, ніж для вуглецевих сталей, і в 5-7 разів менше, ніж для алюмінієвих сплавів [7, 22], то постає питання вибору таких параметрів режимів оброблення, геометрії різального леза та технологічного середовища, при яких силове та термодинамічне навантаження буде найменшим. Так, коефіцієнт відносної оброблюваності титанових сплавів марки ВТ6 (аналог Ті-6АІ-4V) щодо сталі 45 (аналог AISI 1045) становить 0,22-0,26 [8]. Тому більшість дослідників [23] рекомендує під час обробки титанових сплавів використовувати низькі швидкості різання (до 50 м/хв) при невеликих подачах (до 0,2 мм/об) з інтенсивним підведенням мастильно-охолоджуючих рідин [24]. Ця рекомендація ще аргументується тим, що при високій (більше 50 м/хв) швидкості різання виникає

хімічна реакція між стружкою та матеріалом різального інструменту, що може призвести до раптової появи сколів та руйнуванню різальної пластини. У зв'язку з цим, інструментальні матеріали повинні підбиратись за умови підвищеної термодинамічної міцності (тобто надається перевага вольфрамо-кобальтовим сплавам перед титано-кобальтовими), низький вміст кобальту (наприклад, пріоритет вибору твердого сплаву ВКЗ перед ВК6 та ВК8) а також інертності щодо хімічної взаємодії з титаном. В цих умовах різальний інструмент повинен бути виготовлений з більш зносостійких матеріалів інструменту для обробки титанових сплавів, ніж для вуглецевих сталей, віддаючи перевагу твердим сплавам (ВКЗМ, ВК6, ВК6ОМ, ВК4) [25].

Компанія Sandvik [26] рекомендує використовувати пластини 3 інструментального сплаву GC1105 для обробки титанових виробів. Цей твердий сплав з покриттям PVD забезпечує високу надійність різальних лез і високу стійкість при обробці матеріалів, схильних до налипання або утворення нашарувань на різальних пластинах. Специфічна загострена геометрія різального леза гарантує високу працездатність інструменту у поєднанні з рівномірним зношуванням леза. Проте, навіть якщо ці умови будуть забезпечені, швидкість різання рекомендується зменшувати в 3-4 рази порівняно з аналогічним параметром підчас механічного оброблення середньо вуглецевих сталей, щоб забезпечити достатній ресурс інструменту, особливо для верстатів з ЧПК [27].

Під час різання титанових сплавів слід зважити на виникнення ряду негативних чинників, які суттєво впливатимуть на показники оброблюваності такого матеріалу [28, 29, 30, 31, 32]:

- висока температура в зоні різання, що призводить до розм'якшення твердих сплавів інструменту. Це сприяє зменшенню зносостійкості інструменту та швидкості різання, що, в свою чергу, негативно впливає на загальну продуктивність обробки;

- висока твердість і міцність титанових сплавів, які створюють великі контактні напруження в зоні різання, збільшують ймовірність крихкого руйнування різального інструменту;

- низька теплопровідність і висока міцність матеріалів призводять до збільшення інтенсивності теплового потоку в напрямку інструменту. Це спричинює зменшення терміну служби інструменту в результаті пластичного руйнування різального леза;

- висока хімічна активність титаномістких матеріалів зі складною оброблюваністю, особливо при високих температурах різання, призводить до активації фізико-хімічних процесів на лезах інструменту, і це є основною причиною посилення адгезійної втоми та дифузійного зношування інструменту;

- схильність титанових сплавів до інтенсивного абразивного зношування інструменту підчас їх оброблення.

Порівняння механічних характеристик важкооброблюваних високолегованих сталей і сплавів і звичайних вуглецевих сталей показує, що значення реальної межі міцності і твердості НВ при звичайній температурі і відсутності деформації (зміцнення), приблизно рівні. Тому гірша оброблюваність жароміцних і нержавіючих сталей і сплавів визначається іншими фізико-механічними і хімічними властивостями і, перш за все, структурою, механічними характеристиками, визначальними їх властивості не тільки в вихідному, але і в зміцненому стані а також при нагріванні, і зумовлена термодинамічними показниками, що визначають властивості матеріалу при підвищених температурах [32]. Більшість науковців відзначають наступні особливості різання важкооброблюваних жароміцних і нержавіючих сталей і сплавів:

1. Найбільш значущою причиною складності оброблювання вищеназваних матеріалів є значне зміцнення (ущільнення) матеріалу, як результат процесу пластичної деформації металу підчас різання [32]. Підвищений наклеп пояснюється специфічними особливостями будови кристалічної гратки цих матеріалів. Характеристикою, що визначає пластичність або здатність матеріалу до зміцнення, є величина умовної межі текучості, що відповідає 0,2-відсоткової залишкової деформації до межі міцності - $\sigma_{0.2}/\sigma_{\rm B}$. Чим менше це відношення, тим більш пластичний матеріал і тим більше роботи і сил різання вимагає він для різання. Величина цього відношення для титанових сплавів становить 0,4 ... 0,45, в той час як для звичайних конструкційних сталей ця величина складає 0,6 ... 0,65 і більше [33]. Внаслідок підвищеної здатності до зміцнення при пластичній деформації таких сплавів значення в можуть зрости в 2 рази (з 600 до 1200 МПа), а при цьому відносне подовження зменшується з 40-65 до 5-10%.

2. Ще одна важлива причина низької оброблюваності титанових сплавів полягає у відносно малій теплопровідності, що призводить до підвищеної температурі в зоні контакту, а отже, до активації явищ дифузії, інтенсивному схоплюванню контактних поверхонь і руйнування різальної частини інструменту [34].

3. В наукових джерелах [30, 35] наголошується, що важливою причиною низької оброблюваності більшості титанових сплавів є здатність зберігати вихідну міцність і твердість при підвищених температурах. Така властивість призводить до високого питомого навантаженням на контактні поверхні інструменту в процесі різання. Низька теплопровідність цих матеріалів посилює дію цього чинника. Тому

висока температура на контактних поверхнях не дозволяє підвищити пластичність і зменшити твердість зрізаного шару.

4. Знижена вібростійкість системи «Верстат-Пристрій-Інструмент-Заготовка» зумовлена високим коефіцієнтом зміцнення титаномістких матеріалів при нерівномірності протікання процесу їх пластичного деформування [37]. Виникнення вібрацій призводить до високочастотних коливань силових і теплових параметрів різання а також вібраційного навантаження на інструмент. Це сприяє мікро- і макровикришуванням різальної кромки. Явища схоплювання стружки з передньою поверхнею інструменту інтенсифікуються при наявності вібрацій, що, в свою чергу, обумовлює особливо несприятливий вплив на стійкість інструменту.

Таким чином, фізично процес різання титанових сплавів можна описати по етапах [38]: спочатку робочі поверхні інструменту стикаються з відносно м'яким, не зміцненим металом і під їх впливом відбувається пластична деформація зрізуваного шару. Це супроводжується значним поглинанням енергії інструментом. На даному етапі шар, що зрізається, суттєво зміцнюється внаслідок ущільнення кристалічної гратки. Він набуває властивостей наклепаного металу і стає крихким. Через деякий час момент запас пластичності вичерпується і відбувається зсув – руйнування матеріалу Мала теплопровідність та відокремлення сегменту стружки. важкооброблюваних матеріалів призводить до різкого зниження відведення тепла в стружку і оброблювану заготовку, а отже, до підвищення температури в зоні контакту різальної частини інструменту і заготовки. Створюється своєрідна бульбашка з міцними ущільненими стінками з високою температурою та низкою пластичністю та підвищеним тиском матеріалу всередині цієї бульбашки. Потім відбувається її руйнування і процес накопичення енергії повторюється. Активізація процесів адгезії

та дифузії є характерною для цього процесу. Зношування інструменту суттєво зростає і явища налипання активізуються.

Рис. 1.5. Хромографічні картини розподілу деформацій (а) інтенсивності зміни деформацій (б) та температурного поля (в) при лезовому обробленні деталей з титанового сплаву ВТ6

В сучасному машинобудуванні існує багато шляхів підвищення оброблюваності титаномістких матеріалів. Приорітетом забезпечення £ найефективніших умов фрикційної взаємодії у підсистемі «Інструмент-Заготовка». Найбільш розповсюдженими реалізації цієї ідеї є способи, спрямовані на підвищення стійкості різальних інструментів [39]. Це є ефективним, перш за все, за умови правильного вибору марки інструментального матеріалу і геометрії різальної частини інструменту. Застосування спеціальних мастильно-охолоджувальних рідин є ще одним дієвим методом покращення оброблюваності важкооброблюваних матеріалів [40]. Нанесення спеціальних зносостійких покрить, які суттєво зменшують коефіцієнт тертя в контактній групі «Інструмент-Стружка-Заготовка» має очевидний великий потенціал у підвищенні ефективності оброблювання титанових сплавів. Тобто, для підвищення ефективності процесу обробки важкооброблюваних сплавів, серед яких є і титанові сплави, повинен бути ретельно підібраний матеріал інструменту, а також оптимізована геометрія різального леза з урахуванням оптимізації умов та режимів механічного оброблення [30]. Дослідження таких умов є одним з найважливіших завдань даної дисертаційної роботи.

1.2. Основні напрямки сучасних досліджень інженерії поверхонь підчас оброблення титанових сплавів

Вивчення питань, пов'язаних з підвищенням якості поверхневого шару деталей машин, є однією з головних проблем у такому важливому розділі машинобудівної науки, як інженерія поверхні. Термін «Інженерія поверхні» (в англомовній літературі більш розповсюджений вираз «Surface Integrity») використовують для опису стану та атрибутів обробленої поверхні та їх зв'язок з функціональними характеристиками виробу. Наприклад, П. Давім інтегральні властивості поверхні формулює як «топографічний, механічний, хімічний та металургійний стан обробленої поверхні та її зв'язок з функціональними характеристиками» [41]. Особливу актуальність набуває вивчення стану поверхневого шару титанових сплавів після механічного оброблення, що впливає, насамперед, на втомну міцність виробів.

Найважливіші дослідження в даному напрямку проводили такі відомі вчені, як П. Давім [41], Ф. Клоке [42], В. П. Астахов [41], В. Гжезік [43], Дж.Реч [44], Б.Гріффітс [45], Дж. Отерро [46], Д.Улутан [47], Т.Озел [48]. Можна відзначити два класичні аспекти дослідження інженерії поверхні: характеристики мікрорельєфу та механічні та фізико-хімічні властивості обробленого поверхневого шару заготовки. Вивчення рельєфу поверхневого шару включає в себе проблемно-орієнтовані дослідження шорсткості поверхні, хвилястості, похибок форми та розмірів функціональних поверхонь виробів. Характеристики поверхневого шару, які можуть змінюватися під час механічного оброблення: пластична деформація, залишкові напруження, мікротріщини, твердість, зносостійкість, структурно-фазові перетворення, міжкристалічне руйнування та воднева крихкість. Використовуючи традиційний виробничий процес, такий як механічна обробка, поверхневий шар виробу витримує локалізовану пластичну деформацію [49].

Дж.Реч в роботі [44] наводить найбільш характерні взаємозв'язки між набутими в результаті механічного оброблення властивостями поверхні та причинами експлуатаційної відмови або зниження функціональної спроможності виробу (Таблиця 1.1.)

Таблиця 1.1.

	Фізико-механічні властивості обробленої поверхні					
Причини експлуатаційної відмови	Межа текучості	Твердість	Міцність	Залишкові напруження	Хвилястість/ шорсткість	Мікротріщини
Пластична деформація	++	++				
Поверхнева адгезія		++				
Тріщинностійкість	+	+	+			++
Втомні напруження				++	++	++
Кавітаційня явища		+				+
Зношування		++			+	
Дифузійні явища					+	
Корозійна стійкість				+	++	++

Зв'язок експлуатаційних відмов з властивостями обробленої поверхні [50]

++ - інтенсивний вплив

+ - помірний вплив

Хімічний склад, механічні властивості, мікроструктура поверхневого шару заготовок, перш за все, впливають на працездатність оброблених матеріалів та термічного стану в зоні різання [51, 52]. Крім того, у зоні стружкоутворення діють швидкоплинні процеси, що супроводжуються інтенсивними силовими перепадами, що може стати джерелом самоочищення інструмента [52]. Проте, такі явища здебільшого негативно впливають на формування точності та експлуатаційної якості поверхневого шару обробленої заготовки.

Як вказувалось вище, поєднання великих сили різання та специфічних показників пластичності титанових сплавів викликає ущільнення кристалічної гратки обробленого поверхневого шару заготовки. В результаті на поверхні утворюється шар матеріалу з підвищеною твердістю. Крім того, тепловий стан у зоні різання в межах (0,25 ... 0,3) температури плавлення оброблюваного матеріалу викликає локальне нагартовування деформованого металу поверхневого шару, а температура вище 0,4 температури плавлення спричинює його перекристалізацію [51]. Цей процес супроводжується частковим зниженням деформаційного зміцнення. Тобто в процесі різання поверхневого шару заготовки, що підлягає механічній обробці, одночасно відбуваються лва протилежних процеси: деформаційне загартовування та термодинамічне пом'якшення. Фізичний стан обробленого шару заготовки визначається співвідношенням інтенсивності та швидкості цих процесів. І аналітичний опис такого динамічного процесу надзвичайно складний і часто неадекватний [54, 55]. Зменшення реальної величини межі текучості можна пояснити домінуючим впливом теплового чинника, що призводить до розм'якшення матеріалу. Збільшення напруження зсуву можна пояснити тим, що наявність первинної зони деформації призводить до інтенсивного збільшення густини дислокацій поблизу зони зсуву, а отже, і до зміцнення матеріалу. Це пояснюється тим, що шари матеріалу від

основної різальної кромки, заокруглення різального леза та допоміжної різальної кромки накладаються один на одного, коли вони рухаються уздовж відповідних площин зсуву, отже, виникає явище «самоблокування» шарів матеріалу [51].

Очевидно, що залишкові напруження, спричинені всіма цими чинниками, різнопланові та протилежні за знаками (тобто створюють на поверхні зони локального розтягу чи стиску) [56]. Встановлення домінуючого фактору - це складне завдання, яке вимагає системних теоретичних та експериментальних досліджень. Крім того, у багатьох випадках дії всіх цих чинників приблизно еквівалентні та взаємопов'язані. Тому можливість імітаційного реологічного моделювання процесів різання є єдиним способом швидкого та адекватного аналізу впливу різання технологічних параметрів (структура технологічної експлуатації, параметри обробки, нанесення інструментального покриття, підбір зовнішнього технологічного середовища тощо) на формування залишкових напружень [57].

Ще однією важливою властивістю обробленого шару є залишкові деформації (механічне зміцнення). Глибока неоднорідність властивостей обробленого шару заготовки зумовлена, перш за все, нерівномірним розподілом деформації, накопиченої в результаті різання. Анізотропія деформації та пов'язані з нею залишкові напруження можуть значно зменшити міцність виробу у випадках, коли він не підлягає подальшому термічному обробленню. В інших випадках зміцнення обробленого шару позитивно впливає як на зносостійкість, так і на корозійна стійкість. Негативним наслідком цього явища є лише зниження мастилоутримуючих властивостей поверхневого шару, що особливо важливо для ефективності високошвидкісних рухомих з'єднань. Розрахунок залишкових напружень проводиться згідно теореми розвантаження [58], згідно з якою залишкові напруження після пластичної деформації дорівнюють різниці напружень при пластичній

деформації та. званих, розвантажувальних напружень, матеріал так яких позбавляється під час розвантаження. Якщо під час розвантаження виникають суто пружні деформації, то розвантажувальне напруження можна визначити методами теорії пружності [59]. Затвердіння поверхневого шару оброблених поверхонь характеризується його мікротвердістю та рентгенівськими характеристиками (розширення або розмиття ліній перешкод), що є наслідком фрагментації кристалічних блоків, збільшення спотворень кристалічної решітки та розвитку дислокації. У процесі різання зміцнення поверхневого шару зростає зі збільшенням подачі та глибини різання за рахунок збільшення округлення різальної кромки та переходу від позитивних кутів нахилу фрези до негативних [60].

Дослідження, моделювання та оптимізація управління процесами механічного оброблення точних поверхонь, включаючи формування їх текстури, мікрорельєфу, а також високої функціональності, є важливими завданнями машинобудівної науки [36]. Наявність різних наукових інтерпретацій особливостей формування поверхневого шару заготовки із титанових сплавів після механічного оброблення полягає в суб'єктивності трактування процесу поверхневого формоутворення задачі, а також у зв'язку зі складністю та багатофакторністю формалізації цього процесу різання [61]. Це пояснюється тим, що в залежності від параметрів різання істотно змінюються міцність (залишкові напруження і деформації) і, особливо, втомні характеристики виробів із цих сплавів. Будь-яка теорія, звичайно, спирається на експериментальне підтвердження. Тому багато авторів базують свої теоретичні моделі регресійних залежностях, отриманих на В результаті численних експериментальних досліджень. Проте багатоваріантність технологічних факторів (різні режими різання, геометрія інструменту тощо), а також постійні зміни

номенклатури титанових сплавів (тобто фізико-механічних властивостей) у цьому випадку не можуть бути враховані повною мірою.

1.3. Аналіз результатів досліджень динамічних процесів різання титаномістких сплавів

Важливим аспектом формування мікрогеометрії, міцності, трибомеханічних та напружено-деформованих властивостей поверхневого шару виробів є забезпечення вібростійкості технологічної системи «Верстат-Пристосування-Інструмент-Заготовка» (ВПІЗ) [62]. Крім того, динаміка верстата і динаміка процесу обробки є двома невід'ємно інтегрованими частинами, які слід враховувати одночасно при оптимізації системи ВПІЗ, як це показано на рис. 1.6.

Рис. 1.6. Вплив технологічної системи ВПІЗ на динаміку механічного оброблення [36]

Особливо складно забезпечити вібростійкість системи ВПІЗ при виготовленні титаномісних сплавів. При цьому, вплив на виникнення вібрацій, окрім параметрів жорсткості та демпферних властивостей елементів системи ВПІЗ, має також особлива картина формоутворення за рахунок високої пластичності шару оброблюваного матеріалу. Це виражається у високочастотній зміні поздовжнього і поперечного зусиль різання і, як наслідок, утворенні зубчастої (сегментної) форми стружки. [63, 64, 37]. Збурюючі сили, залежно від фізичної природи механізму збудження вібрації, що діють на пружну систему ВПІЗ, можуть створювати як вимушені, так і автоколивання.

Якість обробленої поверхні в рівній мірі залежить від способу обробки та умов різання. Тобто шорсткість є наслідком як геометрико-кінематичної складової різання (тобто «відбитком» сліду різального інструменту), так і пластичних деформацій обробленого металу, а також вібрацій технологічної системи [7]. Крім того, пружнопластична деформація при різанні металів (особливо титанових сплавів) дуже складна. Це зумовлено взаємозв'язком з іншими факторами та явищами (температура в зоні різання, трибомеханічний, структурно-фазовий стан оброблюваного матеріалу тощо), що супроводжують процес різання. Тому більш повну характеристику фізичних основ різання титанових сплавів можна отримати лише шляхом всебічного вивчення та виділення домінуючих процесів, таких як деформації поверхневого шару, сил різання, фрикційні процеси і стан різального інструменту. Аналітичне моделювання таких процесів у цьому випадку не є адекватним [65].

Сучасні системи моделювання різання, які також називаються комп'ютерними системами формування (Deform 3D, LS-Dyna, AdvantEdge, Abaqus), дозволяють з певною точністю прогнозувати взаємопов'язану динаміку силових та напруженодеформаційних явищ, що супроводжують процес механічного оброблення. Однак, поперше, результати моделювання таких систем, на жаль, не завжди адекватні реальним параметрам процесу різання, по-друге, початковий стан заготовки та інструменту апріорі вважається «жорстким», а демпфувальні властивості системи ВПІЗ не враховуються взагалі.

При обробці титанових сплавів площа контакту між стружкою та інструментом значно менша, ніж при обробленні вуглецевих сталей. Таким чином, контактний тиск зростає, а теплова енергія, генерована внаслідок тертя стружки, що ковзає по передній поверхні інструменту, зосереджується на меншій площі. Це призводить до надзвичайно високих температур у зоні контакту інструменту зі стружкою, оскільки титан має дуже низьку теплопровідність [7]. Наприклад, для сплаву Ti6Al4V (аналог BT6) коефіцієнт теплопровідності становить 11 Bt/(м·K) тоді як для сталі 45 (аналог AISI 1040) - 45 - 40 Bt/(м·K). Тому при різанні середньовуглецевої сталі температура в зоні контакту «інструмент-заготовка» досягає 300-350°С, а при різанні титанових сплавів за тих же умов температура перевищує 900-1200°С. Це є однією з вагомих причин щодо рекомендації для титану використовуються відносно низькі швидкості різання (від 20 до 60 м/хв) для зниження термодинамічного ефекту, що знижує термін служби інструменту, а також точність обробки [7].

Вимушені вібрації, як правило, викликані несбалансованою силою, що викликана дією зовнішніх (позасистемних до ВПІЗ) чинників, тоді як самозбуджена вібрація створюється і замикається всередині технологічної системи. Вона є спонтанною і швидко зростає від низької амплітуди вібрації до великої в той час, коли вимушена вібрація здебільшого призводить до коливань постійної амплітуди. Ченг та ін. узагальнити всі види нестабільності обробки та їх особливості [36]. Втрата технологічною системою ВПІЗ вібраційної рівноваги класифікується як випадкова (або параметрична) вібрація та вимушена вібрація. Випадкова або вільна вібрація зазвичай включає будь-які ударні або імпульсні навантаження на верстат. Типовим прикладом випадкової вібрації є коливання інструменту, наприклад, коли цей інструмент натрапляє на раковину або ущільнення в структурі різального матеріалу.

Характерною особливістю при обробці титанових сплавів є схильність пружної технологічної системи ВПІЗ до інтенсивних коливань. Це пояснюється, насамперед, великими значеннями високочастотних коливань радіальної, поздовжньої та поперечної складових сили різання [66]. Крім того, висока пластичність титанових сплавів сприяє виникненню специфічного процесу формування зубчастої форми стружки (рис. 1.7).

Рис. 1.7. Порівняння утворення стружки при обробці середньовуглецевої сталі (а) і титанового сплаву (б)

Це явище автори [64, 66]. пояснюють наступним чином. При обробці матеріалів із нормальною пластичністю (наприклад, середньовуглецевих сталей, таких як AISI 1020), зрізаний шар матеріалу спочатку стискається (*compression process*), а потім зсувається (*shear process*). Процес стиснення матеріалу і зсув здійснюються одночасно підчас подальшого різання. Тобто перед зрізаним шаром завжди є прошарок стиснутого матеріалу. Інша картина виникає при різанні титанового сплаву. Спочатку зрізаний шар металу стискається. Коли процес стиснення досягає критичної межі, починається процес зсуву. Однак, на відміну від традиційної картини різання матеріалу середньої пластичності, спресований матеріал практично повністю видаляється разом зі стружкою і перед інструментом з'являється новий шар нестиснутого металу, і потім процес повторюється.

Ця складна картина супроводжується появою зони «адіабатичного зсуву» (див. розд. 1.2) [67]. При цьому високочастотні коливання поздовжньої та поперечної складових сили різання здійснюються асинхронно, що викликає високочастотні коливання в інструменті та заготовці (рис. 1.8) [66]. На цій схемі показано результати виникнення зони адіабатичного зсуву: у певний момент дослідження (моделювання) (етап 1) поперечна сила різання має максимальне значення. При цьому поздовжня сила різання є мінімальною. Цей етап формування стружки відбувається з переважним процесом стиснення зони первинної деформації з опуклістю кореня стружки над зовнішньою поверхнею. У момент різання (етап 2) відбуваються протилежні явища: поперечна сила різання набуває мінімального значення, а поздовжнє зусилля різання - максимального значення. Цей крок відповідає пріоритетному переважанню механізму зсуву з характерною увігнутістю стружки над зовнішньою поверхнею. У момент різання стружки над зовнішньою поверхнею. У момент різання стружки над

Рис. 1.8. Інтерпретація механізму утворення адіабатичного зсуву при обробці титанового сплаву (стадії 1, 2 і 3 позначено зліва направо) [66]

В основу роботи В.М. Подураєва [68] про аналіз причин низької ефективності механічного оброблення важкооброблюваних високопластичних матеріалів були покладені пояснення механізму автоколивань при різанні. Основним чинником, який суттєво впливає на точність та якість обробки, автор вважає прояв динамічної нестабільності в технологічній системі механічного оброблення внаслідок активних явищ автоколивального процесу в технологічній системі механічного оброблення [69, 70].

У роботі [59] зазначається, що для обробки титанових сплавів характерна висока залежність амплітуди коливань від жорсткості інструменту. Це обумовлено високими швидкостями ковзання стружки по передній поверхні інструменту при одночасно малих значеннях коефіцієнта усадки стружки. При цьому навіть невелике миттєве збільшення швидкості різання через вібрацію призводить до помітного зниження ресурсу інструменту. Важливо, що, на відміну від інших оброблюваних матеріалів, контакт інструменту при обробці титаномісткого сплаву відбувається на меншій площі і з зміцненою різальною поверхнею стружки. Це явище сприяє підвищенню втомного руйнування різального інструменту.

Фізичний механізм збурення коливань технологічної системи ВПІЗ працює в такій послідовності [36, 62, 68]. Будь-яке випадкове збурення (наприклад, нерівномірність припуску, неоднорідність матеріалу, що обробляється, розрив в обробці, биття заготовки чи інструменту тощо) призводить до виникнення власних затухаючих коливань технологічної системи. Ці коливання завжди супроводжуються зміною товщини різу і швидкості ковзання стружки по передній грані інструменту. Зміна цих значень призводить до відповідної дисонансної зміни складових сили різання титанового сплаву. І якщо зміна сили різання відстає в часі або зміщена по фазі відносно зміни товщини зрізу, тоді затухаючі власні коливання можна перетворити в незатухаючі автоколивання. Енергія, необхідна для підтримки таких автоколивань, створюється змінною складовою сили різання. Подібна причина збудження автоколивань виникає, якщо зі збільшенням швидкості різання відбувається зменшення радіальної складової сили різання [7].

У [69, 70] описано, що збудження коливань технологічної системи ВПІЗ відбувається за рахунок співвідношення вертикальних і горизонтальних переміщень інструменту відносно заготовки. Автори виділяють дві домінантні коливальні системи під час процесу різання (рис. 3) [71, 72, 73]. По-перше, це система «Заготовка - Пристосування». Ця система, як правило, здійснює низькочастотні коливання (50 - 300 Гц). Однак частотний спектр обробки титанового сплаву в цій підсистемі вищий і становить 600 -1800 Гц. По-друге, це підсистема «Інструмент – Інструментотримач», яка здійснює високочастотні коливання (800 – 3000 Гц). Зона різання є замикаючою ланкою в цих коливальних системах. Причинно-наслідковий зв'язок цих систем полягає в тому, що через вібрації різця та заготовки, товщина різання безперервно змінюється від мінімального (t_{min}) до максимального (t_{max}) значення (рис. 1.9). Причому на першому етапі руху інструменту від точки A до точки B різець рухається в бік сили різання R і система додатково споживає частину енергії E_1 . На другому етапі зворотного руху від точки B до точки A напрямок руху різця збігається з напрямком дії сили різання. Таким чином, система отримує додаткову енергію E_2 . Оскільки товщина зрізаного шару на другій ділянці більша, то $E_2 > E_1$. Тому надлишок енергії $\Delta E = E_2 - E_1$ зберігається в загальному балансі, підтримуючи коливання технологічної системи ВПІЗ.

Рис. 1.9. Схема формування автоколивань у технологічній системі ВПІЗ: І – підсистема «Заготовка – Шпиндель»; ІІ – підсистема «Інструмент – Супорт»; k_1 , k_2 – узагальнені коефіцієнти демпфування І та ІІ пружних підсистем; C_1 , C_2 —

жорсткість першої та другої коливальних підсистем гасіння

Рівень інтенсивності істотно автоколивань вплива€ на довговічність інструменту та продуктивність обробки. У [74] зазначено, що для певних конструктивно-технологічних умов обробки існує певна оптимальна (за критерієм стійкості) амплітуда автоколивань, при якій має місце найбільша стійкість інструменту. При обробці корозійностійких, жароміцних, високоміцних сталей, а також титану і жароміцних сплавів твердосплавною вставкою інструменту оптимальна за критерієм опору зона амплітуд автоколивань знаходиться в діапазоні 8-18 мкм. Очевидно, що продуктивність обробки безпосередньо пов'язана з ресурсом інструменту. Контролюючи інтенсивність автоколивань, можна досягти збільшення продуктивності часу різання в кілька разів [36].

Шорсткість обробленої поверхні також значною мірою визначається інтенсивністю автоколивань. Висотні параметри шорсткості завжди зростають зі збільшенням амплітуди і дещо зменшуються зі збільшенням частоти коливань [61].

Існуючі методи зменшення амплітуди автоколивань можна розділити на два класи – технологічні та конструкторські. До технологічних прийомів належать такі, як вибір відповідних параметрів різання та кутів заточування інструменту [36]. До методів проектування належать підвищення опору в коливальній системі та використання динамічних гасників коливань.

Таким чином, проблемно-орієнтований аналіз літературних джерел дозволяє зробити наступні висновки:

 Механічна обробка титанових сплавів має багато специфічних особливостей, які зумовлені механічними та фізико-хімічними властивостями цих матеріалів.
Одним із найбільш значущих факторів є наявність великих вібрацій в інструменті через специфічне явище адіабатичного зсуву стружки та прояв складних термодинамічних процесів механічного оброблення.

2. Особливе значення має контроль динамічних процесів різання, оскільки, поперше, він суттєво впливає на формування шорсткості та хвилястості поверхневого шару саме для титанових сплавів; по-друге, низька швидкість різання, викликана динамічною нестабільністю, призводить до зниження продуктивності обробки; потретє, утворення циклічних навантажень спричинює появу локальних зон залишкових напружень і деформацій, які вкрай негативно впливають на втомну міцність виробу [66].

3. Для ефективного впливу на виникнення та характер коливальних процесів при обробці титанових сплавів необхідно проаналізувати пріоритетність чинників, що впливають на реальну картину перебігу фізичних процесів пружно-динамічної системи «Верстат-Пристосування-Інструмент-Заготовка». Ця система, з одного боку, описується відомими рівняннями механічної динаміки [36, 74]. Однак при аналітичному описі системи динамічних рівнянь у класичному вигляді неможливо врахувати особливості фізичних явищ при обробці титанових сплавів (умови адіабатного зсуву, специфічну динаміку термодинамічних процесів різання тощо). . Цей вплив можна врахувати лише за допомогою імітаційного моделювання процесу різання. Але, з іншого боку, результати такого моделювання не враховують на пружно-деформований стан системи ВПІЗ.

Тому поєднання аналітичного моделювання вібраційних процесів у системі різання титанового сплаву та імітаційного моделювання допоможе врахувати як основні особливості, так і специфіку цього процесу. Результати такого дослідження підлягають аналізу на адекватність у результаті порівняння з результатами експериментальних досліджень. 1.4. Аналіз впливу трибомеханічних чинників на формування силових та напружено-деформаційних параметрів різання титанових сплавів та зносостійкість різального інструменту

J. Paulo Davim [7], В.Астахов [2] та F. Klocke [75] в своїх роботах наголошують, що саме фрикційні явища, є вирішальним чинником, який визначає хід усього процесу формування стружки при механічному обробленні важкооброблюваних матеріалів, а особливо титанових сплавів. На підставі численних досліджень [1, 7, 75, 76, 77] було встановлено, що збільшення середнього коефіцієнта тертя призводить до збільшення ступеня пластичної деформації знятого шару, суттєвого підвищення температури різання і, як наслідок, до більш інтенсивного зношування інструменту.

Stefan G. Larsson, провідний експерт компанії SECO, стверджує [78], що пояснити основи різання важкооброблюваного матеріалу не так вже й складно: потрібно лише знати геометрію та попередній стан заготовки та верстата, а також параметри різання, які визначаються аналітично залежно від способу обробки. Однак, розуміння всього процесу різання набагато складніше. По-перше, необхідно описати цей процес як трибологічну систему, яку можна формалізувати у вигляді множини властивостей поверхонь інструменту та заготовки, що вступають у механічний контакт і рухаються відносно один одного [78, 79]. Залежно від матеріалу заготовки, стратегії обробки, жорсткості технологічної системи ВПІЗ, матеріалу та покриття різальних інструментів, характеру мастильно-охолоджувального середовища (МОР) тощо, різні типи трибологічних систем можуть кардинально відрізнятися, і будь-яка зміна системи може впливати на інтенсивність зношування різального інструменту.

У роботі [80] зазначено, що першочерговою умовою ефективності обробки заготовки з титанового сплаву є зменшення радіальної складової сили різання, що зумовлено інтенсивним тертям між стружкою і передньою поверхнею різального леза. Цього можна досягти, зменшивши коефіцієнт тертя оброблюваного та інструментальних матеріалів, за допомогою так званого косокутного різання (рис. 1.10,6). Ця схема досягається або заточуванням основної різальної кромки під кутом, або спеціальним кутовим зміщенням різального леза інструменту. У першому випадку існує геометричний косий зріз, а в другому - кінематичний косий зріз.

Рис. 1.10. Схема (а) прямокутного (ортогонального) та (б) косокутногорізання

Аналіз результатів, отриманих у [81], дає можливість оцінити максимальне значення термобаричного навантаження на різальний інструмент у широкому діапазоні умов різання при обробці титанового сплаву. У свою чергу, це дає можливість встановити механізм зношування інструменту, характерний у межах певної температури та діапазону напружень на робочих поверхнях інструменту.

Наступне важливе питання - це аналіз можливих та найефективніших методів забезпечення низького коефіцієнта тертя, таких як спеціальні марки

інструментальних матеріалів, вдосконалене покриття та подача мастильноохолоджувальної рідини під високим тиском [77].

Багато дослідників намагалися застосувати методи теорії пластичності для аналізу процесу різання [81]. Методи аналізу пластичного потоку в області тріщиноутворення, які використовуються в класичних працях з теорії різання [51, 82, 83], є приблизними інженерними методами і не дають відповіді на ряд важливих для теорії та практики питань, як і для кількісної оцінки таких факторів, як вплив геометричних параметрів інструменту на силу різання, на коефіцієнт усадки стружки, на інтенсивність залишкового напруження та глибину деформованого шару оброблених поверхонь тощо.

Аналітичний опис пружнопластичної деформації, зокрема, при різанні металів та титанових сплавів, є дуже складним [75, 79]. Він передбачає складну формалізацію взаємозалежних факторів та явищ, які супроводжують процес різання. Тому більш повну характеристику фізичних основ різання титанових сплавів можна отримати лише шляхом комплексного вивчення теплових явищ, деформацій поверхневих шарів, сил різання, інтенсивності зношування різального інструменту та якості обробленої поверхні. Ефективним сучасним інструментом вивчення цих властивостей є моделювання процесу різання методом скінченних елементів [81]. Це такі програми, як DEFORM 2/3D, AdvantEdge, LS Dyna, Abaqus.

Зазвичай імітаційне моделювання процесів різання інструментами із зносостійкими покриттями спрямоване на дослідження термічних процесів [84, 85]. Однак напружено-деформований стан оброблюваного поверхневого шару, залишкові напруження та параметри навантажувального різання однаково важливі для аналізу ефективності запропонованого покриття. Автори наукової роботи [86] доводять, що на зношування інструменту найбільший вплив мають такі чинники, як температура різання та трибомеханічні показники, викликані дією контактних напружень та відносної швидкості ковзання стружки по передній поверхні інструменту. Ці параметри залежать від матеріалів інструменту та заготовок, геометрії та покриттів інструменту, умов різання та використання охолоджуючої рідини для даного застосування. У роботі [87] представлена методика розрахунку основних параметрів зони первинної деформації металу з використанням положень теорії пластичності і методології побудови ліній ковзання.

Згідно з теорією пластичності [88], лінії ковзання - це два сімейства взаємно ортогональних криволінійних координат, по яких діють максимальні тангенціальні напруження. Таким чином автори [87] пропонують розрахувати напруженодеформований стан в зоні стружкоутворення. Найбільш відомою є схема побудови ліній ковзання, яка запропонована ще Н.Н. Зоревсвим [89] (рис. 1.11). Проте, цю схему неможливо обчислити через недостатню формалізацію геометрії ліній ковзання. Інші схеми [90, 91] допускають розрахунок напружень в зоні стружкоутворення, але віддають перевагу або площі первинних деформацій, прилеглих до вільної поверхні зрізаного шару і сколів, або площі вторинних деформацій [93].

Рис. 1.11. Схеми ліній ковзання: за теорією (а) - Зорєва Н.Н. [89], (б) - Палмера-Окслі [90], (в) - Окушимі [90], (г) - Лі-Шафера [90], (д) - Петрушина С.И. [93], (е) - Гольдшмідта [91]

У роботі [92] вказується, що близько 70% енергії, що споживається системою різання, витрачається практично даремно, оскільки пластична деформація стружки не

має жодного значення для формування якості оброблюваної поверхні (рис. 1.12). Оскільки енергія генерується в зоні стружкоутворення через різальне лезо, тобто через трибомеханічні зони контакту по передній і задній поверхнях інструменту, то саме ця енергія є визначальною для величин сили і температури різання. Тобто закон збереження енергії найбільш ефективно реалізується за принципом найменшої енергії пластичної деформації в наступному вигляді: визначальною метою операції різання металу має бути мінімізація енергії пластичної деформації зсуву з заданими обмеженнями, наприклад, по шорсткості поверхні, глибині залягання залишкових напружень тощо.

Рис. 1.12. Приблизний розподіл енергії в системі різання за Астаховим В.П.[92]

Таким чином, важливим етапом даної дисертаційної роботи є дослідження того, як різні трибомеханічні показники у контактних парах «Інструмент-Стружка» та «Інструмент-Оброблена поверхня» за певних умов та параметрів різання впливають на формування напружено-деформованого та теплового станів виробу. Комплексний аналіз цих залежностей дозволить провести аналітичну оцінку ефективності та здійсненності заходів, що дозволять з трибомеханічної точки зору покращити умови обробки титанових сплавів і, відповідно, збільшити продуктивність механічного оброблення, забезпечуючи при цьому задану якість обробленої поверхні. Крім того, важливо знати, які саме технологічні параметри є пріоритетними для реалізації найбільш ефективних умов обробки титанових сплавів.

Основна ідея даної дисертаційної роботи полягає в тому, що при обробленні титанових сплавів параметри різання повинні призначатися з урахуванням не лише максимальної стійкості інструмента, але і з точки зору формування заданої якості оброблюваних поверхонь. Тобто необхідно забезпечити комплекс параметрів, таких як залишкові напруження і деформації, точність механічного оброблення, мікротопографія обробленої поверхні, забезпечення мастилоутримуючих кишень тощо, сформованих в кожному конкретному випадку в залежності від технологічних і експлуатаційних вимог до виробу. Ця ідея покладена в основу реалізації функціонально-орієнтованого технологічного проектування [93].

1.5. Мета і задачі дослідження

Проведений вище аналіз сучасного стану технологічного забезпечення процесів механічного оброблення виробів з титанових сплавів довів, що на сьогоднішній день питання підвищення ефективності механічного оброблення виробів з титанового сплаву залишається важливим як з наукової, так і з практичної точки зору. Це твердження обумовлено, по-перше, широким розповсюдженням титаномістких матеріалів та впровадженням їх нових модифікацій; по-друге, доведеною відсутністю єдиної теоретично- та експериментально-обґрунтованої методології призначення структури та параметрів технологічних операцій механічного оброблення виробів з титану; по-третє, можливістю та доцільністю використання вдосконалених засобів імітаційного моделювання процесів різання, що значно розширить можливості прийняття рішень технологічного характеру; по-четверте, постійним підвищенням вимог щодо реалізації функціонально-орієнтованих технологічних процесів, критерієм оптимізації для яких є не мінімальна собівартість виробу, а забезпечення найбільш ефективних експлуатаційних параметрів оброблених поверхонь виробів з титанових сплавів.

Таким чином, метою дисертаційної роботи є підвищення ефективності механічного оброблення виробів з титанових сплавів шляхом вибору структури та параметрів технологічних операцій на основі імітаційного реологічного моделювання процесів різання з врахуванням напружено-деформаційних та термодинамічних особливостей формоутворення виробів.

Для реалізації поставленої мети, необхідно вирішити такі науково-прикладні задачі досліджень:

- Вдосконалити проблемно-орієнтовану методику реологічного імітаційного моделювання процесів різання та аналізу фізико-механічних параметрів формоутворення поверхонь виробів з титанового сплаву з використанням програмного забезпечення на основі методу скінченних елементів.
- 2. Провести аналіз впливу технологічних параметрів операцій механічного оброблення на формування силових, термодинамічних, напруженодеформаційних параметрів різання виробів з титаномістких сплавів. Результатами такого проблемно-орієнтованого моделювання є прогнозування впливу параметрів технологічного процесу на формування експлуатаційних властивостей продукту.

- трибомеханічних 3. Дослідити вплив чинників процесу механічного оброблення виробів на показники зношування різального інструменту та провести комплексний аналіз ефективного вибору зносостійкого покриття, інструментального геометрії інструментального клина та використання мастильно-охолоджувальних рідин підчас оброблення виробів з титанових сплавів. Провести експериментальний аналіз верифікації цих досліджень.
- Провести теоретичні та експериментальні дослідження динамічних процесів механічного оброблення титанових сплавів з використанням результатів імітаційного моделювання та врахуванням фізико-механічних особливостей формоутворення оброблюваних поверхонь.
- Впровадити результати дослідження у виробництво, реалізувавши наукові напрацювання, провести опробування теоретичних та експериментальних робіт на міжнародних науково-технічних конференціях, семінарах, симпозіумах.

РОЗДІЛ 2

МЕТОДИКА ДОСЛІДЖЕНЬ ФУНКЦІОНАЛЬНО-ОРІЄНТОВАНОГО ТЕХНОЛОГІЧНОГО ПРОЦЕСУ МЕХАНІЧНОГО ОБРОБЛЕННЯ ДЕТАЛЕЙ З ТИТАНОВОГО СПЛАВУ

На якість точних оброблених поверхонь впливають чотири основні чинники, як показано на рис. 2.1. Це технологічні параметри процесу обробки, функціональні можливості основного технологічного обладнання, властивості матеріалу заготовки і геометрія різального інструменту. Науковий підхід необхідний для того, щоб забезпечити теоретичну основу для встановлення адекватного взаємозв'язку між набутими фізико-механічними та мікрогеометричними показниками оброблюваної поверхні з визначальними параметрами з цих чотирьох основних чинників з метою подальшого дослідження інженерії поверхні для забезпечення її пріоритетних функціональних властивостей. Тому виконання науководуже важливо обґрунтованого аналізу оброблення найбільш навантажених поверхонь виробу з точки зору забезпечення ефективного виробництва з заданою повторюваністю, передбачуваністю, відтворюваністю і продуктивністю. Кінцевою метою наукової реалізації такого підходу є дослідження, моделювання, оптимізація і контроль точності оброблених поверхонь, включаючи ïх текстуру, топографію та функціональні властивості.

Рис.2.1. Чотири основних фактори, що впливають на точність формування поверхні

2.1. Методика імітаційного моделювання напружено-деформованого та термодинамічного стану заготовки з титанового сплаву в зоні різання на основі теорії скінчених елементів

Основною метою дослідження дисертаційної роботи є оцінка взаємного впливу основних технологічних параметрів (режимів різання) на формування якісного стану поверхневого шару виробу в процесі різання лезовим інструментом. Реалізується це на основі системного аналізу впливу технологічних факторів та параметрів геометрії інструменту на напружено-деформований та термодинамічний стан обробленої поверхні, стружки та різального леза, що формується в процесі формоутворення виробу з титанового сплаву. Звичайно, найбільш адекватним методом досліджень є системні експериментальні дослідження. Проте, ця методика має ряд суттєвих недоліків, а саме:

- складність реалізації експериментальних установок, їх висока вартість та значна тривалість досліджень;

- неможливість одночасного аналізу параметрів напруження, деформації, температурного режиму у всіх ділянках зони стружкоутворення та формоутворення;

 складність врахування великої кількості технологічних та конструктивних чинників, умов різання тощо;

- проблеми визначення домінуючих факторів у формуванні напруженодеформованого та термодинамічного стану елементів технологічної системи «Верстат-Пристрій-Інструмент-Заготовка» (ВПІЗ);

- недостатня адекватність отриманих регресійних залежностей у випадку зміни матеріалу заготовки, геометрії інструменту, мастильно-охолоджуючих рідин тощо.

З іншої сторони, методологія імітаційного моделювання процесу різання має ряд недоліків, серед яких найбільш важливим є, безумовна, недостатня адекватність результатів досліджень реальним показникам механічного оброблення. Особливо це стосується оброблення таких матеріалів, як титанові сплави, де кількість чинників впливу на фізико-механічні та напружено-деформаційні параметри різання є дуже велика і різноманітна [41]. Крім того, доволі складно вибрати адекватні критерії руйнування, умови деформації, реологічні властивості оброблюваних матеріалів в процесі силового та термодинамічного навантаження тощо. Тому найбільш ефективним є поєднання імітаційного моделювання з наступним коректуванням моделей за результатами проведених експериментальних досліджень.

Для адекватного чисельного моделювання обробки титанових сплавів необхідно знати механічну та теплову реакцію матеріалу заготовки в екстремальних умовах деформації (2-5), швидкості деформації (10⁴-10⁶ с⁻¹), температури в зоні різання (до 1200 °C) тощо. Тобто, моделі матеріалів для механічного оброблення повинні враховувати реакцію деформації на високі динамічні показники силового навантаження (високі швидкості деформації), деформаційне напруження (деформаційне зміцнення), а також великі перепади температур (температурне розм'якшення). Для помірного силового навантаження в науковій практиці використовують декілька моделей, які достатньо адекватно інтерпретують реологічні властивості оброблюваного матеріалу з різним ступенем точності. Прикладами таких моделей є феноменологічні моделі Джонсона-Кука [94], Зеріллі-Амстронга [95], Стейнберга [96] та Фоллансбі-Кокса [97].

Аналіз використання цих моделей привів до висновку, що найбільш ефективною методикою формалізації реологічних властивостей титанових сплавів є феноменологічна модель Джонсона-Кука [94], оскільки саме ця модель враховує як кінематичне зміцнення, так і термодинамічний адіабатичний зсув титанового сплаву як залежність еквівалентного напруження від швидкості деформування та температури. А саме ці показники є найбільш значущими у формуванні реологічної картини оброблення титанових сплавів [37], як це доведено у Розділі 1. Крім того, ця модель передбачає, що міцність є ізотропна і домінантно залежить від середнього напруження, на відміну від оброблення, наприклад, хромо-нікелевих сплавів, де параметри твердості та крихкості відіграють основну роль у руйнуванні обробленого матеріалу. У цій моделі еквівалентне пластичне напруження описується виразом:

$$\sigma = (A + B\varepsilon_2^n) \left[1 + Ch\left(\frac{\dot{\varepsilon}_2}{(\dot{\varepsilon}_2)_0}\right) \right] \cdot \left(\frac{\dot{\varepsilon}_2}{(\dot{\varepsilon}_2)_0}\right)^\alpha \left(D - E\left(\frac{T - T_{room}}{T_{melt} - T_{room}}\right)^m \right)$$
(2.1)

де A - межа текучості при повільному навантаженні (A = 862 МРа для Ті-6АІ-4V [98]); B – статичне зміцнення, що описує деформаційну властивість матеріалу (B=331 МРа); ε_2 – еквівалентна пластична деформація; n - коефіцієнт, що характеризує властивість зміцнення титанового сплаву (n = 0,34); C - коефіцієнт швидкості деформації (C = 0,012) [98]; $\dot{\varepsilon}_2$ - швидкість пластичної деформації; ($\dot{\varepsilon}_2$)₀ – швидкість деформації у статиці; T_{room} , T_{melt} – вихідна температура навколишнього середовища та температура плавлення матеріалу, відповідно; m - показник ступеня, що враховує явище термічного розм'якшення матеріалу (m = 0,97).

У рівнянні (2.1) перша частина рівняння описує явище статичного зміцнення, друга частина характеризує динамічне зміцнення, третина формалізує явище термічного розм'якшення.

Схема розробки моделі напруження показано на рис. 2.2. Основний підхід полягає в тому, щоб покроково аналізувати вплив ефективної деформації, ефективної швидкості деформації, температури та твердості на поточне напруження зсуву стружки. Фактично вплив твердості на напруження зсуву можна розділити на два різнопланові аспекти: силовий фактор, що збільшує міцність матеріалу у зоні формоутворення, і температурний фактор, що впливає на деформаційне розм'якшення оброблюваного титанового сплаву.

Рис.2.2. Методика створення реологічної моделі оброблюваного матеріалу

Після виконання умови, коли величина результуючої пластичної деформації ($\Delta \overline{\varepsilon}$) перевищує граничну деформація руйнування матеріалу ($\overline{\varepsilon_f}$), починається керований процес різання (руйнування матеріалу в зоні формоутворення), що характеризується рівнем енергії [U_f]. Ця енергія визначається відношенням показника стійкості руйнування K_c до модуля Юнга Е для даного матеріалу заготовки:

$$\begin{bmatrix} U_f \end{bmatrix} = \frac{K_c^2 \cdot \left(1 - \mu^2\right)}{E} \tag{2.2}$$

де μ - коефіцієнт Пуассона, що визначає пружні властивості матеріалу

Коли показник енергетичного показника на вершині гратки досягає критичного значення $[U_f]$, цей елемент зникає з сітки і на його місці виникає порожнина, яка розвивається у напряму подачі різального леза, внаслідок чого частина матеріалу відокремлюється, утворюючи при цьому стружку. Перевищення енергетичного рівня по всьому перетині стружки, сприяє її руйнуванню і відокремленню від заготовки у вигляді сегментів [99].

У дещо спрощеному вигляді деформаційну модель локального руйнування можна описати залежністю Купера-Саймонда, що враховує пряму залежність межі текучості від інтенсивності деформації (*strain rate*). Для врахування інтенсивності деформації ε на σ_T , вводимо масштабний коефіцієнт β :

$$\sigma_T^{\partial u \mu} = \sigma_T \cdot \beta; \qquad (2.3)$$

$$\beta = 1 + \left(\frac{\dot{\varepsilon}}{c}\right)^{\frac{1}{p}},\tag{2.4}$$

де $\sigma_T^{\partial u \mu}$ - поточна межа текучості; *Р*, *С* – константи, що залежать від матеріалу заготовки [100].

Критерієм руйнування є досягнення пластичною деформацією ε^{p} граничного значення [ε_{B}] [101] :

$$\varepsilon^{p} > [\varepsilon_{B}]; \tag{2.5}$$

$$\varepsilon^p = \int_o^t \left(\frac{2}{3}\dot{\varepsilon}^p_{ij}\right)^{0.5} dt, \qquad (2.6)$$

де $\dot{\varepsilon}_{ij}$ — компоненти тензора швидкостей пластичної деформації.

Залежність теплопровідності (*Thermal conductivity - англ.*) та модуля Юнга титанового сплаву від температури задається в DEFORM-2D за допомогою спеціальної процедури і на основі статистичних даних [101]. Приклад внесення таких показників для сплаву ВТ6 (аналог Ti6Al4V) наведений на рис. 2.3. - 2.4.

Рис. 2.3. Залежність теплопровідності матеріалу титанового сплаву від

температури різання

Рис. 2.4. Залежність Модуля Юнга титанового сплаву від температури різання

Реологічні параметри матеріалу (на прикладі титанового сплаву Ti6Al4V) наведений на рис. 2.5.

Рис. 2.5. Приклад внесення даних для формування моделі реологічних (напруженодеформаційних) властивостей титанового сплаву ВТ6 (аналог Ti6Al4V)

2.2. Особливості імітаційного моделювання процесу механічного оброблення виробів з титанового сплаву в системі DEFORM 2D

Сучасне програмне забезпечення DEFORM-2D (розроблене комп. Scientific Forming Technologies Corp.) було використано для прогнозних досліджень процесу механічної обробки [102]. Ця система є багатоцільовою програмою кінцевоелементного аналізу, яка призначена для вирішення дво- та тривимірних динамічних нелінійних задач механіки деформації твердого тіла, а також задач, пов'язаних із цим процесом. В них реалізований явний та неявний метод скінченних елементів з можливістю побудови лагранжевої, ейлерової та гібридної сіток, багатокомпонентної гідродинаміки, методу згладжування граток на основі методу Галеркіна [103]. У забезпеченні використані процедури цьому програмному автоматичного регулювання та згладжування сіток із звичайних елементів при виродженні елементів, високоефективні алгоритми вирішення контактних задач, широкий спектр проблемно-орієнтованих специфікацій матеріалів, можливості програмування користувачем нетрадиційних процедур тощо.

Вихідними даними для препроцесора системи DEFORM 2D під час моделювання операції механічної обробки (різання) є: 2D-модель оброблюваної деталі (поверхні); режими різання (подача, число обертів шпинделя, глибина різання); геометрія різального леза, механічні властивості інструментального матеріалу та тип та глибина покриття; механічні та теплофізичні характеристики обробленого матеріалу (наприклад, ТібАl4V); модель зношування інструменту (рекомендовані функції Арчарда та Ушуї); критерії та обмеження загального трансформування кінцево-елементних граток (обчислюється як сума похибок моделювання на векторі потужності, векторі швидкості та допустимій геометричній похибці); тип моделювання деформації (Lagrange Incremental або Steady-State Machining); часовий інкремент дослідження (константа, або функція від часу оброблення); ітераційний метод дослідження (прямий ітераційний чи метод Ньютона-Рафсена), тип розв'язувача деформації та температури (метод Skyline або метод розріджених матриць), похибки збіжності рішення (по силовому вектору та по вектору швидкості деформації), критерій руйнування (Райса-Трейсі, Мак-Клінтока, Кокрофта-Лейтема тощо), метод вибору та особливості генерування Лагранжевої або Ейлерової сітки для МСЕ аналізу.

Важливим кроком у методі вивчення напружено-деформованого стану заготовки з титанового сплаву під час різання є правильний вибір найефективнішого

формату розв'язувача МСЕ (включаючи матриці неправильної структури). Досвід автора з подібними проблемами свідчить про те, що кон'югатний градієнт Skyline працює швидше і потребує менше пам'яті, ніж розв'язувач, що працює за алгоритмом розрідженої матриці. Цей висновок також підтверджує Ц. Нільсен і В. Жанг [104]. Однак у поєднанні з ітераційним розв'язувачем він виявляє труднощі у зближенні рішень через проблему з недостатньою кількістю точок дотику. Було виявлено, що, наприклад, при моделюванні процесу з малою глибиною різання, як тільки в контакті виявляється невелика кількість вузлів, тоді, якщо використовується розв'язувач Skyline, виникають проблеми з збіжністю результатів дослідження. Тому для цього класу завдань доцільно використовувати алгоритм методу розріджених матриць [105]. Однак для вирішення проблем із великою кількістю тетраелементів (чотиривузлові гратки лагранжової сітки) розріджувач матриці вимагає більше пам'яті, ніж може виділити комп'ютер, і тому розрахункова процедура може бути припинена без Експериментально встановлено, що максимальна попередження. межа ДЛЯ розв'язувача, працюючого за методом розріджених матриць складає 140 тисяч елементів. Тому використання розв'язувача Skyline є більш ефективним для моделювання процесів різання з глибиною різання більше 0,5 мм.

Компонент швидкості розсіювання, що характеризує пластичні деформації заготовки, є однорідною функцією першого порядку цієї швидкості пластичної деформації, що відповідає випадку пружно-пластичного стану, незалежно від часової шкали процесу різання. Очевидно, що пластична деформація збільшується при динамічному навантаженні. Опір заготовки фізично характеризується модулем пружності (для різання - модуль зсуву G і межею текучості σ_{YS}) і, крім температури, залежить також від додаткового параметра стану, що характеризується критерієм руйнування D. Виходячи з високих пластичних властивостей титанових сплавів, можна зробити висновок, що відповідно до існуючих моделей різання з використанням деформації критерії деформаційного та енергетичного руйнування (McClintock, Oyada, Ayada, Osakada та інші методи [106, 66] загалом адекватно описують реологічну закономірність процесу зсуву підчас різання. Проте, можна відзначити, що більш адекватними є моделі, які використовують енергетичні критерії руйнування, такі як нормований критерій Кокрофта-Лейтема (*Cockcroft-Latham*) (D_1) або експотенційний критерій Райса-Трейсі (*Rice-Tracy*) (D_2) [99]. Ці критерії руйнування грунтуються на розрахунку потенційної енергії пластичної деформації, тобто площі фігури, яка обмежена кривою напруження-деформація:

$$D_{1} = \int \frac{\sigma_{\text{max}}}{\overline{\sigma}} d\overline{\varepsilon}$$
 (2.7)

$$D_2 = \int_{0}^{\varepsilon} e^{\frac{\alpha \sigma_m}{\overline{\sigma}}} d\overline{\varepsilon}$$
(2.8)

де $\bar{\varepsilon}$ - накопичена еквівалентна деформація; σ_{max} - максимальне головне напруження; $\bar{\sigma}$ – еквівалентне напруження Мізеса; α - коефіцієнт, який залежить від властивостей матеріалу; σ_m - гідростатичний тиск.

Кінетика відмови не враховується при обробці крихких матеріалів. Тобто напружено-деформований стан заготовки та інструменту у невеликому обсязі мобільної лагрангівської сітки змінюється, при досягненні критерію остаточного відмови. З іншого боку, напруження у заготовці зменшуються за умови постійного деформації через втрату матеріалу здатності до опору [107]. Це свідчить про те, що у випадку постійної невдачі процеси розриву деталі та деформації слід розглядати як незалежні (що не виключає взаємного впливу). Розробка процесу деформації повинна бути описана не конкретним значенням досягнення межі міцності, а особливим критерієм, який, перш за все, залежить від швидкості деформації.

Наприклад, хибний вибір критерію деформації (в даному випадку – це деформаційний критерій Мак-Клінтока (*McClintock*)) призводить до неадекватних результатів імітаційного моделювання процесу механічного оброблення виробу з преваліюванням пластичних властивостей, а використання енергетичного критерію Кокрофта-Лейтема (*Cockroft-Latham*) достатньо адекватно відтворює реальну картину стружкоутворення (рис. 2.6.) [108].

Рис. 2.6. Приклад адекватності вибору критерію руйнування: (a) - використання критерію Мак-Клінтока: (б) - використання критерію Кокрофта-Лейтема

Для створення повноцінної робочої імітаційної моделі процесу різання необхідно створити формалізовану проблемно-орієнтовану базу даних щодо фізичномеханічних характеристик оброблюваного та інструментального матеріалу (механічні та термодифузійне характеристики, криві термодинамічного зміцнення матеріалів, їх структурно-фазовий стан до оброблення тощо); метод розрахунку похибки збіжності результатів; метод вибору та особливості генерування лагранжевої або ейлерової сітки для МСЕ аналізу. Система DEFORM 2D використовує для побудови кінцево-елементної сітки інтелектуальний генератор ґраткової структури, який здатний перебудовувати сітку в процесі розрахунку та розділяє зону різання на ділянки з різним розміром ґратки. Зменшення розмірів ребра ґратки використовується для зони різання та близьких до неї ділянок заготовки та інструменту, а збільшення відповідно для зовнішніх частин заготовки та інструменту, що доволяє отримувати чітку картину для процесу різання без витрати ресурсів на розрахунок пружно-деформованого та термодинамічного стану в усьому об'ємі заготовки. Аналіз отриманих результатів імітаційного моделювання дасть змогу встановити поточний та залишковий напруженодеформований та термодинамічний параметри процесу різання.

Запропонований в даній дисертаційній роботі алгоритм силового та термодинамічного аналізу процесу різання включає в себе такі етапи:

- Формуємо модель реологічних властивостей досліджуваного матеріалу (термодеформаційні залежності, критерії руйнування, вирішувачі та граничні умови збіжності результатів досліджень тощо).
- Вибираємо модель зношування інструменту, фрикційні параметри механічного оброблення
- 3. Будуємо 2D модель оброблюваної заготовки.
- Вибираємо вихідну конфігурацію геометрії різального інструменту (передній та задній кути, радіус загострення леза), інструментальний матеріал, тип та глибину покриття тощо
- 5. Призначаємо початкові режими різання (швидкість, подачу, глибину різання).
- Створюємо відповідну базу даних та проводимо дослідження напруженодеформованого та термодинамічного стану заготовки та інструменту в

динаміці протягом наперед встановленого інтервалу часу. Реальне значення цього інтервалу визначається апріорно – до досягнення стану, коли досліджувані показники якісно не змінюватимуться протягом тривалого часу.

- 7. Результати досліджень конвертуємо в EXCEL таблицю для подальшого аналізу.
- Змінюємо лише один з показників різання або подачу, або швидкість різання, або параметр геометрії інструменту, або фрикційні умови різання. Діапазон зміни цього параметра встановлюється наперед.
- 9. Повторюємо кроки 6-7 для новопризначених параметрів.
- 10.3мінюємо інший параметр (п.4 або п.5) аналогічно до п.8 і здійснюємо імітаційне моделювання у відповідності із декларованим завданням.
- 11.Після вичерпання плану імітаційних досліджень проводимо аналіз графічних залежностей, виявляємо домінуючі чинники формування силового, напружено-деформаційного та термодинамічного стану виробу після оброблення, проводимо аналітичне опрацювання результатів, побудову регресійних залежностей тощо.

Значення швидкості різання (*Surface speed* (V)) вибирається для всіх досліджень та не змінюється за умовами нашого дослідження, значення подачі інструменту (*Feed rate* (*f*)) змінюється для чотирьох дослідів і приймають значення: 0,1 мм/об, 0,25 мм/об, 0,4 мм/об і 0,6 мм/об.

Process Setup		
-Cutting Speed		
(Surface speed (v)	50	m/min 💌
C Rotational speed	1273.24	rpm
Workpiece Diameter (D)	50	mm
Feed rate (f) 0.1		mm/rev 💌

Рис. 2.7. Задання параметрів технологічного процесу

Задання геометричних параметрів інструменту відбувається лише для різального леза, а загальні габарити та переріз державки не враховується. (рис. 2.8).

Рис. 2.8. Задання конструктивних параметрів різального інструменту

Габаритні розміри досліджуваної деталі (рис. 2.9) ґрунтуються на введені аналогічних габаритних розмірів деталей, для можливості проведення порівняння результатів досліджень.

Рис. 2.9. Внесення геометричних розмірів оброблюваної деталі

2.3. Методика досліджень динамічних процесів системи ВПІЗ підчас оброблення виробів з титаномістких сплавів

Неусталені динамічні процеси різання титанових сплавів є причиною генерування періодичних та аперіодичних коливань елементів технологічної системи ВПІЗ, що призводить до підвищення інтенсивності зношування різального інструменту, зменшення точності розмірного оброблення та мікронерівностей профіля а також погіршення якості поверхневого шару виробу. Як це було зазначено в Розд. 1.4, виникнення значущих (впливаючих на якісні показники виробу) вібраційних коливань обумовлюється збурюючими силами, інерційними та пружньолисипативними властивостями технологічної системи «Верстат-Пристрій-Інструмент-Заготовка». Причому, ці сили, залежно від фізичної сутності механізму збудження вібрацій, призводять до виникнення як власних загасаючих і вимушених коливань, так і автоколивань та параметричних коливань [35]. Враховуючи складність та багатофакторність процесу різання титанових сплавів, можна стверджувати, що в теперішний час все ще не існує єдності у аналітичних інтерпретаціях механізму збудження коливань у технологічній системі, виділення домінуючих чинників їх амплітудних значень. Тому в даній дисертаційній роботі здійснена спроба поєднати методики наукового дослідження динамічних процесів формоутворення виробів з титанових сплавів, отриманих як результат імітаційного моделювання, так і класичне аналітичне моделювання динамічних процесів різання.

Аналізуючи причини коливань, в даній роботі основну увагу приділяється генеруючим коливання чинникам, що виникають внаслідок специфіки механічного оброблення титанових сплавів – наприклад, явищу адіабатичного зсуву підчас різання саме титанових сплавів. Вплив таких факторів, як конструктивні особливості верстата; базування виробу; геометричні властивості та відносні розміри заготовки; форма різців, способи їх кріплення на верстаті тощо вивчені достатньо ґрунтовно і тому не є об'єктом даних досліджень.

Завдання, поставлені у роботі, вирішувалися теоретично та підтверджувались експериментально. Теоретичні дослідження базувалися на основних положеннях теорії різання металів, динаміки різання, проектування різальних інструментів, теорії управління, теорії коливань, методів математичного та комп'ютерного моделювання, диференціального та інтегрального обчислення. Експериментальні дослідження проводилися в лабораторних та виробничих умовах з використанням промислового

обладнання та сучасних вимірювальних засобів. Обробка результатів експериментів здійснювалася методами математичної статистики з використанням пакету MatLab. Очевидно, що найскладнішим етапом побудови методології таких досліджень є адекватний аналітичний опис динамічного стану технологічної системи зі змінними параметрами, у тому числі математичні моделі вібропереміщень системи «Заготовка - Інструмент» при різних схемах базування та різному характері зміни сили різання, що дозволяє проводити візуалізацію та системний аналіз вібраційних процесів, досліджувати динамічну стійкість системи, прогнозувати інтенсивність коливань системи на етапі проектування технологічних операцій механічного оброблення виробів з титанового сплаву.

Аналітична формалізація вібраційних процесів, що визначається процесом різання та поєднує динамічні підсистеми ВПІЗ базується на загальновідомих положеннях теорії динаміки різання [109]. Приймається, що динамічний зв'язок, сформований процесом різання, багато в чому визначає стійкість траєкторій стаціонарних формоутворювальних рухів інструменту щодо заготовки, і вона, в свою чергу, впливає на перетворення траєкторій виконавчих елементів верстата в траєкторії формоутворюючих рухів. Для дослідження динаміки процесу різання використовується узагальнене рівняння підсистеми «Інструмент-Заготовка» в системі однієї *z*-ї координати (рис. 2.10):

$$\frac{d^2 X}{dt^2} \cdot m_X + C_X X + k_X \cdot \frac{dX}{dt} = F_z \left(X, V, S, h \right)$$
(2.9)

де $X = \{x_{iz}, x_{3z}\}^{T}$ – транспонований вектор пружних деформаційних зміщень вершини різального інструменту та заготовки в точці прикладання сили різання в тангенціальному напрямку механічного оброблення *z*; $C_{X} = [c_{iz}; c_{3z}], k_{X} = [k_{iz}; k_{3z}]$ – функціональні матриці інерційних та дисипативних коефіцієнтів залежно від векторів деформаційних переміщень пружної підсистеми «Інструмент – Заготовка», відповідно; $F_z(X,V,S,h)$ - вектор-функції динамічної характеристики процесу різання, що інтерпретує залежність тангенціальної складової сили різання від режимів механічного оброблення, а саме: від швидкості різання V, величини подачі S та глибини різання h.

Рис. 2.10. Схема однокоординатної динамічної системи «Інструмент-Деталь»

Величина дисипативного коефіцієнта згасання коливань, визначається за формулою:

$$k_i = \frac{m_i \delta_i \omega}{\pi} \tag{2.10}$$

де *m_i* – приведена маса i-го елемента системи (заготовки або iнструмента); δ_{*i*} – логарифмічний декремент коливань *i*-того елемента коливальної схеми, який характеризує темп згасання вібраційного процесу в системі «Інструмент-Деталь»; ω – кутова частота коливань.

Середнє значення логарифмічного декременту коливань δ_{e} універсального токарного верстату, виходячи з його конструктивних та функціональних

властивостей можна призначити в межах 0,32-0,34, а фрезерного верстата – 0,36-0,38 [110].

показників демпфування елементів Важливим етапом призначення технологічної системи ВПІЗ є аналіз показників внутрішнього тертя. Цей показник безпосередньо пов'язаний з такими явищами як пластичні міжкристалічні деформації, дислокацій, термопружній ефект, магнітострикційними, дифузійними рухом процесами тощо. Причому цей коефіцієнт внутрішнього тертя істотно залежить від напруження в зоні формоутворення та термодинамічного стану оброблюваного матеріалу. Рекомендовані в літературних джерелах [110] параметри внутрішнього тертя підчас оброблення переважної більшості титанових сплавів типу ВТЗ, ВТ5, ВТ8 становлять для контактної пари «оброблювана поверхня – задня поверхня інструменту» $\mu_l=0,15$, а для контакної пари «передня поверхня-стружка» $\mu_2=0,25$. В зоні пластичної деформації оброблюваного титанового сплаву коефіцієнт тертя набуває значення $\mu_3=0,85-0,9$.

Узагальнений логарифмічний декремент затухання коливань можна описати за формулою:

$$\delta_{\Sigma} = \sqrt{\nu_1 \cdot \mu_1^2 + \nu_2 \cdot \mu_2^2 + \nu_3 \cdot \mu_3^2}, \qquad (2.11)$$

де *v*₁ - *v*₃ - коефіцієнти кореляції.

Виходячи з аналізу інтенсивності дії різних чинників підчас оброблення титанових сплавів умовно приймаємо $v_1 = 0.8; v_3 = 0.5; v_3 = 0.1.$

Іншим важливим компонентом рівняння (2.9) є вектор-функції динамічної характеристики процесу різання, що інтерпретує залежність тангенціальної складової сили різання від режимів механічного оброблення. Загальновідомо, що сила різання є величиною, нелінійність якої залежить від зміни площі зрізу (його товщини a та ширини b):

$$F_{z} = k \left(A_{0} + \frac{B_{0}}{a(t)^{y_{p}}} \right) \cdot ba(t)^{y_{p}}$$

$$(2.12)$$

де *k*, *A*_o, *B*₀, *y*_p – константи, залежні від властивостей оброблюваного матеріалу, матеріалу інструменту, його геометрії [110].

Тобто, динаміка сили різання визначається, перш за все зміною об'єму матеріалу, що видаляється у вигляді стружки в одиницю часу різання. Внаслідок впливу на технологічну систему зовнішньої змінної сили, що викликає коливальний процес із частотою, що дорівнює частоті цієї збурюючої сили або дії складних усталених чи аперіодичних процесів, зумовлених нелінійними властивостями системи ВПІЗ, виникають вимушені та параметричні коливання елементів цієї технологічної системи (див. розд 1.4). Інтенсивність таких коливань особливо велика на резонансних режимах, які, як правило, не допустимі в металорізальних верстатах як робочі режими. Зниження інтенсивності та рівня коливань у технологічній системі є актуальною проблемою, яка вирішується на основі динамічного синтезу параметрів розробленими методами [102]. Визначення цієї величини залежить від ряду складноформалізованих параметрів, тому визначення збурюючої сили коливального процесу різання титанового сплаву найкраще реалізувати в системі DEFORM 2D.

Складність у формалізації силової характеристики процесу різання полягає у значній зашумленості результатів розрахунків, виконаних методим скінченних елементів для більшості високочастотних динамічних задач [103]. Для ефективного опрацювання результатів роботи системи DEFORM 2D необхідно вирішити 2 найважливіші задачі — по-перше, це фільтрація шумового сигналу із збереженням граничних значень силових параметрів різання та максимуму чутливості; по-друге, вирішення задачі апроксимації та інтерполяції фільтрованої функції сили різання за часом (перетворенням Фур'є).

В якості математичного забезпечення фільтраційної процедури згладжування даних реологічного моделювання в системі DEFORM 2D, тобто підвищення точності даних без спотворення тенденції сигналу, використовувався математичний апарат Савицького-Гола [111, 112].

Алгоритм вирішення такої поставленої задачі передбачає припасування послідовних наборів сусідніх точок даних поліномом низького ступеня за методом найменших лінійних квадратів. Ідея реалізації цього методу полягає у результаті припущення, що для точок даних, що знаходяться в однаковому часовому діапазоні один від одного, можна знайти аналітичне рішення рівнянь найменших квадратів у вигляді одного набору "коефіцієнтів згортки", які можна застосувати до всіх наборів даних, щоб отримати оцінки згладженого сигналу (або похідних згладженого сигналу) центральній точці кожного такого набору. Тобто необхідно побудувати в апроксимуючий поліном *n*-го ступеня по (2*k*+1) послідовних рівновіддалених точок реологічного дослідження і використати його для розрахунку згладженого значення величини полінома в (k+1)-й точці. Математично таке значення вираховується визначення ковзного зваженого середнього показника з ваговими ШЛЯХОМ показниками точок, позитивними в центрі вікна фільтрації та негативними на периферії. Результати фільтрації по Савицькому-Голу збігаються для поліномів ступеня 2n та (2n+1). Наприклад, ковзне середнє значення силового параметру (відповідно до поліному нульового і першого ступеня) дадуть середнє значення сигналу, при якому апроксимуюча крива завжди проходитиме через центр групування результатів досліджень, рівний середньому арифметичному значенню параметрів сил різання у певному часовому діапазоні (вибраному інкрименті часу, наприклад 3.10⁻⁵ с), яке видається як згладжене значення апроксимаційної кривої.

У загальному випадку просте ковзне середнє значення сили різання дорівнює середньому арифметичному від значень досліджуваної спектральної характеристики цього параметру у наперед встановленому діапазоні і обчислюється за формулою:

$$F_{sZ}(k_i) = \frac{1}{n} \sum_{j=1}^{n-1} F_Z(k_{i-j}) = \frac{F_Z(k_i) + F_Z(k_{i-1}) + F_Z(k_{i-2}) + \dots + F_Z(k_{i-j+1})}{n} \quad (2.13)$$

де F_{sZ} (k_i) — розраховане (модифіковане внаслідок фільтрації) значення силового параметру у діапазоні спектрального поля k_i після перерахунку; $F_Z(k_i)$ — змодельоване в DEFORM 2D значення силової функції для даного кроку k_i ; n — кількість значень набору параметрів для розрахунку ковзного середнього параметру (згладжуючий інтервал). Ширина інтервалу згладжування, визначає ступінь плавності спектральної характеристики чутливості після застосування даного типу фільтрації і є величиною кратності у вибраному інкрименті часу реологічного моделювання. Тобто, наприклад якщо вибраний інкремент часу для проведених досліджень становить $\tau=3\cdot10^{-5}$ с, а інтервал згладжування приймається $\tau_3=3\cdot10^{-3}$ с, то величина n=100.

Запропонований у [112] метод модифікованого ковзного середнього параметру є рекурентним співвідношенням, для якого значення чутливості при заданому хвильовому числі пов'язане з попередньо розрахованим значенням чутливості:

$$F_{smZ}(k_i) = \frac{F_Z(k_i) + (n-1)F_{smZ}(k_{i-1})}{n}$$
(2.14)

де $F_{smZ}(k_i)$, $F_{smZ}(k_{i-1})$ –модифіковані внаслідок фільтрації величин силового параметру для пари значень спектрального поля k_i і k_{i-1}

Код для двовимірної фільтрації даних силового та термодинамічного розрахунку параметрів для DEFORM 2D, реалізований у інтерпретованій об'єктноорієнтованій мові програмування Python 3.10, наведений у Додатку А.

Приклад фільтрації за методом Савицького-Гола для розрахованого у DEFORM 2D параметру сили різання титанового сплаву BT6 (Ti6Al4V) наведений на рис. 2.10.

Рис. 2.10. Результати фільтрації змодельованого параметру сили різання за методикою Савіцького-Гола (параметр згладжування *n*=100). (а) –зашумлений (вихідний) сигнал, (б) – фільтрований (вихідний) сигнал

Висновки до розділу 2

1. Аналіз переваг та недоліків наукового дослідження функціональноорієнтованих технологічних процесів оброблення виробів з титанових сплавів довів, що найбільш ефективним є поєднання імітаційного моделювання з наступним коректуванням моделей за результатами проведених експериментальних досліджень.

2. Запропоновано використання програмне забезпечення DEFORM-2D для прогнозних досліджень силових, термодинамічних та напружено-деформаційних параметрів механічного оброблення титаномістких сплавів. Ця система є багатоцільовою програмою кінцево-елементного аналізу, яка призначена для вирішення динамічних нелінійних задач механіки деформації твердого тіла, а також задач, пов'язаних із цим процесом. Ефективність вирішення поставлених задач саме з використанням даного програмного продукту обумовлено наявністю процедури автоматичного регулювання та згладжування сіток із звичайних елементів при виродженні елементів, застосуванням високоефективних алгоритмів розв'язування контактних задач, а також наявністю широкого спектра специфікацій оброблюваних інструментальних матеріалів 3 формалізованими термодеформаційними та реологічними властивостями (з можливістю їх коректування).

3. Комплексний аналіз застосування програмних розв'язувачів (solver), що використовуються у програмних продуктах, реалізуючих методи скінченних елементів, для імітаційного моделювання процесу механічного оброблення титанових сплавів довів, що саме кон'югатний градієнт Skyline працює швидше і потребує менше пам'яті, ніж розв'язувач, що працює за алгоритмом розріджених матриць. Однак, застосування даного розв'язувача є проблематичним у випадку пов'язаному з недостатньою кількістю точок дотику (наприклад, підчас моделюванні процесу з малою глибиною різання). Тому для цього класу завдань доцільно

використовувати алгоритм методу розріджених матриць. Встановлено, що максимальна межа для розв'язувача, працюючого за методом розріджених матриць складає 140 тисяч елементів. Тому використання розв'язувача Skyline є більш ефективним для моделювання процесів різання з глибиною різання більше 0,5 мм.

4. Найбільш ефективною методикою формалізації реологічних властивостей титанових сплавів запропоновано феноменологічну модель Джонсона-Кука, оскільки саме ця модель якісно формалізує такі процеси, як кінематичне зміцнення, так і термодинамічний адіабатичний зсув титанового сплаву як залежність еквівалентного напруження від швидкості деформування та температури.

5. Виходячи з специфіки механічних властивостей титанових сплавів (насамперед, високому відношенню межі текучості до тимчасової стійкості до руйнування), можна зробити висновок, що відповідно до існуючих моделей різання з використанням деформації критерії деформаційного та енергетичного руйнування більш адекватними є моделі, які використовують енергетичні критерії руйнування, такі як нормований критерій Кокрофта-Лейтема або експотенційний критерій Райса-Трейсі. Саме ці критерії руйнування грунтуються на розрахунку потенційної енергії пластичної деформації, тобто площі фігури, яка обмежена кривою напруженнядеформація.

6. Запропонований в даній дисертаційній роботі алгоритм силового та термодинамічного аналізу процесу різання

7. У дисертаційній роботі здійснена спроба поєднати методики наукового дослідження динамічних процесів формоутворення виробів з титанових сплавів, отриманих як результат імітаційного моделювання, так і класичне аналітичне моделювання динамічних процесів різання. Аналізуючи причини коливань, в даній роботі основну увагу приділяється генеруючим коливання чинникам, що виникають

внаслідок специфіки механічного оброблення титанових сплавів – наприклад, явищу адіабатичного зсуву підчас різання саме титанових сплавів.

8. Складність у формалізації силової характеристики процесу різання полягає у значній зашумленості результатів розрахунків, виконаних методом скінченних елементів для більшості високочастотних динамічних задач. Для ефективного опрацювання результатів роботи системи DEFORM 2D необхідно вирішити 2 найважливіші задачі – по-перше, це фільтрація шумового сигналу із збереженням граничних значень силових параметрів різання та максимуму чутливості; по-друге, вирішення задачі апроксимації та інтерполяції фільтрованої функції сили різання за часом (перетворенням Фур'є). В якості математичного забезпечення фільтраційної процедури згладжування даних реологічного моделювання в системі DEFORM 2D, тобто підвищення точності даних без спотворення тенденції сигналу, запропоновано Савицького-Гола. використати математичний апарат Розроблена програмна реалізація цього методу фільтрації даних силового та термодинамічного розрахунку параметрів для DEFORM 2D у інтерпретованій об'єктно-орієнтованій мові програмування Python 3.10.

РОЗДІЛ З

ДОСЛІДЖЕННЯ СИЛОВИХ ТА ТЕРМОДИНАМІЧНИХ ЧИННИКІВ МЕХАНІЧНОГО ОБРОБЛЕННЯ ДЕТАЛЕЙ З ТИТАНОВИХ СПЛАВІВ

В розділі 1 було аргументовано доведено, що титанові сплави відзначаються складною оброблюваністю порівняно з іншими конструктивними матеріалами через специфічних механічних та фізико-хімічних властивостей. Основними ряд оброблюваності титанових відносно низької сплавів є причинами низька теплопровідність, висока хімічна реакційна здатність і низький модуль пружності [113]. Процеси механічного оброблення цих матеріалів відзначаються високою температурою різання, що спричинює суттєве зменшення ресурсу роботи різального інструменту та значною інтенсивністю вібраційних процесів в системі «Верстат-Пристрій-Інструмент-Заготовка» (ВПІЗ) [62].

Найбільш дієвими кроками у напрямку зменшення впливу чинників, пов'язаних з незадовільною оброблюваністю титанових сплавів, є розроблення та впровадження нових матеріалів та поверхневих покрить для різальних інструментів, вдосконалення їх конструкції та геометрії, а також оптимізація режимів різання [114]. Проте, будьякі інновації повинні ґрунтуватись на результатах досліджень силових, напруженодеформаційних та термодинамічних процесів різання різнорідних титанових сплавів. Лише у цьому випадку запропоновані технологічні впровадження будуть носити не випадково-стохастичних характер, а реалізовувати процес логічного науковообґрунтованого направленого вибору, що базується на вирішенні проблем, причини формування яких є однозначно зрозумілими, чисельно та якісно оціненими та адекватними.

3.1. Імітаційні та аналітичні дослідження процесів формоутворення стружки в зоні різання

Дослідження, що проводяться в області динаміки різання, здебільшого здійснюються на основі одного з двох методів. Це або аналітичний аналіз різання на основі вивчення стружкоутворення та супутніх процесів як частковий випадок пластичної деформації матеріалу заготовки або імітаційне моделювання напруженодеформованого та термодинамічного стану заготовки на основі аналізу результатів роботи програмних продуктів, що базуються на методі скінчених елементів. Причому, імітаційний тип досліджень проводиться не лише для встановлення адекватності теоретичних основ формоутворення поверхонь, що підлягають механічній обробці, ефективного вивчення динамічного напруженоале головним чином для деформованого стану заготовки в різних зонах формування стружки з використанням варіаційних даних моделювання (геометрія інструменту, матеріалів, режимів різання тощо) для наступного застосування в оптимізаційних моделях. Ці структурнопараметричні моделі можуть бути також використані для ефективної реалізації функціонально-орієнтованого технологічного процесу.

Вихідними даними для моделювання різання в системі DEFORM є:

– 2D або 3D модель деталі;

- режими різання;

2D або 3D модель інструменту, геометрія різального леза, його матеріал та покриття;

 міцнісні, фізико-механічні, теплофізичні характеристики оброблюваного матеріалу;

– модель зношування леза інструменту;

 нормативна похибка відповідності результатів моделювання за силовим вектором, вектором швидкості та допустимою геометричною похибкою;

– тип деформації (Lagrangial Incremental або Steady-StateMachining);

 вид ітераційного методу розрахунку (прямий ітераційний або Ньютона-Рафсен);

вибір розрахункового ядра (метод розріджених матриць або метод Skyline).

Рекомендації щодо раціонального вибору цих параметрів наведено у Розділі 2.

Важливим чинником для розуміння та якісного аналітичного опису картини формоутворення підчас різання титанового сплаву є формалізація процесу утворення зубчастої форми стружки, її параметрів та визначення реальної довжини контакту стружки з передньою поверхнею різального інструменту.

З метою досліджень цих параметрів проведено скінченно-елементне імітаційне моделювання з використанням програмного забезпечення DEFORM-2D. Матеріал деталі – титановий сплав BT6 (аналог Ti6Al4V). У цьому дослідженні розглядається термо-пружно-в'язкопластичний тип скінченно-елементного моделювання. Дана методика передбачає моделювання процесу різання пружно-в'язкопластичної заготовки з сіткою, що містить 10000 елементів у вигляді тетраедра з розміром елементів від 10 до 50 мкм у первинній зоні дослідження (тобто області інтенсивних змін напружено-деформованого стану заготовки). Інструмент моделювався як жорстке недеформоване тіло з сіткою, що містить 2500 елементів. Сітка високої густини в зоні первинної деформації була застосована, як показано на рис.3.1. В геометрії інструменту використовується радіус заокруглення вершини різця r=0,1 мм; матеріал різальної частини інструменту - твердий сплаву BK8 (аналог WC/Co) без
покриття. В даному випадку приймалися для моделювання наступні режими різання – швидкість різання V = 100м/хв, подача F = 0,25 мм/об, глибина різання змінна t =0,5...1,5 мм.

Одним із найбільш впливових чинників формування вторинної зони деформації є швидкість руху стружки вздовж передньої поверхні інструменту. Саме цей параметр найбільше впливатиме на зношування інструменту та термодинамічну картину різання. Результати імітаційного моделювання дозволяють чітко розпізнати зони швидкісні діапазони руху стружки (рис. 3.2).

Рис. 3.1. Генерування сітки при в задачі імітаційного моделювання DEFORM 2D

Рис. 3.2. Швидкість руху стружки

Зона 1 характеризується загальмованістю руху стружки. Швидкість її переміщення вздовж передньої поверхні різця для заданих режимів різання складає від 100 до 300 мм/сек. В цій області відбувається формування зона найвищого питомого тиску в підсистемі «стружка-інструмент» (рис.3.3), що спричинює значне еквівалентне напруження (рис.3.4 а). Проте температура і даній зоні є відносно невисока (рис.3.4 б), що свідчить про те, що саме фрикційний чинник формування термічної характеристики процесу різання (виникає внаслідок ковзання стружки вздовж інструменту) домінує над силовим чинником (викликаний силовими та деформаційними процесами в корені стружки).

Рис. 3.3. Питома сила тиску в зоні стружкоутворення

Рис. 3.4. Імітаційна картина формування напружень (а) та температури (б) в зоні стружкоутворення під час оброблення титанового сплаву ВТ6

Зона 2 відзначається пришвидженим збігом стружки вздовж передньої поверхні інструменту (700 – 1200 мм/сек) з меншим питомим тиском. Проте внаслідок впливу

фрикційної взаємодії в системі «Інструмент-стружка», температура різання в цій зоні значно перевищую температуру в зоні 1 (940°С проти 720°С). Зона 3 характеризується найвищою швидкістю збігу стружки (близько 2000 мм/с) внаслідок того, що вона позбувається фрикційного впливу передньої поверхні інструменту . Температура затухає до 300°. Силової взаємодії очевидно немає.

Наведена картина збігу стружки якісно пояснює причини напруженодеформаційних та термодинамічних процесів в зоні різання та корелюється з класичними висновками [114] щодо аналізу впливу різних чинників на формування силового поля та зон первинної та вторинної деформації.

Формування зубчастоподібної форми стружки є наслідком високочастотного коливання поздовжньої та поперечної сил різання, що виникає внаслідок адіабатичного характеру формування стружки [115] у зоні вторинної деформації. Причому динамічна картина складових сил різання чітко фіксує їх дисонанс за часовою шкалою (рис. 3.5). Тобто, максимальне значення поздовжньої складової сили різання у певний проміжок часу відповідає мінімальному значенню поперечної сили різання, і навпаки.

Рис. 3.5. Динаміка формування поперечної та поздовжньої сили різання титанового сплаву ВТ6

Очевидно, що величини сил різання формуються в залежності від режимів механічного оброблення. Тому діапазон коливання може бути різний, а відтак різними будуть і геометричні параметри стружки. Деякі вчені [115] рекомендують робити висновки про динаміку сил різання, виходячи саме з геометричного аналізу форми стружки.

На рис. 3.6 наведені результати імітаційного моделювання в DEFORM 2D геометрії стружки підчас оброблення титанового сплаву ВТ6 в залежності від глибини різання (V=100 м/хв, S=0,25 мм/об). Як видно з цих графічних результатів, різниця товщин стружкових елементів *а* зростає пропорціонально до глибини різання *t*. При глибині різання 0,5 мм ця величина становить лише 0,39 мм, при t=1 мм - різниця товщин *a*=0,5 мм, а при t=1,5 мм - a=0,7 мм. В верхній частині рисунків наведено збільшений і 10 разів фрагмент утвореної стружки.

Рис. 3.6. Результати імітаційного моделювання в DEFORM 2D форми стружки підчас оброблення титанового сплаву ВТ6 в залежності від глибини різання: (а) t=0,5 мм; (б) t=1,0 мм; (в) t=1,5 мм

Для визначення частоти і амплітуди формоутворення стружкового елементу підчас оброблення титанового сплаву використовується наступна розрахункова схема (рис. 3.7).

Рис. 3.7. Розрахункова схема формоутворення стружкового елементу підчас оброблення титанового сплаву

Очевидно, що швидкість різання V_1 , що характерна для руху локального сітчастого елементу заготовки перед початком утворення корня стружки, становить задану величину V_1 =100 м/хв = 1667 мм/с. В зоні 1 (рис.3.2) швидкість руху такого елементу сповільнюється до V_2 =1310 мм/с (у випадку змодельованої глибини різання 0,5 мм). Кут зсуву буде змінним по довжині зони стружкоутворення випуклого сегменту стружки і становить β_1 =75° та β_2 =42°, відповідно. Період часу повного циклу стружкоутворення можна прийняти рівним т. З рис.3.6 отримаємо частоту утворення зубчастих смуг :

$$\tau = \frac{V_1 - V_2}{t} \cdot \frac{1}{\operatorname{ctg}\beta_2 - \operatorname{ctg}\beta_1} \tag{3.1}$$

Амплітуду коливань товщини стружки *а* визначаємо з геометричних побудов (рис. 3.6) за формулою:

$$a = t \cdot \cos \psi \cdot \left(\operatorname{ctg} \beta_2 - \operatorname{ctg} \beta_1 \right)$$
(3.2)

Для заданих умов імітаційних досліджень:

$$\tau = \frac{1667 - 1310}{0,5} \cdot \frac{1}{\operatorname{ctg}(42^\circ) - \operatorname{ctg}(75^\circ)} = 857 \text{ c}^{-1};$$
$$a = 0,5 \cdot \cos \varphi \cdot \left(\operatorname{ctg}(42^\circ) - \operatorname{ctg}(75^\circ)\right) = 0,42 \text{ MM}.$$

Результати імітаційних досліджень, аналітичних розрахунків та експериментальних даних наведено на графіку рис. 3.8. Порівнюючи наведені дані можна зробити висновок, що відхилення цих результатів не перевищують 10-12%. Якісна картина змін цілком збігається. Тобто, можна стверджувати про адекватність результатів моделювання. Це є насамперед важливим з точки зору оцінки адекватності висновків щодо впливу режимів різання на динаміку силових параметрів у поздовжньому та поперечному напрямку, що, в свою чергу, впливає на вібраційну картину різання титанового сплаву, що буде розглянуто в Розділі 5 даної дисертаційної роботи.

Рис. 3.8. Порівняльні показники амплітуди зміни товщини суглобистої стружки

Іншим важливим показником термодинамічного стану зони різання є довжина контакту стружки і інструменту. Вважається, що саме цей показник є важливим параметром при механічній обробці, оскільки розподіл температури по поверхні контакту формує умови зношування інструменту по передній поверхні. Особливе значення це має підчас оброблення титанових сплавів, враховуючи їх специфічні фізико-механічні властивості [37].

Згідно формули Абуладзе, довжина пластичного контакту *C_c* між передньою поверхнею інструменту і стружкою, визначається як:

$$C_{c} = 2L \left[\xi \left(1 - \tan \gamma \right) + \sec \gamma \right]$$
(3.3)

де L – товщина недеформованої стружки, мм; *ξ* - коефіцієнт усадки стружки; *γ* - передній кут інструменту.

Коефіцієнт усадки стружки має значний вплив на показники напруженодеформованого стану зони різання.

Рис. 3.9. Залежність коефіцієнта усадки стружки від швидкості різання (а) глибини різання (б) титанового сплаву та переднього кута різального інструменту (в)

Аналіз залежності коефіцієнта усадки стружки ξ від зміни швидкості різання V показав, що із збільшення швидкості різання, середнє значення величини усадки практично не зазнає змін, проте суттєво зростає амплітуда його коливання, що еквівалентно зміні кута зсуву, який динамічно змінюється внаслідок адіабатичного характеру стружкоутворення (рис. 3.9, а). Так, при V=50 м/хв, середнє значення коефіцієнта усадки стружки становить ξ_{cep} =2,28, а амплітуда $\Delta \xi$ =0,08. При V=100 м/хв, середнє значення коефіцієнта усадки стружки становить ξ_{cep} =2,29, а амплітуда зростає до $\Delta \xi$ =0,22, а при V=150 м/хв, середнє значення коефіцієнта усадки стружки складає ξ_{cep} =2,32, а амплітуда вже становить $\Delta \xi$ =0,45. За швидкості різання V=200 м/хв, середнє значення коефіцієнта усадки стружки складає ξ_{cep} =2,35, а амплітуда є найбільшою і складає в усталених умовах різання $\Delta \xi = 0,61$. Результати моделювання наведені в Додатку Б.

Практично аналогічним є вплив глибини різання на коефіцієнт усадки стружки ξ (рис. 3.9, б). А саме: із зростанням глибини різання середнє значення усадки суттєво не змінюється, а от амплітуда коливань цього параметра збільшується суттєво. Тобто, при *t*=0,5 мм, коефіцієнт усадки становить $\xi_{cep}=1,85$, в той же час, як амплітуда є лише $\Delta \xi = 0,06$. Вже при збільшенні глибини різання до *t*=1,0 мм, коефіцієнт усадки набуває значення $\xi_{cep}=1,87$, а от амплітуда вже зростає до $\Delta \xi = 0,09$. Аналогічне зростання спостерігається з подальшим збільшенням глибини різання: при *t*=1,5 мм, коефіцієнт усадки - $\xi_{cep}=1,91$, а амплітуда - $\Delta \xi = 0,14$; при *t*=2,5 мм, коефіцієнт усадки - $\xi_{cep}=1,93$, амплітуда - $\Delta \xi = 0,22$; при *t*=3,5 мм, коефіцієнт усадки - $\xi_{cep}=1,99$, а амплітуда - $\Delta \xi = 0,45$. Результати моделювання наведені в Додатку В.

Якісно інша картина спостерігається у випадку зміни геометрії інструменту (рис. 3.9, в). Збільшення переднього кута різального леза призводить до суттєвого збільшення коефіцієнта усадки стружки. Так при γ =-5°, величина коефіцієнта усадки становить ξ_{cep} =2,3, а амплітуда - $\Delta \xi$ =0,42. При γ =0°, коефіцієнт усадки - ξ_{cep} =2,1, а амплітуда - $\Delta \xi$ =0,31; при γ =5°, коефіцієнт усадки - ξ_{cep} =1,86, амплітуда - $\Delta \xi$ =0,23; при γ =10°, коефіцієнт усадки - ξ_{cep} =1,74, а амплітуда - $\Delta \xi$ =0,16. Результати моделювання наведені в Додатку Г.

На рисунку 3.10 показана залежність довжини контакту від швидкості різання. У роботі [115] доводиться, що для сталі AISI 1045 довжина контакту має тенденцію до зменшення зі збільшенням швидкості різання. Така ж тенденція зменшення спостерігається для всіх значень товщини недеформованої стружки. Проте, на основі результатів імітаційного моделювання процесу механічного оброблення титанового сплаву Ti6Al4V (див. додатки Б-Г) на основі формули (3.3) доведено, що довжина контакту має іншу тенденцію зміни (як показано на рис. 3.10). Тут довжина контакту спочатку збільшується, а потім зменшується зі збільшенням швидкості різання. Аналізуючи результати досліджень, показаних на рис. 3.10, можна зробити такі висновки: швидкість різання приблизно 150 м/хв, при якій довжина контакту перехідного максимальна, лежить межах діапазону між звичайним i В високошвидкісним режимом обробки титанових сплавів. Таке початкове зростання, а потім зменшення довжини контакту для сплаву Ті6Аl4V при більш високих швидкостях подачі можна пояснити явищем зміни геометрії стружки внаслідок прояву явища адіабатичного зсуву, що показано на рис. 3.6.

Наведені вище результати імітаційних та аналітичних досліджень механічного оброблення титанових сплавів довели, по-перше, адекватність запропонованої методики досліджень як наслідок якісного спідпадіння отриманих результатів та відомих з літературних джерел даних; по-друге, дозволяє встановити найбільш навантажені режими різання з точки зору формування контактної взаємодії у підсистемі «стружка-передня поверхня різального інструменту». Проблеми силової та фрикційної взаємодії у підсистемі «задня поверхня інструменту-заготовка» будуть розглянуті у Розділі 4.

Рис. 3.10. Графічна залежність довжини контакту стружки від швидкості різання титанового сплаву ВТ6 (аналог Ti6Al4V)

3.2. Аналіз впливу силових чинників на формування напруженодеформованого стану заготовки

Методика імітаційних досліджень силових параметрів різання детально описана в розділі 2. Оскільки під час обробки титанового сплаву ВТ6 (аналог Ti6Al4V) переважає руйнування з періодичним сколюванням матеріалу по передній поверхні інструменту, відповідно до рекомендацій [117], в імітаційній реологічній моделі використовувався деформаційний критерій руйнування Мак-Клінтока.

Виникає логічне запитання: які саме параметри обробки потрібно використовувати для досягнення максимальної продуктивності та достатньої якості обробленого шару? Дослідження залежності навантаження, деформації та

напруження від глибини різання Рис. 3.11), швидкості різання (рис. 3.12) та геометричних параметрів інструменту (рис. 3.13) змодельовано в Deform 2D.

Рис. 3.11. Залежність еквівалентного напруження та сумарної сили різання від

глибини різання титанового сплаву ВТ6

Глибина різання суттєво впливає на силу різання (рис.3.11, а). Наприклад, зміна глибини різання від 1,0 мм до 2,5 мм збільшує силу різання приблизно в 2 рази. Особлива зміна цих параметрів відбувається, якщо глибина різання збільшується понад 2 мм. Однак зміна глибини різання суттєво не впливає на еквівалентне напруження в зоні формоутворення (збільшення t в 7 разів (з 0,5 мм до 3,5 мм) призводить до зміни цього параметру параметрів лише на 5-7%).

a)

Рис. 3.12. Вплив швидкості різання на ефективне напруження (а) загальне навантаження (б) під час обробки титанових сплавів ВТ6

Швидкість різання найбільше впливає на частоту зміни навантаження. Наприклад, зміна V від 50 до 200 м/с збільшує період зміни сили різання приблизно в 8 разів (від 0,3 до 2,5 мс). Це може бути причиною високочастотного коливання інструменту. Однак сила різання значно зменшується із збільшенням швидкості різання. Наприклад, 4-кратна зміна швидкості (від 50 до 200 м/хв) призводить до зменшення сили різання на 25% (від 3,2 кН до 2,4 кН). Проте швидкість різання не має суттєвого впливу на еквівалентне напруження в зоні різання, як і у випадку зміни глибини різання, змінюючись із збільшенням швидкості різання лише на 7-9%.

a)

125

Рис. 3.13. Вплив геометрії інструменту (передній кут) на ефективне напруження (а) та загальне навантаження (б) різання під час обробки

титанового сплаву ВТ6 (аналог Ti6Al4V)

Геометрія різального леза інструменту суттєво впливає на узагальнену силу різання. Наприклад, зміна кута нахилу з (+10°) до (-5°) збільшує середню силу різання приблизно на 80% (від 2 кН до 3,6 кН) (рис. 3.13, б) і збільшує коефіцієнт усадки стружки на 27% (від 1,8 до 2,3) (рис. 3.9). Крім того, збільшення переднього кута різального леза призводить до зростання інтенсивності частоти коливань сили різання, особливо для інструменту з від'ємним переднім кутом. Проте, зміна геометричних параметрів різальної кромки має незначний вплив на еквавалентне напруження (коливання середньостатистичного значення в межах 2-3%). Результати теоретичних досліджень було порівняно з показниками імітаційного моделювання процесу різання титанового сплаву в DEFORM 2D, а також з результатами експериментальних досліджень. Статистичний аналіз цих результатів показав задовільну похибку у порівнянні з геометричними параметрами стружки, отриманиз під час експериментальних досліджень (до 10%), і повну відповідність розташування зони підвищеної деформації (визначеної в напрямку текстури металу – Рис. 3.14) з результатами теоретичних та імітаційних досліджень.

Рис. 3.14. Форма стружки під час токарного оброблення взірця з титанового сплаву ТібАl4V (режими різання: *S*=0,25 мм; *t*=1 мм; *V*=120 м/хв)

3.3. Аналіз впливу термодинамічних чинників на формування напруженодеформованого стану заготовки

В умовах високошвидкісної деформації матеріалу, характерної для оброблення титанових сплавів, має місце утворення локальних зон підвищеного пластичного деформування, енергія якого перетворюється на теплову, що знижує межу текучості оброблюваного матеріалу заготовки. До цього потрібно врахувати, що для титанових сплавів характерна надзвичайно низька теплопровідність. Так, наприклад, для сплаву ВТ6 параметр теплопровідності становить 11 Вт/(мК), тоді як для сталі 45 - 40 Вт/(мК). Таким чином, під час різання титанових сплавів виникає температура, яка більш ніж у 2 рази перевищує рівень температур під час обробки, наприклад, сталі 45. Теплота концентрується поблизу смуг або площин ковзання, що сприяє виникненню так званих адіабатичних смуг зсуву під час виділення теплоти з більшою швидкістю, ніж швидкість її відведення в середовище охолодження.

Рис. 3.15. Картина термодинамічного стану заготовки в зоні адіабатичного зсуву при обробці титанового сплаву Ti6Al4V

Під час зсувного деформування перехід від дуотермічного процесу до адіабатичного (циклового) стружкоутворення визначається величиною і швидкістю деформування. На прикладі, наведеному на рис. 3.16, можна точно визначити геометрію зони надлишкової деформації (ε =4,8 мм/мм). Ще більш локалізованою є зона підвищеної інтенсивності деформацій ($\dot{\varepsilon}$ =104000...130000 ((мм/мм)/сек)). Температура в ділянці адіабатичного зсуву становить 1350...1390°C і залежить, окрім

величини та інтенсивності деформації, і від теплофізичних характеристик матеріалу. Утворення адіабатичних смуг зсуву може призвести до руйнування стружки по цих смугах і утворення сегментної стружки. Це, як правило, відбувається при великих швидкостях різання (вище 150 м/хв) та малих глибинах різання (менше 0,5 мм). Крім того, в області високих температур можуть відбуватися поліморфні перетворення. В умовах різання металу відбувається встановлення динамічної рівноваги між кристалічною та аморфною структурними фазами титанового сплаву ТібАl4V.

Рис. 3.16. Картина деформованого стану (а) швидкості деформування (б) під час обробки титанового сплаву Ті6Аl4V

Дослідження залежності термодинамічного стану заготовки з титанового сплаву ВТ6 (аналог Ti6Al4V) від глибини (рис. 3.17) та швидкості різання (рис. 3.18), а також від геометричних параметрів різального леза інструменту (рис. 3.19) проведено в Deform 2D. У зв'язку із значною зашумленістю отриманого масиву даних моделювання здійснювалась їх фільтрація із збереженням граничних значень результатів імітаційного дослідження та максимуму чутливості з використанням

розробленої програми (Додаток А) на основі математичного апарату Савицького-Гола (див. Розділ 2).

Рис. 3.17. Вплив глибини різання на температуру в зоні різання під час обробки титанового сплаву ВТ 6; (а) - в динаміці, (б) - в умовах усталеного циклу різання

Рис. 3.18. Вплив швидкості різання на температуру в зоні різання під час обробки титанового сплаву ВТ 6

Рис. 3.19. Вплив геометрії різального леза на температуру в зоні різання під час обробки титанового сплаву ВТ 6; (а) - в динаміці, (б) - в умовах усталеного .

циклу різання

Зміна глибини різання суттєво не впливає на температуру в зоні різання (збільшення t в 7 разів (з 0,5 мм до 3,5 мм) призводить до зміни цього параметру лише на 5-7%). Аналогічно, температура різання сильно не змінюються від зростання швидкості різання, змінюючись із збільшенням швидкості різання з 50 до 200 м/хв лише на 7-10%. Проте, геометрія різального леза інструменту суттєво впливає на температуру обробки. Наприклад, зміна кута нахилу з 10° до (-5°) у усталеному режимі різання збільшує температуру приблизно на 26% (830°С до 1050°С). Цей ефект пояснюється суттєвим збільшенням питомого тиску стружки на передню поверхню інструменту (розділ 3.1).

3.4. Особливості процесу стружкоутворення підчас механічного оброблення титанових сплавів та його вплив на формування залишкових напружень та деформацій

Наявність залишкових напружень та пластичних деформацій в результаті термодинамічного та силового ефекту, що супроводжує процес механічного оброблення заготовки з титанового сплаву, є одним з найбільш впливових чинників функціонально-орієнтованого технологічного проєктування. Залишкові напруженння сприяють збільшенню акумульованої енергії обробленої поверхні, підвищенню її адсорбційної активності та іншим змінам, які створюють значний вплив, перш за все, на на втомну міцність та корозійну стійкість виробу [57]. Особливо це проявляється у випадку роботи таких деталей в підвищених термічних або складно-навантажених експлуатаційних умовах. Тонкий поверхневий шар деталей машин має різнорідні механічні, фізичні, та хімічні властивості, ніж у глибині деталі. Причому різниця у цих властивостях викликана ефектом прояву різної інтенсивності силових, термодинамічних та фізико-хімічних процесів, що супроводжують різання титанових сплавів.

Швидкість різання та подача мають найбільший вплив на деформацію поверхневого шару, оскільки ці параметри режиму різання визначають головним чином механічний та термічний вплив на оброблюваний матеріал. Зі збільшенням швидкості різання швидкість деформації та температура оброблення збільшуються, але тривалість впливу цих чинників на оброблену поверхню зменшуються.

Схема визначення залишкових деформацій на основі 2D моделі механічного оброблення заготовки з титанового сплаву BT6 різцем CoroMill 300 з вставкою R300-

1032E-PL S30T показано на рис. 3.20. Загальний шлях інструменту по довжині оброблюваної частини деталі розділений на 22 діапазони, а по глибині - на 10 діапазонів вимірювань для аналізу динаміки загасання та дослідження залишкової складової напружено-деформованого стану поверхневого шару заготовки.

Рис. 3.20. Схема визначення поверхневих та глибинних залишкових деформацій та напружень в імітаційній моделі Deform 2D

Метод визначення глибини залишкових деформацій аналогічний, але контрольні точки для вимірювання деформацій розташовані не по довжині обробленої поверхні, а вглиб (рис. 3.20). Очевидно, що моделювання глибинної картини також слід проводити в зоні термостабілізації обробленої поверхні. В результаті реологічного моделювання можна встановити величини залишкових напружень ($\pm \sigma_3$), глибину їх залягання і закон розподілу. Очевидно, що в межах

вирішення даної задачі будуть моделюватись лише термодеформаційні залишкові напруження І роду.

Наявність місцевих слідів залишкових деформацій під час механічної обробки пластичних матеріалів (наприклад, титанових сплавів) зумовлена складним характером динамічного навантаження на інструмент (рис. 3.21). Наявність змінних зон твердості значно зменшує втомну міцність поверхні та корозійну стійкість деталі машини. Тому важливим кроком у призначенні параметрів різання для таких сплавів є зменшення динамічної складової дії сили. Загальні рекомендації такого дослідження представлені в Розділі 5.

Рис. 3.21. Сліди залишкових деформацій на обробленій поверхні

Крива залишкових напружень І роду відображає інтерференційну картину прояву флуктаційних розтягувальних (температурних та фрикційних) та стискаючих (силових) навантажень. Середньостатистичне значення залишкових напружень в зоні термічної стабілізації (при температурі близько 100°С) складатиме приблизно 34

МПа при обробленні деталі з сплаву TI6AL4V фрезою CoroMill 300 з для пластинкою R300-1032E-PL S30T γ = 8°, α = 15° (S=0,25 мм; t=0,5 мм; V=50 м/хв) (рис.3.20 а).

Рис. 3.22. Графічні залежності залишкових напружень І роду на поверхні деталі (а) та по глибині залягання (б) отримані в результаті реологічного моделювання процесу різання заготовки з сплаву Ti6Al4V інструментом з пластинкою R300-1032E-PL S30T

Рис. 3.23. Графічні залежності впливу змодельованих в Deform 2D поверхневих залишкових напружень І-го роду від сили різання (а) та від температури в зоні формоутворення (б) для титанового сплаву BT6 (аналог Ti6Al4V)

Аналогічні дослідження формування залишкових напружень були проведені також для інших режимів оброблення. Зокрема, зміна глибини різання з 0,5 мм до 3,5 мм призводила до суттєвої зміни сили різання (рис. 3.11, б) та температури різання (рис. 3.17, б). Саме для цих випадків моделювання проведені імітаційні дослідження щодо формування поверхневих залишкових напружень І роду. Співставдення впливу силових та термічних явищ, що супроводжують процеси різання у змінних умовах, дозволяють побудувати графічні залежності отриманих залишкових показників саме як результат прояву цих явищ (рис. 3.23).

Аналіз вищенаведених показників доводить, що із збільшенням сили та температури в зоні різання залишкові напруження зростатимуть і до певної межі носить майже лінійний характер. Проте, інтенсивність їх збільшення суттєво зменшується при досягненні сили різання приблизно 2800Н та температури різання близько 950°С. На це також вказує аналіз кореляційних залежностей силового та термодинамічного впливу на номінальне значення залишкових напружень (рис. 3.23). Слід зауважити, що величина достовірності апроксимації є достатньо високою (в межах R=0,95-0,99).

Висновки до розділу 3

1. Результати імітаційних та експериментальних досліджень процесу стружко утворення під час обробки титанових сплавів свідчать, що геометрична форма стружки, що утворюється в процесі адіабатичного зсуву, визначається умовами опору пластичній деформації, циклічністю дії сил різання та геометричної зміни кута зсуву. Питома кількість деформованих частин стружки визначає частоту коливань сили різання за час контакту. Зміна опору металу в зоні зсуву за високої температури різання і великої швидкості деформації визначає величину амплітуди сили різання. Таким чином, процес утворення стружки під час обробки титанових сплавів відбувається в умовах нестійкого різання, що сприяє виділенню великої кількості теплоти, виникненню великих залишкових напружень, інтенсивному зношуванню інструменту та динамічній нестабільності в зоні різання.

2. Аналіз залежності коефіцієнта усадки стружки ξ від зміни швидкості різання V показав, що із збільшення швидкості різання, середнє значення величини усадки практично не зазнає змін, проте суттєво зростає амплітуда його коливання, що еквівалентно зміні кута зсуву, який динамічно змінюється внаслідок адіабатичного характеру стружкоутворення. Так, при V=50 м/хв, середнє значення коефіцієнта усадки стружки становить ξ_{cep} =2,28, а амплітуда $\Delta \xi$ =0,08. При V=100 м/хв, середнє значення коефіцієнта усадки стружки становить $\xi_{cep}=2,29$, а амплітуда зростає до $\Delta\xi$ =0,22, а при V=150 м/хв, середнє значення коефіцієнта усадки стружки складає ξ_{cep} =2,32, а амплітуда вже становить $\Delta \xi$ =0,45. За швидкості різання V=200 м/хв, середнє значення коефіцієнта усадки стружки складає $\xi_{cep}=2,35$, а амплітуда є найбільшою і складає в усталених умовах різання $\Delta \xi = 0,61$. Практично аналогічним є вплив глибини різання на коефіцієнт усадки стружки *ξ*. А саме: із зростанням глибини різання середнє значення усадки суттєво не змінюється, а от амплітуда коливань цього параметра збільшується суттєво. Тобто, при t=0,5 мм, коефіцієнт усадки становить $\xi_{cep}=1,85$, в той же час, як амплітуда є лише $\Delta\xi = 0,06$. Вже при збільшенні глибини різання до t=1,0 мм, коефіцієнт усадки набуває значення $\xi_{cep}=1,87$, а от амплітуда вже зростає до $\Delta \xi$ =0,09. Аналогічне зростання спостерігається з подальшим збільшенням глибини різання: при t=1,5 мм, коефіцієнт усадки - $\xi_{cep}=1,91$, а амплітуда - $\Delta \xi = 0,14$; при t=2,5 мм, коефіцієнт усадки - $\xi_{cep} = 1,93$, амплітуда - $\Delta \xi$ =0,22; при *t*=3,5 мм, коефіцієнт усадки - ξ_{cep} =1,99, а амплітуда - $\Delta \xi$ =0,45. Збільшення

переднього кута різального леза призводить до суттєвого збільшення коефіцієнта усадки стружки. Так при γ =-5°, величина коефіцієнта усадки становить ξ_{cep} =2,3, а амплітуда - $\Delta \xi$ =0,42. При γ =0°, коефіцієнт усадки - ξ_{cep} =2,1, а амплітуда - $\Delta \xi$ =0,31; при γ =5°, коефіцієнт усадки - ξ_{cep} =1,86, амплітуда - $\Delta \xi$ =0,23; при γ =10°, коефіцієнт усадки - ξ_{cep} =1,74, а амплітуда - $\Delta \xi$ =0,16.

3. На основі результатів імітаційного моделювання процесу механічного оброблення титанового сплаву ВТ6 (Ti6Al4V) доведено, що довжина контакту стружки з передньою поверхнею інструменту має певну тенденцію зміни: довжина контакту спочатку збільшується, а потім зменшується зі збільшенням швидкості різання. Мжна зробити такі висновки: швидкість різання приблизно 150 м/хв, при якій довжина контакту максимальна, лежить в межах перехідного діапазону між звичайним і високошвидкісним режимом обробки титанових сплавів. Таке початкове зростання, а потім зменшення довжини контакту для сплаву Ті6Аl4V при більш високих швидкостях подачі можна пояснити явищем зміни геометрії стружки внаслідок прояву явища адіабатичного зсуву. Наведені вище результати імітаційних та аналітичних досліджень механічного оброблення титанових сплавів довели, поперше, адекватність запропонованої методики досліджень як наслідок якісного спідпадіння отриманих результатів та відомих з літературних джерел даних; по-друге, дозволяє встановити найбільш навантажені режими різання з точки зору формування у підсистемі «стружка-передня контактної взаємодії поверхня різального інструменту».

4. Глибина різання суттєво впливає на силу різання : зміна глибини різання від 1,0 мм до 2,5 мм збільшує силу різання приблизно в 2 рази. Особлива зміна цих параметрів відбувається, якщо глибина різання збільшується понад 2 мм. Однак зміна глибини різання суттєво не впливає на еквівалентне напруження в зоні

формоутворення (збільшення t в 7 разів (з 0,5 мм до 3,5 мм) призводить до зміни цього параметру параметрів лише на 5-7%). Швидкість різання найбільше впливає на частоту зміни навантаження. Тобто, зміна V від 50 до 200 м/с збільшує період зміни сили різання приблизно в 8 разів (від 0,3 до 2,5 мс). Це може бути причиною високочастотного коливання інструменту. Однак сила різання значно зменшується із збільшенням швидкості різання: 4-кратна зміна швидкості (від 50 до 200 м/хв) призводить до зменшення сили різання на 25% (від 3,2 кН до 2,4 кН). Проте швидкість різання не має суттєвого впливу на еквівалентне напруження в зоні різання, як і у випадку зміни глибини різання, змінюючись із збільшенням швидкості різання лише на 7-9%. Геометрія різального леза інструменту також має вплив на узагальнену силу різання: зміна переднього кута з (+10°) до (-5°) збільшує середню силу різання приблизно на 80% (від 2 кН до 3,6 кН) і збільшує коефіцієнт усадки стружки на 27%. Крім того, збільшення переднього кута різального леза призводить до зростання інтенсивності частоти коливань сили різання, особливо для інструменту з від'ємним переднім кутом. Проте, зміна геометричних параметрів різальної кромки має незначний вплив на еквавалентне напруження (коливання середньостатистичного значення в межах 2-3%).

5. Зміна глибини різання суттєво не впливає на температуру в зоні різання (збільшення t в 7 разів (з 0,5 мм до 3,5 мм) призводить до зміни цього параметру лише на 5-7%). Аналогічно, температура різання сильно не змінюються від зростання швидкості різання, змінюючись із збільшенням швидкості різання з 50 до 200 м/хв лише на 7-10%. Проте, геометрія різального леза інструменту суттєво впливає на температуру обробки. Наприклад, зміна переднього кута різального леза з 10° до (-5°) у усталеному режимі різання збільшує температуру приблизно на 26% (830°С до

1050°С). Цей ефект пояснюється суттєвим збільшенням питомого тиску стружки на передню поверхню інструменту.

6. Запропонована оригінальна методика моделювання залишкових деформацій та напружень І роду в системі Deform 2D, що передбачає використання сітки референтних точок вздовж обробленої поверхні та по глибині заготовки в зоні її термостабілізації. Крива залишкових напружень І роду відображає інтерференційну картину прояву флуктаційних розтягувальних (температурних та фрикційних) та стискаючих (силових) навантажень. Середньостатистичне значення залишкових напружень в зоні термічної стабілізації (при температурі близько 100°С) складатиме приблизно 34 МПа при обробленні деталі з сплаву з використанням режимів різання - S=0,25 мм; t=0,5 мм; V=50 м/хв. Аналогічні дослідження формування залишкових напружень були проведені також для інших режимів оброблення. Аналіз впливу силових та термічних явищ, що супроводжують процеси різання у змінних умовах, доводить, що із збільшенням сили та температури в зоні різання залишкові напруження зростатимуть і до певної межі носить майже лінійний характер. Проте, інтенсивність їх збільшення суттєво зменшується при досягненні сили різання приблизно 2800Н та температури різання близько 950°С.

РОЗДІЛ 4

ДОСЛІДЖЕННЯ ВПЛИВУ ТРИБОТЕХНІЧНИХ ФАКТОРІВ НА НАПРУЖЕНО-ДЕФОРМОВАНИЙ І ТЕРМОДИНАМІЧНИЙ СТАН ЗАГОТОВКИ ПРИ МЕХАНІЧНОМУ ОБРОБЛЕННІ ТИТАНОВИХ СПЛАВІВ

4.1. Особливості постановки задачі аналізу впливу трибології різання підчас механічного оброблення титанових сплавів

В сучасних роботах провідних вчених в галузі технології машинобудування [7, 75] логічно та аргументовано деведено, що саме сила тертя, віднесена до площі зрізу, є вирішальним чинником, який визначає перебіг всього процесу стружкоутворення при механічному обробленні важкооброблюваних матеріалів і, зокрема, титанових сплавів. Тобто, збільшення коефіцієнта тертя у системі «Різальний інструмент-Заготовка-Стружка» призводить до зростання ступеня пластичної деформації оброблюваного шару, підвищення температури різання і, як наслідок, до інтенсифікації зношування інструменту. Для того, щоб логічно та цілеспрямовано керувати триботехнічними процесами в системі різання титанових сплавів, важливо не лише встановити тенденцію зміни цих показників, але й кількісно оцінити вплив кожного технологічного фактора на їх формування або усунення. З цією метою необхідно представити процес різання як абстрактну триботехнічну систему, яку можна визначити як систему поверхонь, що входять в механічний контакт і рухаються відносно одна одної [78, 79].

Залежно від матеріалу заготовки, технології механічного оброблення, жорсткості верстата, матеріалу і покриття різального інструменту, мастильноохолоджувальної рідини, геометрії леза і т.д. різні типи триботехнічних систем
можуть суттєво відрізнятися, і будь-яка зміна в системі може повністю змінити швидкість зношування інструменту.

Таким чином, основною метою даного етапу даної дисертаційної роботи є дослідження того, як різні коефіцієнти тертя при певних умовах та параметрах різання впливають на формування напружено-деформованого та теплового станів виробу. Комплексний аналіз цих факторів дозволить провести аналітичну оцінку ефективності та доцільності заходів щодо триботехнічного покращення умов оброблення титанових сплавів і, як наслідок, підвищити продуктивність оброблення, забезпечивши при цьому задану якість обробленого поверхневого шару. Крім того, нам важливо знати, які саме технологічні параметри є найбільш важливими для забезпечення ефективних режимів оброблення титанових сплавів

Використання імітаційного моделювання дозволяє запропонувати новий підхід до дослідження впливу триботехнічних факторів на напружено-деформований і термодинамічний стан заготовки та інструменту при різанні. Класична постановка задачі передбачає попереднє формування вихідних даних, таких як матеріали заготовки та інструменту, параметри різання, організація технологічного середовища - охолодження та змащення, наявність інструментальних покриттів та ін. Стан тертя в інтерфейсі стружка-інструмент в даному випадку формується виходячи саме з таких умов та обмежень. Однак, в даній роботі пропонується вирішити обернену задачу: у вихідних даних для моделювання пропонується заявлений коефіцієнт тертя і вирішується задача моделювання процесу різання. На другому етапі проводиться аналіз впливу цих коефіцієнтів на напружено-деформований (в тому числі залишковий) та термодинамічний стан заготовки та інструменту під час різання, а також на динаміку зношування інструменту тощо. На третьому етапі дослідження пропонується забезпечити ці аналітично обгрунтовані триботехнічні умови різання. Результати аналізу дають можливість вибрати такі конструктивні, технологічні або організаційні рішення, які реалізують оптимальні умови оброблення найбільш ефективним способом. Зазвичай найбільш ефективним методом зниження коефіцієнта тертя при різанні титанових сплавів є застосування спеціальних зносостійких і антифрикційних покриттів, а також використання спеціальних мастильно-охолоджуючих рідин. Ефективність даної методики полягає в більш цілеспрямованому та проблемно-орієнтованому вирішенні задачі найбільш ефективної організації функціонально-орієнтованого технологічного середовица.

4.2. Аналіз результатів імітаційного моделювання впливу триботехнічних параметрів на силові та термодинамічні процеси різання титанових сплавів

Проведено аналіз навантаження, напружено-деформованого і термодинамічного стану заготовки при різанні найбільш поширеного титанового сплаву ВТ6 (аналог Ті6Аl4V) при швидкостях різання від 50 м/хв до 200 м/хв і для різних коефіцієнтів тертя (0,3-0,6). Крім того, проведені дослідження швидкості зношування різального леза для цих умов в системі імітаційного моделювання Deform 2D. Метою таких досліджень є визначення оптимальних режимів різання та використання певного технологічного середовища (охолодження, змащення, інструментальних покриттів), що забезпечує задані умови тертя.

Проведені дослідження показали, що коефіцієнт тертя суттєво впливає на параметри навантаження при механічному обробленні титанових сплавів. Динаміка циклічної зміни сили різання є наслідком адіабатичного зсуву в зоні стружкоутворення і підтверджується зубчастоподібною формою стружки [67]. В Розділі 3 доведено, що такий тип стружкоутворення при механічному обробленні титанових сплавів обумовлений виникненням термопластичної нестійкості в межах зони первинного зсуву. Циклічність динамічного процесу навантаження різального інструменту при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V) залежить від швидкості та глибини різання і становить 1-1,2 мілісекунди при швидкості 50 м/хв (рис. 4.1, а) та 0,6-0,8 мілісекунди при швидкості 100 м/хв (рис. 4.1,

Рис. 4.1. Залежність сили різання при механічному обробленні титанового сплаву зі швидкістю 50 м/хв (а) та 100 м/хв (б) від забезпечених триботехнічних умов різання

Аналіз впливу триботехнічних умов різання показує значний вплив приведеного коефіцієнта тертя на силу різання. Наприклад, при швидкості 50 м/хв середнє значення сили різання збільшується на 5,8% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 13,0% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 17,6% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення приблизно аналогічні і складають 6,6%, 14,9% і 16,6% відповідно (рис. 4.2).

Рис. 4.2. Залежність сили різання від зміни швидкості різання за умови забезпечення різних триботехнічних умов механічного оброблення титанового сплаву

Крім того, отримані результати моделювання показують, що при збільшенні швидкості різання титанового сплаву ВТ6 (аналог Ti6Al4V) від 50 м/хв до 100 м/хв сила різання значно зростає (приблизно на 35%), а потім при збільшенні швидкості до 200 м/хв дещо зменшується (приблизно на 10%). Такі результати можна пояснити специфічними теплофізичними та фізико-механічними особливостями титанових сплавів [118]. Цей стан характерний для всіх наведених триботехнічних умов різання. Такі результати моделювання в основному корелюють з експериментальними та теоретичними результатами, описаними в роботі [119].

Кореляційні залежності сили різання представлені у вигляді поліноміальних рівнянь для швидкостей різання від 50 до 200 м/хв і для заданих коефіцієнтів тертя 0,3 - 0,6, отримані в результаті математичного аналізу графіків на рис. 4.1:

$$\begin{pmatrix}
P_{0,6} = 0,0006 \cdot V^3 - 0,27 \cdot V^2 + 44,34 \cdot V - 210 \\
P_{0,5} = 0,0009 \cdot V^3 - 0,44 \cdot V^2 + 60,22 \cdot V - 334 \\
P_{0,4} = 0,0009 \cdot V^3 - 0,40 \cdot V^2 + 55,56 \cdot V - 281 \\
P_{0,3} = 0,0009 \cdot V^3 - 0,41 \cdot V^2 + 54,64 \cdot V - 319
\end{cases}$$
(4.4)

де P_i – середньостатистична сила різання при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V) на різних швидкостях при заданому коефіцієнті тертя і (i = 0, 3...0, 6).

Важливим етапом досліджень є вивчення впливу триботехнічних факторів на термодинамічний стан процесу різання титанових сплавів. Це особливо важливо у зв'язку з наявністю специфічних теплофізичних властивостей титанових сплавів та їх впливом на силові показники процесу різання і напружено-деформований стан зони різання. Всі ці чинники в кінцевому виді суттєво впливають не тільки на навантажений стан інструменту, але і на інтенсивність зношування інструменту, а також на формування експлуатаційних властивостей обробленої поверхні заготовки (шорсткість, залишкові напруження і деформації і т.д.) [66].

Проведені дослідження підтвердили відомі роботи [120], що параметри різання суттєво впливають на термодинамічний стан заготовки та інструменту. Наприклад, збільшення швидкості різання з 50 м/хв до 100 м/хв підвищує температуру різання титанового сплаву приблизно на 10% для різних триботехнічних умов різання (рис. 4.3).

Рис. 4.3. Залежність температури різання при механічному обробленні титанового сплаву зі швидкістю 50 м/хв (а) та 100 м/хв (б) від забезпечених триботехнічних умов різання

Слід зазначити, що встановлений коефіцієнт тертя має значний вплив на термодинамічний стан процесу різання. Наприклад, при швидкості 50 м/хв середня температура різання зростає на 5,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 10,1% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці показники дещо нижчі і становлять 3,1%, 4,8% та 12,3% відповідно (рис. 4.4).

Рис. 4.4. Залежність температури в зоні різання від зміни швидкості різання за умови забезпечення різних триботехнічних умов механічного

оброблення титанового сплаву

Причому динаміка зміни температури зі збільшенням швидкості різання завжди позитивна, на відміну від навантаження. Тобто, в діапазоні швидкостей різання від 40 м/хв до 200 м/хв не спостерігається явного температурного екстремуму. Однак, слід зазначити, що ця позитивна тенденція після 100 м/хв є незначною. Тобто, при значному збільшенні швидкості різання температура змінюється дуже повільно і нееквівалентно. Дослідження високошвидкісної оброблення, описані в роботах [121, 122] підтверджують, що при швидкостях різання 800 м/хв і вище відбувається суттєвий перерозподіл температури: температура стружки зростає, а температура оброблюваної кулі заготовки знижується. види значно Різні надтвердих інструментальних матеріалів, включаючи кераміку, алмаз і кубічний нітрид бору (CBN), мають високу реакційну здатність з титановими сплавами при високій температурі. Однак, інструменти з CBN без зв'язуючого (BCBN), спікаючого реагента або каталізатора, мають значно більший термін служби інструменту, ніж звичайні пластини з CBN, навіть при високих швидкостях різання. Для більш глибокого розуміння високошвидкісної оброблення титанових сплавів важливе значення має створення математичних моделей.

Проведені дослідження показали, що коефіцієнт тертя практично не впливає на кут зсуву при різанні, а отже і на коефіцієнт усадки стружки. На рис. 4.5 наведені результати моделювання для цих параметрів. Можна зробити висновок, що зміна усадки стружки при коефіцієнті тертя 0,3 і коефіцієнті тертя 0,6 змінюється лише на 4,3%.

Рис. 4.5. Залежність коефіцієнта усадки стружки при механічному обробленні титанового сплаву зі швидкістю 50 м/хв від забезпечених триботехнічних умов різання

Як показали дослідження, вплив декларованого коефіцієнта тертя має досить суттєвий вплив на напружено-деформований стан зони різання при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V). Так, при швидкості 100 м/хв середнє напруження різання збільшується на 6,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 8,9% при збільшенні коефіцієнта тертя від 0,3 до 0,5 та на 10,0% при збільшенні коефіцієнта тертя від 0,3 до 0,6 (рис. 4.6).

Рис. 4.6. Залежність середнього напруження різання при механічному обробленні титанового сплаву зі швидкістю 50 м/хв від забезпечених триботехнічних умов різання

4.3. Імітаційні та експериментальні дослідження зношування інструменту підчас оброблення титанових сплавів

Метол імітаційного зношування інструменту моделювання € дуже перспективною методологією з огляду на можливість врахування великої кількості чинників, що складно формалізуються аналітичним моделюванням, ефективною візуалізацією результатів дослідження та можливістю використання широкого діапазону геометричних вирішень леза інструменту, зміни матеріалів та вкрай інструментальнизх покрить реалізувати тощо, складно шо €

експериментальними методами. Питання полягає лише у адекватності результатів досліджень та післяекспериментальній корекції застосованих моделей та критеріїв.

Моделюючи зношування інструменту, з'являється можливість проаналізувати як зміну геометрії інструменту від тертя, так і механізм його руйнування (рис.4.7). Зношування інструменту безпосередньо змінює розподіл тепла при різанні та напружений стан поверхні інструменту та заготовки. Додаткове термомеханічне навантаження призводить до зміни морфології поверхні, мікроструктури та механічних властивостей. Ці зміни поверхні оброблення та підповерхневого шару впливають на функціональні характеристики та термін служби виготовлених деталей [123].

Рис. 4.7. Розрахункові схеми зношування інструменту та аналітичі схеми епюр механічних навантажень, що виникають на передній та задній поверхнях різця підчас їх зношування

По-перше, необхідно точно встановити зони інструменту з максимальною інтенсивністю зношування. Іншим важливим аспектом забезпечення точності моделювання процесу зміни геометричних параметів різального леза внаслідок його руйнування є вибір адекватної аналітичної моделі зношування. Механізм зношування матеріалів різального інструменту при механічному обробленні титанових сплавів принципово відрізняється від механізму зношування при механічному обробленні сталі та важкооброблюваних матеріалів, наприклад, хромо-нікелевих сплавів. Адміністративна панель системи DEFORM 2/3D пропонує 2 основні критерії зношування - критерій Усуї та критерій Арчарда [124].

Tool wear	Tool wear
✓ Define model to calculate tool wear Usui Parameter a 1e-05 b 1000 $W = \int apVe^{-b/T} dt$ P = interface pressure; v = sliding velocity; T = interface temperature (in degrees absolute); dt = time increment; a,b = experimentally calibrated coefficients	$\overrightarrow{W} \text{ Define model to calculate tool wear } \overrightarrow{\text{Archard}} \overrightarrow{\bullet}$ $\overrightarrow{Parameter}$ $a \boxed{2}$ $c \boxed{1}$ $b \boxed{3}$ $K \boxed{1.2}$ $W = \int K \frac{p^{a} v^{b}}{H^{c}} dt$
	P = interface pressure; v = sliding velocity; H = hardness of tool material; dt = time increment; a,b,c,K = experimentally calibrated coefficients; (a,b are commonly taken as 1, and c = 2 for tool steels)

Рис. 4.8. Варіанти вибору моделі для розрахунку зношування інструменту в адміністративній панелі Deform 2D

Критерій Усуї описується рівнянням [125]:

$$w = \int a \cdot P \cdot V \cdot e^{-b/T} dt$$
(4.5)

де w - швидкість зношування інструменту, тобто величина зношування в мкм за секунду (мкм/хв);

P – нормальний тиск в зоні інструмент-стружка або інструмент-оброблена поверхня;

V - швидкість ковзання стружки;

Т - температура в зоні дослідження зношування;

а, *b* - експериментально встановлені поправочні коефіцієнти.

Згідно т.зв. закону зношування Арчарда [126] об'єм зношування пропорційний нормальній силі (*P*), швидкості ковзання стружки (*V*) та обернено пропорційний твердості (*H*) інструментального матеріалу:

$$w = \int K \cdot \frac{P^a \cdot V^b}{H^c} \mathrm{d}t \tag{4.6}$$

де *a*, *b*, *c* - експериментально відкалібровані коефіцієнти (*a*, *b* зазвичай приймаються рівними 1, а *c*=2 для більшості інструментальних сталей).

Наведений вище закон в основному описує процес адгезійного зношування [127]. Проте коефіцієнт тертя не входить безпосередньо в рівняння Арчарда у явному вигляді. Введемо в рівняння замість нормального навантаження P силу тертя F_n [128]. Ця величина може бути визначена в Deform 2D в результаті моделювання процесу різання. Вважаючи, що фактор тертя відіграє значну роль в оцінці зношування інструменту, модифікуємо формулу Арчарда, замінивши нормальне навантаження на силу тертя і, відповідно, ввівши новий коефіцієнт зношування K_n :

$$w = \int K_n \cdot \frac{\left(F_n \cdot f\right)^a \cdot V^b}{H^c} \mathrm{d}t \tag{4.7}$$

де f - коефіцієнт тертя.

Аналогічно, формула для швидкості зношування інструменту за законом Усуї трансформується як:

$$w = \int a \cdot F_n \cdot f \cdot V \cdot e^{-b/T} dt$$
(4.8)

Численні дослідження імітаційних моделей, та керуючись відомими дослідженнями [7], можна констатувати факт, що при механічному обробленні титанового сплаву існує 2 зони пріоритетного зношування (рис. 4.9, а). Таким чином, необхідно проаналізувати зношування в 2-х зонах: А - на передній поверхні інструменту і В - на задній поверхні. Тому у поставленій задачі, що вирішується для системи Deform 2D, відстежувались ці точки і проведено порівняльний аналіз домінуючого зношування (рис. 4.96). Результати впливу коефіцієнта тертя на ці параметри будуть представлені нижче.

Рис. 4.9. Моделювання зон приорітетного зношування різального інструменту в системі Deform 2D

Аналіз рівнянь (рис. 4.4) та (рис. 4.5) дозволяє зробити висновок, що приведений коефіцієнт тертя в різних моделях має суттєвий вплив на зношування інструменту як по передній, так і по задній поверхнях при різанні титанового сплаву. Причому, коливання навантаження на інструмент призведе до синхронної зміни швидкості зношування. Наприклад, при швидкості 50 м/хв середньостатистичне значення зношування інструменту збільшується на 13,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 28,6% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 38,2% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 38,2% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 28,6% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 38,2% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці коефіцієнти становлять 10,8%, 25,9% і 40,3% відповідно.

Крім того, слід зазначити, що максимальна інтенсивність зношування передньої поверхні (зона А - Рис. 4.9, а) є більш інтенсивною, ніж найбільша інтенсивність зношування бокової поверхні (зона В - Рис. 4.9, б), незалежно від швидкості різання та забезпечених триботехнічних умов різання. Так, при швидкості різання 100 м/хв середня швидкість зношування леза інструменту на передній поверхні (зона А) перевищує відповідне значення на задній поверхні (зона В) приблизно в 1,8 рази (15,5 мкм/сек і 8,5 мкм/сек. при забезпеченому коефіцієнті тертя 0,3; 22,1 мкм і 12,0 при коефіцієнті тертя 0,6) (рис. 4.10)

Використання різних моделей зношування (Usui та Archard) дає різні результати динаміки зношування в залежності від швидкості різання. Так, при використанні моделі Usui для діапазону швидкостей 50-200 м/хв середньостатистина швидкість зношування інструменту збільшується на 8,4% при збільшенні коефіцієнта тертя з 0,3 до 0,4; на 22,5% при збільшенні коефіцієнта тертя з 0,3 до 0,5 і на 37,2% при збільшенні коефіцієнта тертя з 0,3 до 0,6 (рис. 4.11). При використанні моделі Арчарда ці співвідношення становлять 6,1%, 15,1% та 25,6% відповідно (рис. 4.12).

Таку різницю можна пояснити різними пріоритетами в описі фізичної моделі процесу зношування інструменту [129].

Рис. 4.10. Середня інтенсивність зношування інструменту на передній (зона A) та задній (зона B) інструментальних поверхнях при заданих коефіцієнтах тертя, отриманих в результаті моделювання: 0,3 (а) та 0,6 (б)

Рис. 4.11. Залежність середньої швидкості зношування інструменту (модель Усуї) при механічному обробленні титанового сплаву на різних швидкостях від забезпечених триботехнічних умов різання

Рис. 4.12. Залежність середньої швидкості зношування інструменту (модель Арчарда) при механічному обробленні титанового сплаву на різних швидкостях від забезпечених триботехнічних умов різання

4.4. Експериментальні дослідження зношування різального інструменту

Для підтвердження теоретичних та імітаційних досліджень були проведені експериментальні дослідження. Для забезпечення різних коефіцієнтів тертя під час експериментальних досліджень були запропоновані різні мастильні середовища [130]. У такий спосіб можна досягти об'єктивності експерименту без використання іншого інструментального матеріалу або нового покриття. Використання різця з напаяною пластиною з карбіду вольфраму (ВК8) без мастильно-охолоджувальної рідини забезпечує коефіцієнт тертя приблизно 0,6. Коефіцієнт тертя 0,5 досягається при використанні мастильно-охолоджувальної рідини Blasocut 2000 (5% концентрації). 10% концентрація цього мастила знижує цей коефіцієнт до 0,4. Найнижчий коефіцієнт тертя 0,3 забезпечує 10% розчин мастильно-охолоджувальної рідини Blasocut 4000 CF [131].

На рис. 4.13 зображений пристрій для вимірювання величини зношування інструменту. Проаналізовано інтенсивність зношування різального леза після оброблення шляху 100 м заготовки з титанового сплаву (глибина різання 1 мм, подача 0,25 мм на оберт) при швидкостях різання 30 м/хв, 50 м/хв, 100 м/хв і 150 м/хв. Результати експериментальних досліджень наведені на рис. 12.

Рис. 4.13. Пристрій для вимірювання розмірного зношування вершини леза різального інструменту. 1- корпус пристрою; 2 - вісь повороту корпусу;

3 - різцетримач; 4 - різець; 5 - індикаторний вимірний пристрій

Рис. 4.14. Результати експериментальних досліджень

Аналіз результатів експериментальних досліджень дозволяє зробити основний висновок, що результати моделювання адекватно відображають закономірності зношування інструменту при обробці титанових сплавів. Похибка відхилення розрахункових значень інструментального зношування від експериментальних даних становить приблизно 19% при використанні моделі Арчарда і 9% при використанні моделі Усуї. Крім того, екстремум зношування в експериментальних дослідженнях становить близько 90-100 м/хв, що приблизно відповідає даним, отриманим при моделюванні за критерієм Усуї, і суттєво відрізняється від результатів моделювання за критерієм Арчарда. На основі порівняння з експериментальними даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при обробці титанового сплаву. Найбільш ефективним методом зниження коефіцієнта тертя при різанні титанових сплавів є використання спеціальних зносостійких і антифрикційних покриттів [132], а також застосування мастильно-охолоджуючих рідин [133]. Для зниження температури в зоні різання і підвищення загальної ефективності процесу охолодження і змащення в останні роки було розроблено кілька технологій, таких як кріогенне охолодження, тверді мастильно-охолоджувальні рідини (MOP), мінімальна кількість мастила (MQL) / обробка в умовах майже сухого різання (NDM), MOP високого тиску (HPC), внутрішнє охолодження інструменту і стиснене повітря / гази [134].

При механічному обробленні титанових сплавів параметри різання повинні плануватися з урахуванням, крім продуктивності, ще й якості оброблюваного шару, тобто комплексу факторів (таких як зміцнення, викликані різанням залишкові напруження і деформації, точність оброблення, шорсткість поверхні, зносостійкість інструменту та ін.), але в кожному конкретному випадку в залежності від технологічних і експлуатаційних вимог до виробу. Ця ідея покладена в основу функціонально-орієнтованого технологічного планування [102].

Висновки до розділу 4

1. Складна динаміка навантажень при механічному обробленні титанових сплавів є наслідком високої пластичності та терморезистивності оброблюваного матеріалу. Тому ефективна механічна обробка титанових сплавів можлива лише при вирішенні двох основних завдань: визначення раціональних режимів різання та дослідження шляхів досягнення необхідної якості обробленої поверхні і зумовлених різанням експлуатаційних властивостей обробленого шару. Сила тертя, пов'язана з

вирішальним фактором, перебіг процесу шим. £ ШО визначає всього стружкоутворення при механічному обробленні титанових сплавів. Таким чином, основна мета даного розділу дисертаційної роботи полягає у дослідженні, наскільки різні коефіцієнти тертя при певних режимах і параметрах різання впливають на формування напружено-деформованого і термодинамічного станів виробу. Комплексний аналіз цих чинників дозволить провести аналітичну оцінку ефективності та доцільності заходів щодо триботехнічного покращення умов оброблення титанових сплавів і, як наслідок, підвищення продуктивності оброблення, забезпечивши при цьому задану якість обробленого поверхневого шару. Крім того, важливо знати, які саме параметри різання є найбільш важливими для забезпечення ефективних умов оброблення титанових сплавів.

2. Запропонована методика описаного дослідження відрізняється віл традиційного підходу і полягає в наступному. По-перше, у вихідних даних для моделювання щоразу пропонується інший декларований коефіцієнт тертя, і кожна така задача моделювання процесу різання розв'язується для різних параметрів різання. На другому етапі проводиться аналіз впливу цих коефіцієнтів на напруженодеформований (в тому числі залишковий) і термодинамічний стан заготовки та інструменту при різанні, а також на динаміку зношування інструменту тощо. На третьому етапі дослідження пропонується забезпечити ці аналітично обґрунтовані триботехнічні умови різання. Результати аналізу дають можливість вибрати такі конструктивні, технологічні або організаційні рішення, які реалізують оптимальні умови оброблення найбільш ефективним способом. Зазвичай найбільш ефективним методом зниження коефіцієнта тертя при різанні титанових сплавів є застосування спеціальних зносостійких і антифрикційних покриттів, а також використання спеціальних мастильно-охолоджуючих рідин. Ефективність даної методики полягає

в більш цілеспрямованому вирішенні проблеми організації функціонально орієнтованого технологічного середовища.

3. Проведені дослідження показали, що коефіцієнт тертя суттєво впливає на параметри навантаження при механічному обробленні титанових сплавів. Динаміка різання циклічної є наслідком адіабатичного зміни сили зсуву В зоні стружкоутворення і підтверджується зубчастоподібною формою стружки. Механізм стружкоутворення при механічному обробленні титанових такого сплавів обумовлений втратою термопластичної стабільності в межах зони первинного зсуву. Циклічність динамічного процесу навантаження різального інструменту при механічному обробленні титанового сплаву ВТ6 (аналог Ті6Аl4V) залежить від швидкості та глибини різання і становить 1-1,2 с при швидкості 50 м/хв та 0,6-0,8 мілісекунди при швидкості 100 м/хв. Значний вплив триботехнічних умов різання на силу різання підтверджується аналізом результатів моделювання в Deform 2D. Наприклад, при швидкості 50 м/хв середнє значення сили різання збільшується на 5,8% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 13,0% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 17,6% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення приблизно однакові і складають 6,6%, 14,9% і 16,6% відповідно.

4. Встановлений коефіцієнт тертя також має значний вплив на термодинамічний стан процесу різання. Наприклад, при швидкості 50 м/хв середня температура різання зростає на 5,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 10,1% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 14,5% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 14,5% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення дещо менші і становлять 3,1%, 4,8% та 12,3% відповідно. Як показали дослідження, коефіцієнта тертя між інструментом та матеріалом заготовки має досить суттєвий

вплив на напружено-деформований стан зони різання при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V). Наприклад, при швидкості 100 м/хв середнє напруження різання збільшується на 6,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 8,9% при збільшенні коефіцієнта тертя від 0,3 до 0,5 та на 10,0% при збільшенні коефіцієнта тертя від 0,3 до 0,6.

Зношування інструменту як по передній, так і по задній поверхні, 5. безумовно, залежить від триботехнічних умов при різанні титанового сплаву. Причому, коливання навантаження на інструмент призведе до синхронної зміни швидкості зношування. Наприклад, при швидкості 50 м/хв середньостатистичний показник швидкості зношування різального інструменту зростає на 13,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 28,6% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 38,2% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення становлять 10,8%, 25,9% і 40,3% відповідно. Використання різних аналітичних моделей дає можливість визначити різні екстремальні інструменту. значення зношування Максимальні результати зношування знаходяться в діапазоні швидкостей різання приблизно 60-70 м/хв за критерієм Арчарда та 100-120 м/хв за критерієм Усуї. Таку різницю можна пояснити різними пріоритетами в описі фізичної моделі процесу зношування інструменту. На основі порівняння з відомими експериментальними даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при механічному обробленні титанового сплаву.

6. Аналіз результатів експериментальних досліджень дозволяє зробити наступні висновки:

- в цілому результати моделювання адекватно відображають закономірності зношування інструменту при обробці титанових сплавів. Однак розбіжності в

теоретичних та експериментальних результатах існують. Це можна пояснити тим, що при моделюванні враховувалися тільки фізичні властивості матеріалу. В той же час, в реальному процесі зношування відбуваються складні процеси, які неможливо описати аналітично. Крім того, прийняті коефіцієнти тертя в експериментальних дослідженнях (при використанні різних МОР) є наближеними і містять деяку похибку

- похибка відхилення розрахункових значень інструментального зношування від експериментальних даних становить приблизно 19% при використанні моделі Арчарда і 9% при використанні моделі Усуї. Крім того, екстремум зношування в експериментальних дослідженнях становить близько 90-100 м/хв, що приблизно відповідає даним, отриманим при моделюванні за критерієм Усуї, і суттєво відрізняється від результатів моделювання за критерієм Арчарда. На основі порівняння з експериментальними даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при обробці титанового сплаву.

РОЗДІЛ 5

ДОСЛІДЖЕННЯ ВІБРАЦІЙНИХ ПРОЦЕСІВ РІЗАННЯ ВИРОБІВ З ТИТАНОВИХ СПЛАВІВ

5.1. Особливості моделювання динамічної картини системи ВПІЗ підчас механічного оброблення виробів з титанових сплавів

Важливим аспектом формування мікро- та макрогеометрії, міцності, трибомеханічних напружено-деформованих та залишкових властивостей поверхневого шару виробів є забезпечення вібростійкості технологічної системи «Верстат-Пристосування-Інструмент-Заготовка» (ВПІЗ) [36]. Особливо складними і багатокритеріальними такі дослідження залишаються для технологічної системи при виготовленні виробів з титаномісних сплавів, оскільки, крім традиційних параметрів жорсткості і демпфуючих властивостей елементів ВПІЗ, приорітетною причиною вібраційних процесів є специфічний процес формоутворення, формування викликаний високою пластичністю оброблюваного шару цих сплавів, який, в свою обумовлюється високочастотною дисонансною зміною поздовжніх і чергу, поперечних складових сил різання, і що, як наслідок, викликає формування зубчастої (сегментної) форми стружки, як це показано в розділі 3 [135, 136].

В розділі 1 було доведено, що такі імітаційні системи моделювання вібраційних процесів різання, як Deform, LS-Dyna, AdvantEdge, Abaqus, мають суттєвий недолік, оскільки початковий стан заготовки та інструменту апріорі приймається "жорстким", а демпфуючі властивості пристосування та елементів верстата в досліджуваних моделях взагалі не враховуються [137]. З іншої сторони, класичні методи аналітичного моделювання не в змозі адекватно формалізувати процес виникнення та зміну динаміки сил різання внаслідок прояву явища адіабатичного зсуву підчас оброблення титанових сплавів.

Новий підхід до дослідження коливальних процесів, що відбуваються під час різання титанового сплаву, полягає у тому, щоб поєднати аналітичне моделювання динаміки процесу різання з результатами імітаційного моделювання. Після їх експериментальних уточнень та підтвердження адекватності, такий симбіоз різних методів дозволить враховувати як механічні аспекти формоутворення (конкретну динаміку сил різання), так і реальні умови жорсткості та демпфувальних властивостей системи ВПІЗ. Це, в кінцевому результаті, сприятиме вирішенню двох основних завдань: визначенню раціональних режимів різання і вибору способів досягнення необхідної якості обробленої поверхні і прилеглого до неї шару, при яких були б збережені вихідні фізико-механічні властивості титанового сплаву або отримані інші їх значення, що гарантують необхідні для виробу характеристики в потенційних умовах експлуатації.

Зазвичай вважають, що динаміка адіабатичного зсуву розвивається у місці концентрації деформацій зони стружкоутворення, напружений стан якого загалом однорідний. При цьому відбувається поширення вузької смуги великих пластичних деформацій уздовж площин максимальних напружень зсуву доти, доки не відбудеться розвантаження або в матеріалі заготовки не з'явиться тріщина. Адіабатичний зсув є одним із найважливіших механізмів руйнування під час динамічного навантаження, що первищує межу текучості, за якого руйнування може відбуватися за псевдокрихким сценарієм, незважаючи на переважання пластичних властивостей оброблюваного матеріалу. Тому й використання деформаційних критеріїв руйнування в даному випадку є цілком виправданим. Крім того, для оброблення титанових сплавів характерна висока залежність амплітуди коливань від

жорсткості інструменту. Це пов'язано з високими швидкостями ковзання стружки по передній поверхні інструменту при одночасно великих значеннях коефіцієнту усадки стружки, що доведено в розділі 4 даної дисертаційної роботи. При цьому навіть невелике миттєве збільшення швидкості різання за рахунок вібрації призводить до інтенсивних вібрацій різального інструменту. Важливо, що на відміну від інших оброблюваних матеріалів, таких як конструкційні сталі, контакт інструменту підчас механічного оброблення титаномісткого сплаву відбувається на меншій площі і з дуже деформованою поверхнею стружки (див. розд. 3).

Вібраційне збурення, обумовлене зміною динаміки складових сил різання, не зважаючи на їх дисонансний характер є циклічним. Причиною цього є домінуюче значення поздовжньої складової сили різання P_x над значенням поперечної сили P_y (рис. 5.1). Таким чином, сумарна сила різання майже повністю відтворює динаміку її поперечної компоненти.

Рис. 5.1. Дія складових сил різання підчас оброблення титанового сплаву (V=50 м/хв; S = 0,25 мм; t= 1,0 мм)

Така картина призводить до виникнення власних затухаючих коливань технологічної системи ВПІЗ. Ці коливання завжди супроводжуються зміною товщини зрізу і швидкості ковзання стружки по передній поверхні інструменту. Зміна цих величин призводить до відповідної дисонуючої зміни складових сили різання титанового сплаву (рис. 5.1). І якщо зміна сили різання відстає в часі або зсунута по фазі відносно зміни товщини зрізу, то затухаючі власні коливання можуть перетворитися в незатухаючі автоколивання. Енергія, необхідна для підтримки таких автоколивань, створюється змінною складовою сили різання. Аналогічна причина збудження автоколивань з'являється, якщо зі збільшенням швидкості різання відбувається зменшення радіальної складової сили різання [7].

Рівень інтенсивності автоколивань суттєво впливає на стійкість інструменту та продуктивність оброблення. Відомо [74], що для певних конструктивнотехнологічних умов оброблення існує певна оптимальна (за критерієм стійкості) амплітуда автоколивань, при якій має місце найбільша стійкість інструменту.

Рис. 5.2. Схема формування автоколивань в технологічній системі ВПІЗ: І підсистема "Заготовка - Пристосування". ІІ - підсистема "Інструмент - державка"; k_1 , k_2 - узагальнені коефіцієнти демпфування першої та другої пружних підсистем; C_1 , C_2 - жорсткості першої та другої підсистем

5.2. Моделювання динамічних процесів різання титанових сплавів в Deform 2D

Першим етапом вищезазначених досліджень є реологічне імітаційне моделювання процесу різання титанових сплавів в середовищі Deform 2D. Результати таких досліджень дозволять оцінити динаміку силового, напружено-деформованого та термодинамічного стану інструменту з урахуванням заданих параметрів різання та зміни властивостей оброблюваного матеріалу.

Феноменологічна модель властивостей оброблюваного титанового сплаву використовується в широко відомій моделі Джонсона-Кука (Розділ 2.)

Основними вихідними даними для стимуляції різання в режимі DEFORM є такі параметри оброблення, як швидкість різання V, глибина t і подача S. Геометрія різального леза: передній кут $\gamma = 5^{\circ}$, задній кут $\alpha = 10^{\circ}$, радіус різальної кромки r = 0,1 мм. В якості ітераційного методу дослідження використовувався метод Ньютона-Рафсона. Вид деформаційного процесу в імітаційній моделі різання розглядався згідно з лагранжевою інкрементальною моделлю. Основним вирішувачем системи (обчислювальним ядром) був Sparse Matrix Method [137]. Параметри міцності, фізикомеханічні та теплофізичні характеристики титанового сплаву Ті-6Al-4V приймалися згідно з [98]. Для розрахунку зношування інструменту обрано модель Усуї [138]:

$$w = \int a \cdot p \cdot v \cdot e^{-b/T} \mathrm{d}t \tag{5.9}$$

де p – питомий тиск стружки на інструмент; v - швидкість ковзання стружки; T - температура в зоні різання (в градусах Цельсія); dt - приріст часу; a і b - експериментально підібрані коефіцієнти ($a=1 \cdot 10^{-5}$; b=1150).

Результати моделювання процесу різання титанового сплаву Ti-6Al-4V наведені на рис. 5.3. В якості вихідних даних використовувалися наступні параметри

оброблення: швидкість різання V = 60 м/хв, подача S = 0,1 мм/об, глибина різання t = 1,5 мм. Час дослідження в усталеному режимі різання становив 20 мс. Середнє значення узагальненої сили різання становить 2500 Н (рис. 5.2, а), а амплітуда високочастотних коливань наведена на рис. 5.3, б.

Рис. 5.3. Результати моделювання процесу оброблення в Deform 2D ((а) - динаміка сили різання; (б) - амплітуда зміни сили різання)

Для визначення амплітудно-фазового частотного спектру динамічного аналізу процесу різання використовувався метод перетворення Фур'є (FTM) [139] в програмному забезпеченні MATLAB/SIMULINK. Результати цього перетворення наведені на рис. 5.4 за амплітудними характеристиками (рис. 5.4, а) та фазовою характеристикою (AЧX) (рис. 5.4, б). Як видно з аналізу рис. 5.4, а, часова залежність сили різання має полічастотний характер в діапазоні частот до 2250 Гц з яскраво вираженими максимумами в діапазоні низьких (25 - 200 Гц) і середніх (1200 - 1400 Гц) частот.

Використовуючи залежності, наведені на рис. 5.3, можна отримати апроксимацію сили різання рівнянням виду:

$$P_{x} = A_{0} + A_{1}\sin(\omega_{1}t + \varphi_{1}) + A_{2}\sin(\omega_{2}t + \varphi_{2}) + \dots + A_{n}\sin(\omega_{n}t + \varphi_{n}), \quad (5.10)$$

де A_0 , $A_1 \dots A_n$ - амплітудні значення сигналу; ω , $\omega_{12} \dots \omega_n$ - відповідні частоти; φ_1 , $\varphi_2 \dots \varphi_n$ - початкові фазові кути.

Апроксимація сили різання представлена рівнянням (5.2), де для скорочення виразу виведені тільки члени з амплітудними значеннями більше 50 Н:

 $P_x = 2385 + 55 \cdot sin(2\pi \cdot 25 \cdot t + 4.17) + 140 \cdot sin(2\pi \cdot 50 \cdot t + 5.57) + \cdots$ $\dots + 71 \cdot sin(2\pi \cdot 1575 \cdot t - 9.23) + 62 \cdot sin(2\pi \cdot 1600 \cdot t - 11.6)$ (5.11)

Рис. 5.4. Результати перетворення Фур'є високочастотних коливань сили різання відносно середнього значення підчас механічного оброблення титанового сплаву Ti-6Al-4V ((а) - амплітудно-частотний спектр; (б) - фазочастотний спектр)

5.3. Аналітичне моделювання динамічних процесів різання титанових сплавів

Для дослідження коливань в системі ВПІЗ складено систему диференціальних рівнянь чотиримасової коливальної схеми, що складається (рис. 5.5) з інструмента (індекс - t), супорта (індекс - h), заготовки (індекс - w) та шпинделя (індекс - s), які з'єднані між собою та станиною верстата пружними зв'язками з демпферами. Така схема відповідає конструкції класичного токарного верстата, маса станини якого неспівставно більша за масу його елементів. Тому їх коливання будемо розглядати відносно нерухомої станини машини. Чотирьохмасовий коливальний контур характеризується своєю універсальністю, оскільки якщо замінити масу шпинделя на масу столу, а масу різцетримача на масу шпинделя, то це буде контур фрезерного верстата. Аналогічно можна описати коливальний контур обробного центру.

Рис. 5.5. Пружно-динамічна схема токарного верстата з чотирма

ступенями вільності

Для спрощення розглянемо схему коливань тільки по одній координаті, а саме *x*, оскільки саме коливання в цьому напрямку формують показники шорсткості і створюють залишкові напруження і деформації обробленої поверхні:

$$\begin{cases} \frac{d^{2}x_{h}}{dt^{2}} \cdot m_{h} - C_{h}x_{h} - k_{h} \cdot \frac{dx_{h}}{dt} - C_{t}(x_{h} - x_{t}) - k_{t} \cdot \left(\frac{dx_{h}}{dt} - \frac{dx_{t}}{dt}\right) = 0 \\ \frac{d^{2}x_{t}}{dt^{2}} \cdot m_{t} + C_{t}(x_{h} - x_{t}) + k_{t} \cdot \left(\frac{dx_{h}}{dt} - \frac{dx_{t}}{dt}\right) + P_{x} = 0 \\ \frac{d^{2}x_{w}}{dt^{2}} \cdot m_{w} - P_{x} - C_{w}(x_{w} - x_{s}) - k_{w} \cdot \left(\frac{dx_{w}}{dt} - \frac{dx_{s}}{dt}\right) = 0 \\ \frac{d^{2}x_{s}}{dt^{2}} \cdot m_{s} + C_{w}(x_{w} - x_{s}) + k_{w} \cdot \left(\frac{dx_{w}}{dt} - \frac{dx_{s}}{dt}\right) - C_{s}x_{s} - k_{s} \cdot \frac{dx_{s}}{dt} = 0 \end{cases}$$
(5.12)

де x_i - переміщення *i*-го елемента схеми (різцетримача (h), інструмента (t), заготовки (w), шпинделя (s) відповідно);

- *m_i* приведена маса *i*-го елемента;
- C_i жорсткість *i*-го елемента;
- *P*_{*x*} радіальна складова сили різання;

*k*_{*i*} – коефіцієнт демпфування *i*-го елемента схеми.

Розрахунковий коефіцієнт демпфування пов'язаний з логарифмічним декрементом коливань у відповідності до формули:

$$k_i = \frac{m_i \delta_i \omega}{\pi} \tag{5.13}$$

де δ_i - логарифмічний декремент коливань *i-го* елемента схеми, який характеризує інтенсивність затухання коливального процесу; ω - кутова частота коливань. Радіальна складова сили різання P_x визначена в результаті моделювання (рис. 6, а) і описується рівнянням (4).

Вихідними даними для чисельного розв'язання системи диференціальних рівнянь (5.4) є наступні параметри чотиримасової коливальної системи ВПІЗ:
$m_t = 0,15$ кг; $m_w = 0,2$ кг; $m_s = 25$ кг; $m_h = 125$ кг; $C_i = 2 \times 10^9$ Н/м; $C_w = 45 \times 10^6$ Н/м; $C_s = C_h = 1,5 \times 10^8$ Н/м.

Визначення власних частот компонентів ВПІЗ проводилось, в першу чергу, методом вільних коливань [72, 73]. Ця методика полягає в реєстрації затухаючих акустичних коливань, що збуджуються в компоненті системи ВПІЗ, з подальшим аналізом резонансних частот і декрементів затухання власних механічних коливань.

Метод вільних коливань використовує накопичення часових рядів вимірювань в *i*-й момент затухаючих коливань:

$$A_{i} = Ae^{-\delta_{i}t_{i}} \cdot \sin(\omega_{1}t_{i} + \alpha)$$

$$A_{i+1} = Ae^{-\delta_{i}(t^{i+T_{1}})} \cdot \sin(\omega(t+T_{1}) + \alpha)$$
(5.14)

де А - максимальна амплітуда коливань;

α - початкова фаза;

*t*_{*i*} - час, що відповідає *i*-му екстремуму коливань;

δ_i - коефіцієнт загасання, що характеризує властивості виробу;

 T_{1} - період загасання коливань.

Коефіцієнт демпфування визначається з відомих значень логарифмічних декрементів вібрації: $\delta_w = 0,01$ (для сталі AISI 1045); $\delta_w = 0,005$ (для титанового сплаву Ti-6Al-4V) $\delta_s = \delta_h = 0,15$ (з урахуванням фактичного демпфування в з'єднаннях елементів токарного верстата [41].

Власні частоти системи ВПІЗ: $f_s = 176 \ \Gamma \mu$; $f_h = 393 \ \Gamma \mu$; $f_w = 2493 \ \Gamma \mu$ (для заготовки діаметром 60 мм і довжиною 350 мм, затиснутої в 3-х кулачковому самоцентрувальному патроні токарного верстата (MAC AFRIC Spare 3 Jaw Chuck)); $f_t = 18451 \ \Gamma \mu$.

Розв'язки системи диференціальних рівнянь (5.4) представлені на рис. 5.6. На рис. 5.6, а показано динаміку вібраційних коливань супорта, на рис. 5.6, б - коливання інструмента, на рис. 5.6, в - коливання заготовки, а на рис. 5.6, г - коливання шпинделя.

Рис. 5.6. Графіки вібраційних коливань компонентів системи ВПІЗ

Як видно з графічних залежностей, наведених на рис. 5.6, супорт з різцем зміщується по частоті в протифазі до заготовки і шпинделя внаслідок дії на них сили різання. Величина амплітуди коливання прямо пропорційна силі різання і обернено пропорційна її жорсткості. Реакція окремих елементів системи ВПІЗ різна при різних частотах збудження і, як відомо, залежить від близькості до резонансу її елементів. Амплітуда коливань заготовки в усталеному режимі різання титанового сплаву становить приблизно 80 мкм для заданих режимів механічного оброблення.

Для проведення додаткових досліджень запропоновано змінити затиск заготовки з 3-х кулачкового самоцентрувального патрона токарного верстата з додатковою опорою в нерухомому центрі задньої бабки верстата на затиск в центрах. При цьому жорсткість деталі зменшується приблизно в 3 рази: з $C_w = 45 \times 10^6$ Н/м до $C_w = 15 \times 10^6$ Н/м. У цьому прикладі розрахункові частоти коливальної системи будуть наступними: $f_s = 176$ Гц; $f_h = 393$ Гц; $f_w = 1552$ Гц; $f_t = 18451$ Гц. Як видно з рис. 5.7, власна частота заготовки зменшилася з 2493 Гц до 1552 Гц, що наблизило її до локального максимуму амплітудно-частотної характеристики сили збудження (приблизно 1400 Гц - рис. 5.4, а).

Аналіз результатів дослідження показав, що наближення частоти власних коливань елемента системи ВПІЗ до частоти вимушуючої сили із вагомим значенням амплітуди (локального максимуму) призводить до значного збільшення амплітуди коливань інструменту відносно деталі (приблизно в 12 разів). Це суттєво впливає на точність та якість механічного оброблення (насамперед, на вібраційну складову шорсткості). Причому такий висновок стосується не тільки коливань в підсистемі «інструмент-заготовка», але й будь якого елемента системи ВПІЗ. Як видно із аналізу рис. 5.7, максимальний розмах коливань шпинделя є вдвічі більшим ніж максимальний розмах коливань супорта. Причиною цього є різні відношення значень

частот власних коливань супорта та шпинделя (f_{*u*}=176 Гц; f_{*c*}=393 Гц) до локального максимуму амплітудно-частотних характеристик сили різання (f≈150 Гц - рис.5.4, а).

Рис. 5.7. Амплітудно-частотні характеристики коливань робочих органів верстата та деталі при різних умовах затиску деталі (в кольорах: червоний – затиск в 3-х кулачковому самоцентруючому патроні, голубий – затиск в центрах)

Метою теоретичних досліджень є підтвердження можливої реакції верстата на полігармонійне збудження коливань (рис. 5.4, а), де зміна жорсткості системи ВПІЗ (збільшення або зменшення) викликає наближення до резонансу і, як наслідок, збільшення амплітуди відносних коливань різця та заготовки на середніх частотах, що показано на рис. 5.7. Тобто, результати імітаційних досліджень процесу різання

титанових сплавів в DEFORM 2D слід порівнювати зі спектром частот коливань верстата, і по можливості віддалятися від резонансу в ту чи іншу сторону, або змінювати режими різання. В процесі експериментальних досліджень частота коливань різального інструменту була близькою до нижньої резонансної області характеристики різання, отриманої при моделюванні в DEFORM (рис. 5.4, а). При цьому заготовка мала високу жорсткість, а саме була закріплена в 3-х кулачковому патроні і підтримувалася центром задньої бабки. В цьому випадку ми отримали близькі до резонансних коливання, що викликало значне збільшення амплітуди коливань.

Очевидним є той факт (рис. 5.6), що збільшення амплітуди коливань супорта аналогічно призведе до збільшення амплітуди коливань різця. Тому, для ефективного та якісного оброблення деталі, слід так забезпечувати власні частоти коливань елементів ВПІЗ, щоб вони були достатньо віддалені від максимальних амплітудночастотних значень сили різання. Особливо це важливо для оброблення титанових сплавів, оскільки динаміка сили різання має чітко визначений синусоїдальний характер. Тобто кількість екстремумів є декілька. Для вирішення цієї проблеми потрібно застосувати алгоритм прийняття конструкторсько-технологічних задач: змінювати режими різання, методи базування та закріплення заготовки, конструкцію інструменту, використовувати люнети або інші конструктивні рішення тощо. Основною ідеєю описаного наукового методу є забезпечення точності та якості оброблюваних поверхонь в результаті механічного оброблення є визначення динаміки сили різання в одній з систем імітаційного моделювання (Deform, LSDyna, Abaqus) та розв'язання системи рівнянь (5.4), що дасть можливість уникнення резонансного зближення амплітудно-частотних характеристик вимушуючих та власних коливань системи ВПІЗ.

5.4. Експериментальні дослідження

Вищезазначена методика поєднання теоретичних та імітаційних результатів дослідження динаміки процесу різання титанових сплавів базується на певних спрощеннях та емпіричних припущеннях. Це може спричинювати похибки, які суттєво впливають на якість результатів досліджень та створюють передумови для хибних рекомендацій і висновків. Тому в даній статті пропонується підхід, заснований на опрацюванні результатів експериментальних досліджень, який дозволяє ідентифікувати вібраційний відгук на формоутворюючі рухи інструменту. Для оброблення та аналізу отриманих експериментальних результатів досліджень використано математичний програмний пакет MatLab, в якому розроблено підпрограму для виконання спектрального аналізу вібраційних сигналів, а також графічної інтерпретації виміряних значень.

Для проведення експериментальних досліджень динаміки процесу різання титанових сплавів було спроектовано та розроблено експериментальну установку. Конструкція даного пристрою включає наступні складові (рис.5.8): заготовка 1 (матеріал - Ті-6АІ-4V), інструмент 2 з пластиною з твердого сплаву WC8, датчик вібрації 3 моделі ИС 507-І (діапазон частот 100...5000 Гц), 3-х кулачковий самоцентрувальний токарний патрон 4, 2-канальний USB осцилограф 5 моделі ОWON VDS1022 (25 МГц), комп'ютер 6.

Рис. 5.8. Основні компоненти експериментальної установки

На рис. 5.8 наведено результати експериментального дослідження процесу різання титанового сплаву Ti-6Al-4V (частота обертання шпинделя 500 об/хв, подача 0,1 мм/об, глибина різання вар'ювалась від 0,5 мм до1,0 мм). На рис. 5.9, а наведено вихідний сигнал акселерометра - віброприскорення. На рис. 5.9, б представлений двічі інтегрований сигнал - вібрація фрези. Амплітудно-частотна характеристика сигналу вібрації, отримана методом прямого перетворення Фур'є, наведена на рис. 5.9, в.

Експериментальні дослідження проводилися для чорнового режиму (глибина різання 1,0 мм – графік зображено синім кольором) та чистового режиму (глибина різання 0,5 мм – червоний колір кривої). Аналіз графічних залежностей показав, що максимальна амплітуда коливань відповідає частоті близько 25 Гц. Збільшення глибини різання призводить до збільшення амплітуди при тій же частоті (рис. 5.9, в).

a)

B)

Рис. 5.9. Графічне представлення результатів експериментальних досліджень амплітудно-частотних характеристик підчас механічного оброблення титанових сплавів

Середня амплітуда коливань різального інструменту становить 0,043 мм при глибині різання 1,0 мм та 0,022 мм при глибині різання 0,5 мм (рис. 5.9, г). Порівняння результатів моделювання (рис. 5.6) та експериментальних даних (рис. 5.9) дозволило встановити високий рівень адекватності теоретичних та реальних результатів вібраційних процесів підчас механічного оброблення титанових сплавів.

Висновки до розділу 5

1. Титанові сплави є важкооброблюваними матеріалами через їх складні механічні та теплофізичні властивості. Крім того, складна термодинамічна картина різання викликає адіабатичні зсуви при різанні. Це супроводжується виникненням високочастотних коливальних процесів поздовжніх, тангенціальних і радіальних складових сил різання, що діють в умовах частотного дисонансу. Цей ефект призводить до інтенсивних коливань інструменту і, як наслідок, до появи значної величини вібраційної складової шорсткості поверхні. Крім того, високочастотні коливання технологічної системи "верстат-пристосування-інструмент-заготовка" сприяють появі локальних зон залишкових напружень на оброблюваній поверхні та інтенсивному зношуванню різального інструменту.

2. Класичні моделі дослідження коливань під час процесів різання (побудова та розв'язання системи диференціальних рівнянь багатомасових систем ВПІЗ) саме підчас механічного оброблення титанових сплавів не враховують складні напруженодеформовані та термодинамічні процеси формоутворення. Такі дослідження можуть бути реалізовані з використанням імітаційного моделювання. В свою чергу, результати реологічного моделювання в CAF-системах (Deform 2/3D, Abaqus, LS-DYNA, AdvantEdge) не враховують той факт, що початковий стан заготовки та апріорі приймається "жорстким", інструменту а демпфуючі властивості пристосування, інструменту та елементів верстата у вихідній імітаційній моделі взагалі не враховуються. Тому поєднання результатів аналітичного моделювання динаміки процесу різання з результатами імітаційного моделювання покладено в основу запропонованої методики досліджень. Такий симбіоз різних методик дозволить врахувати як механічні аспекти формоутворення обробленої поверхні, так і реальні умови жорсткості та демпфуючих властивостей системи ВПІЗ.

3. Розроблено та досліджено математичну чотиримасової модель автоколивальної схеми металорізального верстата з урахуванням результатів процесу різання імітаційного моделювання титанових сплавів. Проведено проблемно-орієнтовані дослідження динаміки процесу різання та виявлено резонансні амплітудно-частотні характеристики підчас механічного оброблення таких матеріалів з різними режимами оброблення та схемами закріплення заготовки. Для визначення амплітудно-фазового частотного спектру динамічного аналізу різання використано метод перетворення Фур'є в програмі MATLAB/SIMULINK. Доведено, що амплітудне коливання супорту з різцем зміщується по частоті в протифазі відносно заготовки та шпинделя в результаті впливу на них сили різання. Величина цього зміщення прямо пропорційна силі різання і обернено пропорційна їх жорсткостям. Причому відгук окремих елементів системи ВПІЗ є змінним для різних частот збудження і залежить від близькості до власного резонансу її елементів.

4. Аналіз амплітудно-частотних характеристик коливань верстата та заготовки при різних умовах закріплення (закріплення в 3-х кулачковому самоцентрувальному патроні токарного верстата в порівнянні із закріпленням в центрах) показав, що наближення частоти власних коливань елемента системи ВПІЗ до частоти збуджуючої сили (локального максимуму) призводить до значного збільшення амплітуди коливань інструмента та заготовки (приблизно в 12 разів). Це суттєво впливає на точність і якість оброблення (в першу чергу, на вібраційну складову шорсткості). Причому такий висновок стосується не тільки вібрацій в підсистемі "інструмент-заготовка", а й кожного елемента системи ВПІЗ. При цьому максимальна амплітуда коливань шпинделя вдвічі перевищує максимальну амплітуду коливань супорта. Причиною цього є різне співвідношення значень власних частот коливань супорта і шпинделя (f_s =176 Гц; f_h =393 Гц) до локального максимуму амплітудночастотної характеристики сили різання (f=150 Гц).

5. Для проведення експериментальних досліджень з вивчення динаміки процесу різання титанового сплаву розроблено та створено експериментальну установку. Експериментальні дослідження проводилися для режиму чорнового оброблення (глибина різання 1,0 мм) та режиму чистової оброблення (глибина різання 0,5 мм). Аналіз графічних залежностей показав, що максимальна амплітуда коливань відповідає частоті близько 25 Гц. Збільшення глибини різання призводить до збільшення амплітуди при тій же частоті. Порівняння результатів моделювання та експериментальних даних показало високий рівень адекватності теоретичного та реального представлення вібраційних процесів підчас механічного оброблення титанових сплавів.

ЗАГАЛЬНІ ВИСНОВКИ

1. Аналіз переваг та недоліків методів наукового дослідження функціональноорієнтованих технологічних процесів оброблення виробів з титанових сплавів дозволяє зробити основний висновок, що найбільш ефективним є поєднання методології імітаційного та аналітичного моделювання з наступним коректуванням моделей за результатами проведених експериментальних досліджень.

2. Запропоновано використання програмного забезпечення DEFORM 2D для прогнозних досліджень силових, термодинамічних та напружено деформаційних параметрів механічного оброблення титаномістких сплавів. Шя система € багатоцільовою програмою кінцево-елементного аналізу, яка призначена для вирішення динамічних нелінійних задач механіки деформації твердого тіла, а також задач, пов'язаних із цим процесом. Ефективність вирішення поставлених задач саме з використанням даного програмного продукту обумовлена наявністю процедури автоматичного регулювання та згладжування сіток із звичайних елементів при виродженні елементів, застосуванням високоефективних алгоритмів розв'язування контактних задач, а також наявністю широкого спектра специфікацій оброблюваних інструментальних матеріалів формалізованими термодеформаційними та 3 реологічними властивостями (з можливістю їх коректування).

3. Комплексний аналіз застосування програмних розв'язувачів (solver), що використовуються у програмних продуктах, реалізуючих метод скінченних елементів, для імітаційного моделювання процесу механічного оброблення титанових сплавів довів, що саме кон'югатний градієнт Skyline працює швидше і потребує менше пам'яті, ніж розв'язувач, що працює за алгоритмом розріджених матриць. Однак, застосування даного розв'язувача є проблематичним у випадку, пов'язаному з

недостатньою кількістю точок дотику – контактної площі між інструментом і заготовкою (наприклад, підчас моделювання процесу оброблення з малою глибиною різання). Для цього класу завдань доцільно використовувати алгоритм, що базується на методі розріджених матриць. Тому використання розв'язувача Skyline є більш ефективним для моделювання процесів механічного оброблення з глибиною різання більше 0,5 мм.

4. Виходячи з специфіки механічних властивостей титанових сплавів (насамперед, високому відношенню межі текучості до тимчасової стійкості до руйнування), можна зробити висновок, що відповідно до існуючих моделей різання з використанням деформації критерії деформаційного та енергетичного руйнування більш адекватними є моделі, які використовують енергетичні критерії руйнування, такі як нормативний критерій Кокрофта-Лейтема або експотенційний критерій Райса-Трейсі. Саме ці критерії руйнування грунтуються на розрахунку потенційної енергії пластичної деформації, тобто площі фігури, яка обмежена кривою напруження-деформація.

5. У дисертаційній роботі здійснена спроба поєднати методики наукового дослідження динамічних процесів формоутворення виробів з титанових сплавів, отриманих як результат імітаційного моделювання з класичним аналітичним моделюванням динамічних процесів різання. Аналізуючи причини коливань, в даній роботі основну увагу приділяється генеруючим коливання чинникам, що виникають внаслідок специфіки механічного оброблення титанових сплавів – таким як, наприклад, явище адіабатичного зсуву підчас різання саме титанових сплавів.

6. Складність у формалізації силових, термічних та напружено деформаційних результатів імітаційного моделювання процесу різання полягає у значній зашумленості результатів розрахунків, виконаних методом скінченних елементів, що

характерно для більшості високочастотних динамічних задач. Для ефективного опрацювання результатів роботи системи DEFORM 2D необхідно вирішити 2 найважливіші задачі – по-перше, це фільтрація шумового сигналу із збереженням граничних значень результатів імітаційного дослідження та максимуму чутливості; по-друге, вирішення задачі апроксимації та інтерполяції фільтрованої функції параметрів різання за часом (перетворенням Фур'є). В якості математичного забезпечення фільтраційної процедури згладжування даних реологічного моделювання в системі DEFORM 2D, тобто підвищення точності даних без спотворення тенденції сигналу, запропоновано використати математичний апарат Савицького-Гола. Розроблена програмна реалізація цього методу фільтрації даних силового та термодинамічного розрахунку параметрів для DEFORM 2D у інтерпретованій об'єктно-орієнтованій мові програмування Python 3.10.

7. Результати імітаційних та експериментальних досліджень процесу стружкоутворення під час обробки титанових сплавів свідчать, що геометрична форма стружки, що утворюється в процесі адіабатичного зсуву, визначається умовами опору пластичній деформації, циклічністю дії сил різання та геометричної зміни кута зсуву. Питома кількість деформованих частин стружки визначає частоту коливань сили різання за час контакту. Зміна опору металу в зоні зсуву за високої температури різання і великої швидкості деформації визначає величину амплітуди сили різання. Таким чином, процес утворення стружки під час обробки титанових сплавів відбувається в умовах нестійкого різання, що сприяє виділенню великої кількості теплоти, виникненню великих залишкових напружень, інтенсивному зношуванню інструменту та динамічній нестабільності в зоні різання.

8. Аналіз залежності коефіцієнта усадки стружки від зміни швидкості різання V показав, що із збільшення швидкості різання, середнє значення величини усадки

практично не зазнає змін, проте суттєво зростає амплітуда його коливання, що еквівалентно зміні кута зсуву, який динамічно змінюється внаслідок адіабатичного характеру стружкоутворення. Практично аналогічним є вплив глибини різання на коефіцієнт усадки стружки. А саме: із зростанням глибини різання середнє значення усадки суттєво не змінюється, а от амплітуда коливань цього параметра збільшується суттєво.

9. На основі результатів імітаційного моделювання процесу механічного оброблення титанового сплаву ВТ6 (Ti6Al4V) доведено, що довжина контакту стружки з передньою поверхнею інструменту має певну тенденцію зміни: довжина контакту спочатку збільшується, а потім зменшується зі збільшенням швидкості різання. Можна зробити такі висновки: швидкість різання приблизно 150 м/хв, при якій довжина контакту максимальна, лежить в межах перехідного діапазону між звичайним і високошвидкісним режимом обробки титанових сплавів. Таке початкове зростання, а потім зменшення довжини контакту для сплаву Ті6Аl4V при більш високих швидкостях подачі можна пояснити явищем зміни геометрії стружки внаслідок прояву явища адіабатичного зсуву. Наведені вище результати імітаційних та аналітичних досліджень механічного оброблення титанових сплавів довели, поперше, адекватність запропонованої методики досліджень як наслідок якісного співпадіння отриманих результатів та відомих з літературних джерел даних; по-друге, дозволяє встановити найбільш навантажені режими різання з точки зору формування контактної взаємодії підсистемі «стружка-передня поверхня різального y інструменту».

10. Глибина різання суттєво впливає на силу різання : зміна глибини різання від 1,0 мм до 2,5 мм збільшує силу різання приблизно в 2 рази. Особлива зміна цих параметрів відбувається, якщо глибина різання збільшується понад 2 мм. Однак зміна глибини різання суттєво не впливає на еквівалентне напруження в зоні формоутворення (збільшення глибини різання в 7 разів призводить до зміни цього параметру параметрів лише на 5-7%). Швидкість різання найбільше впливає на частоту зміни навантаження. Тобто, зміна V від 50 до 200 м/с збільшує період зміни сили різання приблизно в 8 разів. Це може бути причиною високочастотного коливання інструменту. Однак сила різання значно зменшується із збільшенням швидкості різання: 4-кратна зміна призводить до зменшення сили різання приблизно на 25%. Проте швидкість різання не має суттєвого впливу на еквівалентне напруження в зоні різання, як і у випадку зміни глибини різання, змінюючись із збільшенням швидкості різання лише на 7-9%. Геометрія різального леза інструменту також має вплив на узагальнену силу різання: зміна переднього кута з (+10°) до (-5°) збільшує середню силу різання приблизно на 80% і збільшує коефіцієнт усадки стружки на 27%. Крім того, збільшення переднього кута різального леза призводить до зростання інтенсивності частоти коливань сили різання, особливо для інструменту з від'ємним переднім кутом. Проте, зміна геометричних параметрів різальної кромки має незначний вплив на еквавалентне напруження (коливання середньостатистичного значення в межах 2-3%).

11. Зміна глибини різання суттєво не впливає на температуру в зоні різання призводить до зміни цього параметру лише на 5-7%. Аналогічно, температура різання сильно не змінюються від зростання швидкості різання, змінюючись із збільшенням швидкості різання з 50 до 200 м/хв лише на 7-10%. Проте, геометрія різального леза інструменту суттєво впливає на температуру обробки. Наприклад, зміна переднього кута різального леза з 10° до (-5°) в усталеному режимі різання збільшенням питомого тиску стружки на передню поверхню інструменту.

12. Запропонована оригінальна методика моделювання залишкових деформацій та напружень І роду в системі Deform 2D, що передбачає використання сітки референтних точок вздовж обробленої поверхні та по глибині заготовки в зоні її термостабілізації. Крива залишкових напружень І роду відображає інтерференційну картину прояву флуктаційних розтягувальних (температурних та фрикційних) та стискаючих (силових) навантажень. Аналіз впливу силових та термічних явищ, що супроводжують процеси різання у змінних умовах, доводить, що із збільшенням сили та температури в зоні різання залишкові напруження зростатимуть і до певної межі носить майже лінійний характер. Проте, інтенсивність їх збільшення суттєво зменшується при досягненні сили різання приблизно 2800Н та температури різання близько 950°С.

13. Складна динаміка навантажень при механічному обробленні титанових сплавів є наслідком високої пластичності та терморезистивності оброблюваного матеріалу. Тому ефективна механічна обробка титанових сплавів можлива лише при вирішенні двох основних завдань: визначення раціональних режимів різання та дослідження шляхів досягнення необхідної якості обробленої поверхні і зумовлених різанням експлуатаційних властивостей обробленого шару. Сила тертя, пов'язана з перебіг вирішальним фактором, цим, € ЩО визначає всього процесу стружкоутворення при механічному обробленні титанових сплавів. Таким чином, основна мета даного розділу дисертаційної роботи полягає у дослідженні, наскільки різні коефіцієнти тертя при певних режимах і параметрах різання впливають на формування напружено-деформованого і термодинамічного станів виробу. Комплексний аналіз цих чинників дозволить провести аналітичну оцінку ефективності та доцільності заходів щодо триботехнічного покращення умов оброблення титанових сплавів і, як наслідок, підвищення продуктивності оброблення, забезпечивши при цьому задану якість обробленого поверхневого шару. Крім того, важливо знати, які саме параметри різання є найбільш важливими для забезпечення ефективних умов оброблення титанових сплавів.

14. Запропонована методика дослідження впливу триботехнічних умов різання титанових сплавів на формування напружено-деформованого і термодинамічного станів виробу відрізняється від традиційного підходу і полягає в наступному. Поперше, у вихідних даних для моделювання щоразу пропонується інший декларований коефіцієнт тертя, і кожна така задача моделювання процесу різання розв'язується для різних параметрів різання. На другому етапі проводиться аналіз впливу цих коефіцієнтів на напружено-деформований (в тому числі залишковий) i термодинамічний стан заготовки та інструменту при різанні, а також на динаміку зношування інструменту тощо. На третьому етапі дослідження пропонується забезпечити ці аналітично обґрунтовані фрикційні умови різання. Результати аналізу дають можливість вибрати такі конструктивні, технологічні або організаційні рішення, які реалізують оптимальні умови оброблення найбільш ефективним способом. Зазвичай найбільш ефективним методом зниження коефіцієнта тертя при різанні титанових сплавів є застосування спеціальних зносостійких і антифрикційних покриттів, а також використання спеціальних мастильно-охолоджуючих рідин. Ефективність даної методики полягає в більш цілеспрямованому вирішенні проблеми організації функціонально орієнтованого технологічного середовища.

15. Проведені дослідження показали, що трибомеханічні умови різання суттєво впливають на параметри навантаження при механічному обробленні титанових сплавів. Динаміка циклічної зміни сили різання є наслідком адіабатичного зсуву в зоні стружкоутворення і підтверджується зубчастоподібною формою стружки. Механізм такого стружкоутворення при механічному обробленні титанових сплавів

обумовлений втратою термопластичної стабільності в межах зони первинного зсуву. Циклічність динамічного процесу навантаження різального інструменту при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V) залежить від швидкості та глибини різання і становить 1-1,2 с при швидкості 50 м/хв та 0,6-0,8 мілісекунди при швидкості 100 м/хв. Значний вплив триботехнічних умов різання на силу різання підтверджується аналізом результатів моделювання в Deform 2D. Наприклад, при швидкості 50 м/хв середнє значення сили різання збільшується на 5,8% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 13,0% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 17,6% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення приблизно однакові і складають 6,6%, 14,9% і 16,6% відповідно. Встановлений коефіцієнт тертя також має значний вплив на термодинамічний стан процесу різання. Наприклад, при швидкості 50 м/хв середня температура різання зростає на 5,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 10,1% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 14,5% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення дещо менші і становлять 3,1%, 4,8% та 12,3% відповідно. Як показали дослідження, коефіцієнта тертя між інструментом та матеріалом заготовки має досить суттєвий вплив на напружено-деформований стан зони різання при механічному обробленні титанового сплаву ВТ6 (аналог Ti6Al4V). Наприклад, при швидкості 100 м/хв середнє напруження різання збільшується на 6,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 8,9% при збільшенні коефіцієнта тертя від 0,3 до 0,5 та на 10,0% при збільшенні коефіцієнта тертя від 0,3 до 0,6.

16. Зношування інструменту як по передній, так і по задній поверхні, безумовно, залежить від триботехнічних умов при різанні титанового сплаву. Причому, коливання навантаження на інструмент призведе до синхронної зміни швидкості зношування. Наприклад, при швидкості 50 м/хв середньостатистичний показник швидкості зношування різального інструменту зростає на 13,5% при збільшенні коефіцієнта тертя від 0,3 до 0,4; на 28,6% при збільшенні коефіцієнта тертя від 0,3 до 0,5 і на 38,2% при збільшенні коефіцієнта тертя від 0,3 до 0,6. При швидкості різання 100 м/хв ці співвідношення становлять 10,8%, 25,9% і 40,3% відповідно. Використання різних аналітичних моделей дає можливість визначити різні екстремальні значення зношування інструменту. Максимальні результати зношування знаходяться в діапазоні швидкостей різання приблизно 60-70 м/хв за критерієм Арчарда та 100-120 м/хв за критерієм Усуї. Таку різницю можна пояснити різними пріоритетами в описі фізичної моделі процесу зношування інструменту. На основі порівняння з відомими експериментальними даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при механічному обробленні титанового сплаву.

17. Аналіз результатів експериментальних досліджень дозволяє зробити висновки, що,- в цілому, результати моделювання адекватно відображають закономірності зношування інструменту при обробці титанових сплавів. Однак розбіжності в теоретичних та експериментальних результатах існують. Це можна пояснити тим, що при моделюванні враховувалися тільки фізичні властивості матеріалу. В той же час, в реальному процесі зношування відбуваються складні процеси, які неможливо описати аналітично. Крім того, прийняті коефіцієнти тертя в експериментальних дослідженнях (при використанні різних МОР) є наближеними і містять похибку. Похибка відхилення деяку розрахункових значень інструментального зношування від експериментальних даних становить приблизно 19% при використанні моделі Арчарда і 9% при використанні моделі Усуї. Крім того, екстремум зношування в експериментальних дослідженнях становить близько 90-100 м/хв, що приблизно відповідає даним, отриманим при моделюванні за критерієм Усуї, і суттєво відрізняється від результатів моделювання за критерієм Арчарда. На основі порівняння з експериментальними даними можна зробити висновок, що модель Усуї є більш адекватною для опису процесу зношування інструменту при обробці титанового сплаву.

18. Класичні моделі дослідження коливань під час процесів різання (побудова та розв'язання системи диференціальних рівнянь багатомасових систем ВПІЗ) саме при обробці титанових сплавів не враховують складні напружено-деформовані та термодинамічні процеси формоутворення. Такі дослідження можуть бути реалізовані з використанням імітаційного моделювання. В свою чергу, результати реологічного моделювання в CAF-системах (Deform 2/3D, Abaqus, LS-DYNA, AdvantEdge) не враховують той факт, що початковий стан заготовки та інструменту апріорі приймається "жорстким", а демпфуючі властивості пристосування, інструменту та елементів верстата у вихідній імітаційній моделі взагалі не враховуються. Тому поєднання результатів аналітичного моделювання динаміки процесу різання з результатами імітаційного моделювання покладено в основу запропонованої методики досліджень. Такий симбіоз різних методик дозволить врахувати як механічні аспекти формоутворення обробленої поверхні, так і реальні умови жорсткості та демпфуючих властивостей системи ВПІЗ.

19. Розроблено та досліджено математичну модель чотиримасової автоколивальної схеми металорізального верстата з урахуванням результатів імітаційного моделювання різання титанових процесу сплавів. Проведено проблемно-орієнтовані дослідження динаміки процесу різання та виявлено резонансні амплітудно-частотні характеристики при обробці таких матеріалів з різними режимами оброблення та схемами закріплення заготовки. Для визначення

амплітудно-фазового частотного спектру динамічного аналізу різання використано метод перетворення Фур'є в програмі MATLAB/SIMULINK. Доведено, що амплітудне переміщення супорту зміщується по частоті в протифазі відносно заготовки та шпинделя в результаті впливу на них сили різання. Величина цього зміщення прямо пропорційна силі різання і обернено пропорційна їх жорсткостям. Причому відгук окремих елементів системи ВПІЗ є змінним для різних частот збудження і залежить від близькості до власного резонансу її елементів.

20. Аналіз амплітудно-частотних характеристик коливань верстата та заготовки при різних умовах закріплення (закріплення в 3-х кулачковому самоцентрувальному патроні токарного верстата в порівнянні із закріпленням в центрах) показав, що наближення частоти власних коливань елемента системи ВПІЗ до частоти збуджуючої сили (локального максимуму) призводить до значного збільшення амплітуди коливань інструмента та заготовки (приблизно в 12 разів). Це суттєво впливає на точність і якість оброблення (в першу чергу, на вібраційну складову шорсткості). Причому такий висновок стосується не тільки вібрацій в підсистемі «інструмент-заготовка», а й кожного елемента системи ВПІЗ. При цьому максимальна амплітуда коливань шпинделя вдвічі перевищує максимальну амплітуду коливань супорта. Причиною цього є різне співвідношення значень власних частот коливань супорта і шпинделя ($f_s = 176$ Гц; $f_h = 393$ Гц) до локального максимуму амплітудно-частотної характеристики сили різання (f = 150 Гц).

21. Для проведення експериментальних досліджень з вивчення динаміки процесу різання титанового сплаву розроблено та створено експериментальну установку. Експериментальні дослідження проводилися для режиму чорнового оброблення (глибина різання 1,0 мм) та режиму чистового оброблення (глибина різання 1,0 мм) та режиму чистового оброблення (глибина різання 1,0 мм) та режиму чистового оброблення амплітуда

коливань відповідає частоті близько 25 Гц для заданих умов різання. Збільшення глибини різання призводить до збільшення амплітуди при тій же частоті. Порівняння результатів моделювання та експериментальних даних показало високий рівень адекватності теоретичного та реального представлення вібраційних процесів при механічній обробці титанових сплавів.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Astakhov, V. P. (1998). *Metal cutting mechanics*. CRC press.

2. Astakhov, V. P., & Outeiro, J. C. (2008). Metal cutting mechanics, finite element modelling. *In Machining* (pp. 1-27). Springer, London.

3. Novikov, F. V., & Benin, E. Y. (2012). Determination of conditions ensuring cost price reduction of machinery. *Economics of Development*, *3*(63):69–74

4. Leyens, C., & Peters, M. (Eds.). (2003). *Titanium and titanium alloys: fundamentals and applications*. John Wiley & Sons.

5. Илларионов, А. Г., & Попов, А. А. (2014). Технологические и эксплуатационные свойства титановых сплавов: учебное пособие.

6. Yin, Q., Liu, Z., Wang, B., Song, Q., & Cai, Y. (2020). Recent progress of machinability and surface integrity for mechanical machining Inconel 718: a review. *The International Journal of Advanced Manufacturing Technology*, *109*(1), 215-245.

7. Paulo Davim, J. (2014). *Machining of Titanium Alloys, Materials Forming, Machining and Tribology*. Springer, London.

8. Perry, J. (Ed.). (2017). *Titanium Alloys: Types, Properties, and Research Insights*. Nova Science Publishers, Incorporated.

9. Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. *International Journal of Machine Tools and Manufacture*, *51*(3), 250-280.

10. Ступницький, В. В. (2015). Дослідження залишкових деформацій, що формуються в результаті виконання технологічного переходу лезового оброблення деталі на основі імітаційного моделювання процесу різання. *Резание* и инструменты в технологических системах, (85), 274-281.

11. Devotta, A., Beno, T., Siriki, R., Löf, R., & Eynian, M. (2017). Finite element modeling and validation of chip segmentation in machining of AISI 1045 steel. *Procedia Cirp*, 58, 499-504.

12. Batista, M., Salguero, J., Gomez-Parra, A., Fernández-Vidal, S., & Marcos, M. (2013). SOM based methodology for evaluating shrinkage parameter of the chip developed in titanium dry turning process. *Procedia CIRP*, *8*, 534-539.

13. Xu, W. J., Zhang, X. M., Leopold, J., & Ding, H. (2017). Mechanism of serrated chip formation in cutting process using digital image correlation technique. *Procedia CIRP*, 58, 146-151.

14. Ye, G. G., Chen, Y., Xue, S. F., & Dai, L. H. (2014). Critical cutting speed

for onset of serrated chip flow in high speed machining. *International Journal of Machine Tools and Manufacture*, 86, 18-33.

15. Wen, L., Yang, C. Q., Niu, Q. L., Ming, W. W., & Chen, M. (2016). Experimental Study on the Formation Mechanism of Serrated Chip of TC11 Titanium Alloy. *In Key Engineering Materials* (Vol. 693, pp. 767–774). Trans Tech Publications, Ltd.

16. Wen, L., Yang, C. Q., Niu, Q. L., Ming, W. W., & Chen, M. (2016). Experimental Study on the Formation Mechanism of Serrated Chip of TC11 Titanium Alloy. In *Key Engineering Materials* (Vol. 693, pp. 767-774). Trans Tech Publications Ltd.

17. Zhu, X., Shi, J., Liu, Y., Jiang, Y., Zhou, B., & Zhao, X. (2022). Study on Formation Mechanism of Serrated Chip of Ti-6Al-4V Titanium Alloy Based on Shear Slip Theory.

18. Opoz, T. T., & Chen, X. (2016). Chip formation mechanism using finite element simulation. *Strojniški vestnik-Journal of Mechanical Engineering*, 62(11).

19. Rahman, M., Wang, Z. G., & Wong, Y. S. (2006). A review on high-speed machining of titanium alloys. *JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing*, 49(1), 11-20.

20. Komanduri, R. (1982). Some clarifications on the mechanics of chip formation when machining titanium alloys. *Wear*, 76(1), 15-34.

21. Calamaz, M., Coupard, D., Nouari, M., & Girot, F. (2011). Numerical analysis of chip formation and shear localisation processes in machining the Ti-6Al-4V titanium alloy. *The International Journal of Advanced Manufacturing Technology*, 52(9), 887-895.

22. Arrazola, P. J., Garay, A., Iriarte, L. M., Armendia, M., Marya, S., & Le Maître, F. (2009). Machinability of titanium alloys (Ti6Al4V and Ti555. 3). *Journal of materials processing technology*, 209(5), 2223-2230.

23. Whittaker, M. T. (2015). Titanium Alloys. Metals, 5(3), 1437-1439.

24. García-Martínez, E., Miguel, V., Martínez-Martínez, A., Manjabacas, M. C., & Coello, J. (2019). Sustainable lubrication methods for the machining of titanium alloys: An overview. *Materials*, *12*(23), 3852.

25. Pramanik, A. (2014). Problems and solutions in machining of titanium alloys. *The International Journal of Advanced Manufacturing Technology*, 70(5), 919-928.

26. Hatt, O., Crawforth, P., & Jackson, M. (2017). On the mechanism of tool crater wear during titanium alloy machining. *Wear*, *374*, 15-20.

27. Jawaid, A., Che-Haron, C. H., & Abdullah, A. (1999). Tool wear characteristics in turning of titanium alloy Ti-6246. *Journal of Materials Processing*

Technology, 92, 329-334.

28. Kishawy, H. A., & Hosseini, A. (2019). Machining difficult-to-cut materials. *Mater. Form. Mach. Tribol*, 10, 978-3.

29. Wojciechowski, S., Królczyk, G. M., & Maruda, R. W. (2020). Advances in Hard–to–Cut Materials: Manufacturing, Properties, Process Mechanics and Evaluation of Surface Integrity. *Materials*, *13*(3), 612.

30. Davim, J. P. (Ed.). (2011). *Machining of hard materials*. Springer Science & Business Media.

31. Ali, M. H., Khidhir, B. A., Mohamed, B., Balasubramanian, R., & Oshkour, A. A. (2011, November). Machining of Titanium Alloys: a review. In *Student Conference on Research and Development*.

32. Niknam, S. A., Khettabi, R., & Songmene, V. (2014). Machinability and machining of titanium alloys: a review. *Machining of titanium alloys*, 1-30.

33. Ivasishin, O. M., Markovsky, P. E., Matviychuk, Y. V., Semiatin, S. L., Ward, C. H., & Fox, S. (2008). A comparative study of the mechanical properties of high-strength β-titanium alloys. *Journal of alloys and compounds*, *457*(1-2), 296-309.

34. Stupnytskyy, V., & Xianning, S. (2020). Comparative Analysis of Simulation Results of Hard-to-Cut Materials Machining by Coated Cutting Tools. *Journal of Mechanical Engineering–Strojnícky časopis*, 70(2), 153-166.

35. Shihab, S. K., Khan, Z. A., Mohammad, A., & Siddiquee, A. N. (2014). A review of turning of hard steels used in bearing and automotive applications. *Production & Manufacturing Research*, *2*(1), 24-49.

36. Cheng, K. (Ed.). (2008). *Machining dynamics: fundamentals, applications and practices*. Springer Science & Business Media.

37. Stupnytskyy, V., Hrytsay, I. & Xianning S., (2021) Finite Element Analysis of Thermal and Stress-Strain State During Titanium Alloys Machining *Lecture Notes in Mechanical Engineering* 1 629-639.

38. Stupnytskyy, V., Xianning, S. (2020). Research and Simulation of the Machining Process of Difficult-To-Cut Materials. *Ukrainian Journal of Mechanical Engineering and Materials Science* (Vol. 6, № 3/4. pp. 41–50).

39. Klocke, F., Arntz, K., Cabral, G. F., Stolorz, M., & Busch, M. (2011). Characterization of tool wear in high-speed milling of hardened powder metallurgical steels. *Advances in Tribology*, 2011.

40. Kishawy, H. A., & Hosseini, A. (2019). Machining difficult-to-cut materials. *Mater. Form. Mach. Tribol*, 10, 978-3.

41. Davim, J. P. (Ed.). (2010). Surface integrity in machining (Vol. 1848828742). London: Springer.

42. Klocke, F., Harst, S., Ehle, L., Zeis, M., & Klink, A. (2018). Surface integrity

in electrochemical machining processes: An analysis on material modifications occurring during electrochemical machining. *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture*, 232(4), 578-585.

43. Grzesik, W., & Żak, K. (2014). Characterization of surface integrity produced by sequential dry hard turning and ball burnishing operations. *Journal of Manufacturing Science and Engineering*, 136(3).

44. Rech, J., Hamdi, H., & Valette, S. (2008). Workpiece surface integrity. In *Machining* (pp. 59-96). Springer, London.

45. Griffiths, B. (2001). *Manufacturing surface technology: surface integrity & functional performance*. CRC Press.

46. He, J., Zhou, W., Hu, D., Liu, S., Otero, J., & Rodriguez-Navarro, C. (2022). A multi-analytical approach for the characterization of materials, manufacturing process and damage mechanisms of wall paintings in Samye Temple, Tibet. *Dyes and Pigments*, 207, 110704.

47. Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. *International Journal of Machine Tools and Manufacture*, 51(3), 250-280.

48. Özel, T., Thepsonthi, T., Ulutan, D., & Kaftanoğlu, B. (2011). Experiments and finite element simulations on micro-milling of Ti–6Al–4V alloy with uncoated and cBN coated micro-tools. *CIRP annals*, *60*(1), 85-88.

49. Black, J. T., & Kohser, R. A. (2017). *DeGarmo's materials and processes in manufacturing*. John Wiley & Sons.

50. Rech, J., Hamdi, H., & Valette, S. (2008). Workpiece surface integrity. In *Machining* (pp. 59-96). Springer, London.

51. Klocke, F., & Kuchle, A. (2011). Manufacturing Processes 1; RWTHedition.

52. Klocke, F., & Kuchle, A. (2009). *Manufacturing processes* (Vol. 2, pp. p-433). Berlin: Springer.

53. Astashev, V. K., & Korendyasev, G. K. (2012). Thermomechanical model of cutter self-oscillation in perpendicular free cutting. *Journal of Machinery Manufacture and Reliability*, *41*(6), 435-440.

54. Gygax, P. E. (1980). Cutting dynamics and process-structure interactions applied to milling. *Wear*, *62*(1), 161-184.

55. Czán, A., Šajgalík, M., Martikáň, A., & Mrázik, J. (2015). Dynamic process analysis in cutting zone during machining of nickel alloys. *Technological Engineering*, *12*(1), 4.

56. Ulutan, D., Sima, M., & Özel, T. (2011). Prediction of machining induced surface integrity using elastic-viscoplastic simulations and temperature-dependent flow softening material models in titanium and nickel-based alloys. In *Advanced Materials*

Research (Vol. 223, pp. 401-410). Trans Tech Publications Ltd.

57. Stupnytskyy, V., & Hrytsay, I. (2019, June). Simulation study of cuttinginduced residual stress. In *Design, Simulation, Manufacturing: The Innovation Exchange* (pp. 341-350). Springer, Cham.

58. Eraslan, A. N., & Apatay, T. (2016). Analytical solution to thermal loading and unloading of a cylinder subjected to periodic surface heating. *Journal of Thermal Stresses*, *39*(8), 928-941.

59. Perez, N. (2017). Linear-elastic fracture mechanics. In *Fracture mechanics* (pp. 79-130). Springer, Cham.

60. Shen, Q., Liu, Z., Hua, Y., Zhao, J., Lv, W., & Mohsan, A. U. H. (2018). Effects of cutting edge microgeometry on residual stress in orthogonal cutting of Inconel 718 by FEM. *Materials*, *11*(6), 1015.

61. Schmitz, T. (2009). *Machining Dynamics Frequency Response to Improved Productivity*. Springer Science+ Business Media.

62. Tony L. Schmitz & K. Scott Smith (2019). *Machining Dynamics Frequency Response to Improved Productivity*. Springer Cham.

63. Xu, W. J., Zhang, X. M., Leopold, J., & Ding, H. (2017). Mechanism of serrated chip formation in cutting process using digital image correlation technique. *Procedia CIRP*, 58, 146-151.

64. Wang, B., & Liu, Z. (2014). Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V. *The International Journal of Advanced Manufacturing Technology*, *75*(5), 1065-1076.

65. Hazır, Ö. (2015). A review of analytical models, approaches and decision support tools in project monitoring and control. *International Journal of Project Management*, 33(4), 808-815.

66. Stupnytskyy, V., & She, X. (2021). Comprehensive analysis of tribological factor influence on stress-strain and thermal state of workpiece during titanium alloys machining. *Archive of Mechanical Engineering*, 68(2).

67. Yang, Q., Liu, Z., Shi, Z., & Wang, B. (2014). Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. *The International Journal of Advanced Manufacturing Technology*, *71*(9), 1901-1908.

68. Eliseev, S. V., & Eliseev, A. V. (2020). *Theory of oscillations*. Springer International Publishing.

69. Korendyasev, G. (2020). An approach to modeling self-oscillations during metal machining based on a finite-element model with small amount of computing resources. *Vibroengineering Procedia*, *32*, 6-12.

70. Klingelnberg, J. (2016). Dynamics of Machine Tools. In *Bevel Gear* (pp. 311-320). Springer Vieweg, Berlin, Heidelberg.

71. Мазур, Н. П., Внуков, Ю. Н., Грабченко, А. И., Доброскок, В. Л., Залога, В. А., Новоселов, Ю. К., & Якубов, Ф. Я. (2013). Основы теории резания материалов.

72. Petrakov, Y., Danylchenko, M., & Petryshyn, A. (2019). Prediction of chatter stability in turning. *Eastern-European Journal of Enterprise Technologies*, *5*(1), 58-64.

73. Choudhury, S. K., Goudimenko, N. N., & Kudinov, V. A. (1997). On-line control of machine tool vibration in turning. *International Journal of Machine Tools and Manufacture*, *37*(6), 801-811.

74. Liljerehn, A. (2016). *Machine tool dynamics: a constrained state-space substructuring approach*. Department of Applied Mechanics, Chalmers University of Technology.

75. Klocke, F., König, W., & Gerschwiler, K. (1996). Advanced machining of titanium-and nickel-based alloys. In *Advanced manufacturing systems and technology* (pp. 7-21). Springer, Vienna.

76. Astakhov, V. P. (2006). Tribology of metal cutting.

77. Davim, J. P. (Ed.). (2012). *Tribology in manufacturing technology*. Springer Science & Business Media.

78. Larsson, S. G. (2014). The cutting process–A tribological nightmare. Technical Report, Seco Corp., Bern, Switzerland.

79. Oxley, P. L. B., & Shaw, M. C. (1990). Mechanics of machining: an analytical approach to assessing machinability.

80. Moufki, A., Dudzinski, D., & Le Coz, G. (2015). Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 81(1), 615-626.

81. Zienkiewicz, O. C., Taylor, R. L., & Fox, D. D. (2013). The Finite Element Method for Solid and Structural Mechanics, 7th Elsevier.

82. Stephenson, D. A., & Agapiou, J. S. (2018). *Metal cutting theory and practice*. CRC press.

83. Shi, H. (2018). Metal Cutting Theory. New Perspectives and New Approaches.

84. Mostaghimi, J., Chandra, S., Ghafouri-Azar, R., & Dolatabadi, A. (2003). Modeling thermal spray coating processes: a powerful tool in design and optimization. *Surface and Coatings Technology*, *163*, 1-11.

85. Klocke, F., & Krieg, T. (1999). Coated tools for metal cutting–features and applications. *CIRP Annals*, 48(2), 515-525.

86. Yen, Y. C., Söhner, J., Lilly, B., & Altan, T. (2004). Estimation of tool wear

in orthogonal cutting using the finite element analysis. *Journal of materials processing technology*, 146(1), 82-91.

87. Cotterell, M., & Byrne, G. (2008). Characterisation of chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V. *CIRP Journal of Manufacturing Science and Technology*, *1*(2), 81-85.

88. Сторожев, М. В., & Попов, Е. А. (1971). Теория обработки металлов давлением.

89. Зорев, Н. Н. (1956). Вопросы механики процесса резания металлов.

90. Дж, А. И., & Браун, Р. Х. (1977). Обработка металлов резанием. Пер. с англ. ВА Пастунова.

91. Гольдшмидт, М. Г. (2001). Деформации и напряжения при резании металлов. *Томск: STT*, 180.

92. Zhang, Y. C., Mabrouki, T., Nelias, D., & Gong, Y. D. (2011). Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. *Finite elements in analysis and design*, 47(7), 850-863.

93. Астахов, В. П. (2016). Принцип наименьшей энергии пластической деформации при разрушении как основа понимания и оптимизации обработки металлов резанием. Известия Тульского государственного университета. Технические науки, (8-1), 141-153.

94. Johnson, G. R. (1983). A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. *Proc. 7th Inf. Sympo. Ballistics*, 541-547.

95. Zerilli, F. J., & Armstrong, R. W. (1987). Dislocation-mechanics-based constitutive relations for material dynamics calculations. *Journal of applied physics*, *61*(5), 1816-1825.

96. Steinberg, D. J., & Lund, C. M. (1989). A constitutive model for strain rates from 10–4 to 106 s–. *Journal of applied physics*, 65(4), 1528-1533.

97. Follansbee, P. S., & Kocks, U. F. (1988). A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. *Acta Metallurgica*, *36*(1), 81-93.

98. Zhang, Y., Outeiro, J. C., & Mabrouki, T. (2015). On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting. *Procedia Cirp*, *31*, 112-117.

99. Coppola, T., Iob, F., & Campanelli, F. (2014). Critical review of ductile fracture criteria for steels. *Procedia materials science*, *3*, 1548-1553.

100. Gyliene, V., & Ostasevicius, V. (2011, May). Cowper-Symonds material deformation law application in material cutting process using LS-DYNA FE code:

turning and milling. In LS-DYNA® 8th European User's conference (pp. 1-12).

101. DEFORM V11.0 (PC) Documentation Table of Contents 1. Introduction to DEFORM.

102. Stupnytskyy, V., & Hrytsay, I. (2019, September). Computer-aided conception for planning and researching of the functional-oriented manufacturing process. In *Grabchenko's International Conference on Advanced Manufacturing Processes* (pp. 309-320). Springer, Cham.

103. Ern, A., & Guermond, J. L. (2004). *Theory and practice of finite elements* (Vol. 159, pp. xiv-524). New York: Springer.

104. Nielsen, C. V., Zhang, W., Alves, L. M., Bay, N., & Martins, P. A. F. (2013). Coupled finite element flow formulation. In *Modeling of Thermo-Electro-Mechanical Manufacturing Processes* (pp. 11-36). Springer, London.

105. Корячко, В. П., Курейчик, В. М., & Норенков, И. П. (1987). Теоретические основы САПР.

106. Ståhle, P., Spagnoli, A., & Terzano, M. (2017). On the fracture processes of cutting. *Procedia Structural Integrity*, *3*, 468-476.

107. Simone, A., Wells, G. N., & Sluys, L. J. (2003). From continuous to discontinuous failure in a gradient-enhanced continuum damage model. *Computer Methods in Applied Mechanics and Engineering*, *192*(41-42), 4581-4607.

108. Stupnytskyy, V., Hrytsay, I., & Xianning, S. (2020, September). Finite Element Analysis of Thermal State and Deflected Mode During Titanium Alloys Machining. In *Grabchenko's International Conference on Advanced Manufacturing Processes* (pp. 629-639). Springer, Cham.

109. Gegg, B. C., Suh, C. S., & Luo, A. C. (2011). *Machine tool vibrations and cutting dynamics*. Springer Science & Business Media.

110. Жарков, И. Г. (1986). Вибрации при обработке лезвийным инструментом. Л.: Машиностроение, 184.

111. Nikitas, P., & Pappa-Louisi, A. (2000). Comments on the two-dimensional smoothing of data. *Analytica Chimica Acta*, 415(1-2), 117-125.

112. Luo, J., Ying, K., He, P., & Bai, J. (2005). Properties of Savitzky–Golay digital differentiators. *Digital Signal Processing*, 15(2), 122-136.

113. Ozugwu, O., & Wang, M. (1997). Titanium alloys and their machinability. J. Mater. Proc. Tech, 68, 262-274.

114. Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016). Investigations on surface roughness measurement in minimum quantity lubrication turning of titanium alloys using response surface methodology and Box–Cox transformation. *Journal for Manufacturing Science and Production*, *16*(2), 75-88.

115. Ping, Z., Youqiang, W., & Wenhui, L. (2018). Finite element analysis of

TC17 Ti alloy under high-speed cutting based on its friction model of deformation zone. *The International Journal of Advanced Manufacturing Technology*, *96*(1), 935-946.

116. Iqbal, S. A., Mativenga, P. T., & Sheikh, M. A. (2009). A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds. *The International Journal of Advanced Manufacturing Technology*, *42*(1), 30-40.

117. Stupnytskyy, V. (2012). Analysis and selection of the criterion of local destruction during the simulation cutting process with deform 2D. *Bull. "Lviv Polytech." Natl. Univ. "Optim. Prod. Process. Tech. Control Mech. Eng. Instr*, 729, 107-115.

118. Pereira, R. B. D., Lauro, C. H., & Brandão, L. C. (2019). Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. *The International Journal of Advanced Manufacturing Technology*, *101*(9), 2191-2203.

119. Pramanik, A., & Littlefair, G. (2016). Wire EDM mechanism of MMCs with the variation of reinforced particle size. *Materials and Manufacturing Processes*, *31*(13), 1700-1708.

120. Obikawa, T., & Usui, E. (1996). Computational machining of titanium alloy—finite element modeling and a few results.

121. Rahman, M., Wang, Z. G., & Wong, Y. S. (2006). A review on high-speed machining of titanium alloys. *JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing*, 49(1), 11-20.

122. Chen, G., Ren, C., Yang, X., Jin, X., & Guo, T. (2011). Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. *The International Journal of Advanced Manufacturing Technology*, *56*(9), 1027-1038.

123. Ступницький, В. В. (2016). Математична модель зносостійкості функціональних поверхонь виробу з врахуванням технологічних чинників. Вісник Національного університету Львівська політехніка. Динаміка, міцність та проектування машин і приладів, (838), 100-108.

124. Tamizharasan, T., & Kumar, S. (2012). Optimization of cutting insert geometry using DEFORM-3 D: numerical simulation and experimental validation. *International Journal of Simulation Modelling*, *11*(2), 65-76.

125. Usui, E., Shirakashi, T., & Kitagawa, T. (1984). Analytical prediction of cutting tool wear. *Wear*, *100*(1-3), 129-151.

126. Archard, J. (1953). Contact and rubbing of flat surfaces. *Journal of applied physics*, 24(8), 981-988.

127. Suslov, A. G. (1990). To the problem of friction and wear of

machinery. Journal of Friction and Wear, 5, 801-807.

128. Blau, P. J. (2013). Amontons' laws of friction. *Encyclopedia of Tribology*. *Springer, Boston*, 10, 978-0.

129. Hartung, P. D., Kramer, B. M., & Von Turkovich, B. F. (1982). Tool wear in titanium machining. *CIRP Annals*, *31*(1), 75-80.

130. Kisel, A. G., Makashin, D. S., Averkov, K. V., & Razhkovskii, A. A. (2018). Effectiveness and physical characteristics of machining fluid. *Russian Engineering Research*, *38*(7), 508-512.

131. Evdokimov, D. V., & Oleynik, M. A. (2020). Research of the friction coefficient of titanium and instrumental alloys. Dry and boundary friction. *Izvestiya of Samara Scientific Center of the Russian Academy of Sciences*, 22(1), 43-46.

132. Su, Y., Li, L., Wang, G., & Zhong, X. (2018). Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool. *Journal of Manufacturing Processes*, *34*, 706-712.

133. Da Silva, R. B., Vieira, J. M., Cardoso, R. N., Carvalho, H. C., Costa, E. S., Machado, A. R., & De Ávila, R. F. (2011). Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. *Wear*, *271*(9-10), 2459-2465.

134. Hong, S. Y., Markus, I., & Jeong, W. C. (2001). New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. *International journal of machine tools and manufacture*, *41*(15), 2245-2260.

135. Cheng, W., & Outeiro, J. C. (2022). Modelling orthogonal cutting of Ti-6Al-4 V titanium alloy using a constitutive model considering the state of stress. *The International Journal of Advanced Manufacturing Technology*, *119*(7), 4329-4347.

136. Sima, M., & Özel, T. (2010). Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. *International Journal of Machine Tools and Manufacture*, *50*(11), 943-960.

137. Yan, D., Wu, T., Liu, Y., & Gao, Y. (2017, October). An efficient sparsedense matrix multiplication on a multicore system. In 2017 IEEE 17th International Conference on Communication Technology (ICCT) (pp. 1880-1883). IEEE.

138. Binder, M., Klocke, F., & Lung, D. (2015). Tool wear simulation of complex shaped coated cutting tools. *Wear*, *330*, 600-607.

139. Alleyne, D., & Cawley, P. (1991). A two-dimensional Fourier transform method for the measurement of propagating multimode signals. *The Journal of the Acoustical Society of America*, 89(3), 1159-1168.
додатки

Додаток А.

Код для двохвимірної фильтрації даних силового та термодинамічного

розрахунку параметрів для DEFORM 2D

Реалізований у інтерпретованій об'єктно-орієнтованій мові програмування Python 3.10

```
1 def sgolay2d ( z, window_size, order, derivative=None):
```

```
.....
 2
       .....
 3
 4
       # кількість членів у поліноміальному виразі
 5
       n_{terms} = (order + 1) * (order + 2) / 2.0
 6
 7
       if window_size \% 2 == 0:
 8
           raise ValueError('розмірність повинна бути непарною')
9
10
       if window_size**2 < n_terms:
11
           raise ValueError('розмірність виразу є завеликою')
12
13
       half_size = window_size // 2
14
15
       # поліноміальна експонента виду:
       \# p(x,y) = a0 + a1^*x + a2^*y + a3^*x^2 + a4^*y^2 + a5^*x^*y + \dots
16
17
       # цей рядок дає список із кортежів, що складаються з двох елементів. Кожен кортеж
   містить
18
       # експоненти k-го члена. Перший елемент кортежу для х
19
       # другий елемент для у.
20
       # Для. exps = [(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...]
21
       exps = [(k-n, n) for k in range(order+1) for n in range(k+1)]
22
23
       # координати точок
24
       ind = np.arange(-half_size, half_size+1, dtype=np.float64)
```

```
25
       dx = np.repeat( ind, window_size )
26
       dy = np.tile( ind, [window_size, 1]).reshape(window_size**2, )
27
       # будуємо матрицю системи рівнянь
28
29
       A = np.empty((window_size^{**2}, len(exps)))
30
       for i, exp in enumerate( exps ):
31
           A[:,i] = (dx^{**}exp[0]) * (dy^{**}exp[1])
32
33
       # заповнюємо вхідний масив відповідними значеннями на чотирьох межах
34
       new_shape = z.shape[0] + 2*half_size, z.shape[1] + 2*half_size
35
       Z = np.zeros((new_shape))
36
       # верхня група
37
       band = z[0, :]
38
       Z[:half_size, half_size] = band - np.abs(np.flipud(z[1:half_size+1, :]) - band)
39
       # нижня група
40
       band = z[-1, :]
41
       Z[-half_size:, half_size:-half_size] = band + np.abs(np.flipud(z[-half_size-1:-1,:]) - band)
42
       # ліва група
43
       band = np.tile(z[:,0].reshape(-1,1), [1,half_size])
44
       Z[half_size:-half_size] = band - np.abs(np.fliplr(z[:, 1:half_size+1]) - band)
45
       # права група
46
       band = np.tile(z[:,-1].reshape(-1,1), [1,half_size])
47
       Z[half_size:-half_size, -half_size:] = band + np.abs(np.fliplr(z[:, -half_size-1:-1]) - band)
48
       # центральна група
       Z[half_size:-half_size, half_size:-half_size] = z
49
50
51
       # верхній лівий кут
52
       band = z[0,0]
53
       Z[:half_size,:half_size] = band - np.abs(np.flipud(np.fliplr(z[1:half_size+1,1:half_size+1])) -
   band)
54
       # нижній пракий кут
55
       band = z[-1, -1]
56
       Z[-half_size:,-half_size:] = band + np.abs( np.flipud(np.fliplr(z[-half_size-1:-1,-half_size-1:-
    1])) - band)
57
58
       # верхній правий кут
59
       band = Z[half_size,-half_size:]
```

217

60 Z[:half_size,-half_size:] = band - np.abs(np.flipud(Z[half_size+1:2*half_size+1,-half_size:]) - band)

```
61 # нижній лівий кут
```

- 62 band = Z[-half_size:,half_size].reshape(-1,1)
- 63 Z[-half_size:,:half_size] = band np.abs(np.fliplr(Z[-half_size:, half_size+1:2*half_size+1]) band)

```
64
```

```
# вирішити систему та перетворити
65
       if derivative == None:
66
67
           m = np.linalg.pinv(A)[0].reshape((window_size, -1))
           return scipy.signal.fftconvolve(Z, m, mode='valid')
68
       elif derivative == 'col':
69
70
           c = np.linalg.pinv(A)[1].reshape((window_size, -1))
71
           return scipy.signal.fftconvolve(Z, -c, mode='valid')
       elif derivative == 'row':
72
73
           r = np.linalg.pinv(A)[2].reshape((window_size, -1))
74
           return scipy.signal.fftconvolve(Z, -r, mode='valid')
75
       elif derivative == 'both':
76
           c = np.linalg.pinv(A)[1].reshape((window_size, -1))
           r = np.linalg.pinv(A)[2].reshape((window_size, -1))
77
78
           return scipy.signal.fftconvolve(Z, -r, mode='valid'), scipy.signal.fftconvolve(Z, -c,
   mode='valid')
```

Додаток Б.

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3		V=150 м/хв			V= 200 м/хв			
Time (sec)	Shear angle	Chip compr. ratio	Time (sec)	Shear angle	Chip compr. ratio	Time (sec)	Shear angle	Chip compr. ratio	Time (sec)	Shear angle	Chip compr. ratio
0	63.52	3.04	0	62.95		0	60.96	2.79	0	61.55	2.84
0.000001	64.16	3.11	0.000001	63.58	3.04	0.000001	61.57	2.85	0	62.16	2.90
0.000006	64.55	3.15	0.000003	63.96	3.08	0.000002	61.90	2.88	0.000001	62.52	2.93
0.000011	64.84	3.19	0.000005	64.24	3.12	0.000003	62.12	2.90	0.000003	62.74	2.96
0.000016	65.00	3.21	0.000008	64.39	3.13	0.000004	62.23	2.91	0.000004	62.85	2.97
0.000021	65.10	3.22	0.000011	64.49	3.15	0.000006	62.26	2.91	0.000006	62.88	2.97
0.000025	65.16	3.23	0.000013	64.56	3.15	0.000008	62.20	2.90	0.000006	62.86	2.97
0.000028	65.31	3.25	0.000014	64.68	3.17	0.00001	62.11	2.89	0.000008	62.88	2.97
0.000036	65.51	3.28	0.000018	64.83	3.19	0.000013	62.05	2.89	0.00001	62.92	2.97
0.000044	65.76	3.31	0.000022	65.01	3.21	0.000015	62.02	2.89	0.000012	62.95	2.98
0.000052	66.05	3.35	0.000026	65.23	3.24	0.000018	62.02	2.89	0.000014	63.00	2.98
0.00006	66.37	3.40	0.00003	65.47	3.27	0.00002	62.04	2.89	0.000016	63.04	2.99
0.000066	66.68	3.45	0.000033	65.71	3.30	0.000023	62.06	2.89	0.000018	63.06	2.99
0.000075	66.92	3.48	0.000038	65.86	3.32	0.000026	62.08	2.89	0.00002	63.00	2.98
0.000083	67.08	3.51	0.000042	65.92	3.33	0.000029	62.09	2.89	0.000022	62.86	2.97
0.000092	67.16	3.52	0.000046	65.89	3.33	0.000032	62.11	2.89	0.000025	62.65	2.95
0.000102	67.18	3.52	0.000051	65.78	3.31	0.000035	62.13	2.90	0.000027	62.37	2.92

Результати моделювання коефіцієнту усадки стружки від швидкості різання

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.000112	67.14	3.52	0.000054	65.60	3.29	0.000038	62.05	2.89	0.00003	62.03	2.89
0.000118	67.07	3.51	0.000059	65.43	3.27	0.000044	61.90	2.87	0.000032	61.66	2.85
0.000128	66.99	3.49	0.000066	65.26	3.24	0.000044	61.73	2.86	0.000036	61.30	2.82
0.000129	66.90	3.48	0.000072	65.08	3.22	0.000046	61.58	2.85	0.000039	60.96	2.79
0.000139	66.79	3.46	0.000079	64.91	3.20	0.000048	61.43	2.83	0.000043	60.61	2.77
0.000142	66.65	3.44	0.000087	64.71	3.17	0.000053	61.30	2.82	0.000047	60.23	2.74
0.000152	66.48	3.41	0.000089	64.48	3.15	0.000058	61.19	2.81	0.000052	59.83	2.71
0.000161	66.29	3.39	0.000097	64.23	3.11	0.000063	61.12	2.81	0.000056	59.38	2.67
0.000172	66.05	3.35	0.000097	63.93	3.08	0.000069	61.07	2.80	0.000061	58.88	2.64
0.000177	65.78	3.31	0.000105	63.59	3.04	0.000075	61.02	2.80	0.000061	58.28	2.60
0.000187	65.46	3.27	0.000106	63.20	3.00	0.000079	60.94	2.79	0.000066	57.55	2.56
0.000194	65.12	3.22	0.000116	62.76	2.96	0.000085	60.84	2.78	0.000068	56.74	2.51
0.000204	64.75	3.18	0.00012	62.30	2.91	0.000086	60.66	2.77	0.000072	55.82	2.47
0.000212	64.34	3.13	0.00012	61.80	2.87	0.000092	60.40	2.75	0.000074	54.72	2.42
0.000222	63.86	3.07	0.000128	61.21	2.82	0.000094	60.05	2.72	0.000077	53.43	2.37
0.000232	63.44	3.03	0.000131	60.54	2.76	0.000094	59.60	2.69	0.00008	51.91	2.32
0.000237	63.06	2.99	0.000139	59.77	2.70	0.000099	59.06	2.65	0.000084	50.18	2.27
0.000247	62.70	2.95	0.000141	58.90	2.64	0.000102	58.42	2.61	0.000087	48.64	2.24
0.000257	62.35	2.92	0.000151	57.99	2.58	0.000108	57.71	2.57	0.000087	47.29	2.22
0.000267	61.99	2.88	0.000151	57.03	2.53	0.000108	56.91	2.52	0.00009	46.15	2.20
0.000277	61.60	2.85	0.000161	55.99	2.48	0.000111	56.11	2.48	0.000095	45.22	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.000279	61.20	2.81	0.000164	54.87	2.43	0.000111	55.27	2.44	0.000099	44.08	2.19
0.000289	60.77	2.78	0.000173	53.63	2.38	0.000117	54.40	2.41	0.000103	43.07	2.18
0.000299	60.29	2.74	0.000179	52.27	2.33	0.000121	53.48	2.37	0.000107	42.22	2.18
0.000299	59.80	2.70	0.000187	50.75	2.29	0.000127	52.54	2.34	0.000111	41.48	2.18
0.000301	59.29	2.67	0.000195	49.48	2.25	0.000131	51.46	2.30	0.000113	40.83	2.19
0.000301	58.76	2.63	0.000205	48.43	2.23	0.000137	50.25	2.27	0.000117	40.26	2.19
0.000311	58.19	2.60	0.000212	47.24	2.22	0.000143	48.90	2.24	0.000122	39.78	2.19
0.000321	57.58	2.56	0.000222	45.91	2.20	0.000143	47.43	2.22	0.000124	39.36	2.20
0.000325	56.94	2.53	0.000231	44.70	2.19	0.000149	46.09	2.20	0.000128	39.00	2.20
0.000335	56.24	2.49	0.000239	43.62	2.18	0.000156	44.89	2.19	0.000133	38.68	2.20
0.000345	55.47	2.45	0.000239	42.67	2.18	0.000162	43.79	2.18	0.000135	38.41	2.21
0.000355	54.65	2.42	0.000245	41.85	2.18	0.000167	42.79	2.18	0.000139	38.18	2.21
0.000356	53.74	2.38	0.000245	41.14	2.19	0.00017	41.90	2.18	0.000143	37.98	2.21
0.000366	52.73	2.34	0.000251	40.52	2.19	0.000175	41.12	2.19	0.000147	37.82	2.22
0.000376	51.61	2.31	0.00026	39.98	2.19	0.000175	40.45	2.19	0.000151	37.69	2.22
0.000386	50.34	2.27	0.000268	39.53	2.20	0.00018	39.85	2.19	0.000156	37.59	2.22
0.000387	48.90	2.24	0.000272	39.14	2.20	0.000185	39.32	2.20	0.000156	37.50	2.22
0.000397	47.27	2.22	0.000279	38.81	2.20	0.000185	38.89	2.20	0.000161	37.42	2.22
0.000407	45.83	2.20	0.000287	38.50	2.21	0.00019	38.51	2.21	0.000165	37.35	2.22
0.000417	44.55	2.19	0.000288	38.21	2.21	0.00019	38.18	2.21	0.000169	37.29	2.22
0.000421	43.40	2.18	0.000296	37.94	2.21	0.000196	37.89	2.21	0.000173	37.25	2.22

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.000431	42.36	2.18	0.000304	37.69	2.22	0.000196	37.65	2.22	0.000176	37.23	2.22
0.000441	41.43	2.18	0.000312	37.49	2.22	0.000198	37.43	2.22	0.00018	37.22	2.22
0.000451	40.59	2.19	0.00032	37.33	2.22	0.000203	37.24	2.22	0.000184	37.23	2.22
0.000458	39.85	2.19	0.00032	37.21	2.22	0.000207	37.08	2.23	0.000188	37.24	2.22
0.000468	39.19	2.20	0.000329	37.11	2.23	0.000212	36.94	2.23	0.000188	37.26	2.22
0.000478	38.59	2.21	0.000336	37.04	2.23	0.000217	36.83	2.23	0.000192	37.28	2.22
0.000488	38.05	2.21	0.000344	36.98	2.23	0.000222	36.75	2.23	0.000196	37.30	2.22
0.000496	37.55	2.22	0.000352	36.94	2.23	0.000228	36.69	2.23	0.0002	37.33	2.22
0.000506	37.09	2.23	0.000361	36.92	2.23	0.000228	36.65	2.23	0.0002	37.37	2.22
0.000516	36.67	2.23	0.000368	36.91	2.23	0.000233	36.63	2.23	0.000204	37.40	2.22
0.000526	36.30	2.24	0.000375	36.91	2.23	0.000238	36.60	2.23	0.000208	37.43	2.22
0.000536	35.99	2.25	0.000382	36.90	2.23	0.000242	36.58	2.23	0.000211	37.45	2.22
0.00054	35.73	2.25	0.000386	36.89	2.23	0.000247	36.58	2.23	0.000214	37.47	2.22
0.00055	35.53	2.26	0.000386	36.89	2.23	0.000252	36.58	2.23	0.000214	37.49	2.22
0.00055	35.40	2.26	0.000392	36.88	2.23	0.000257	36.58	2.23	0.000217	37.49	2.22
0.00056	35.30	2.26	0.000398	36.87	2.23	0.000263	36.59	2.23	0.00022	37.48	2.22
0.00057	35.22	2.26	0.000404	36.88	2.23	0.000267	36.60	2.23	0.000222	37.47	2.22
0.000577	35.17	2.26	0.00041	36.86	2.23	0.000272	36.60	2.23	0.000226	37.44	2.22
0.000587	35.15	2.26	0.00041	36.85	2.23	0.000277	36.59	2.23	0.000231	37.42	2.22
0.000597	35.16	2.26	0.000418	36.83	2.23	0.000282	36.58	2.23	0.000235	37.42	2.22
0.000607	35.15	2.26	0.000426	36.82	2.23	0.000287	36.58	2.24	0.000239	37.42	2.22

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.000617	35.12	2.26	0.000434	36.80	2.23	0.000292	36.57	2.24	0.000242	37.43	2.22
0.000627	35.06	2.27	0.000441	36.79	2.23	0.000298	36.57	2.24	0.000246	37.42	2.22
0.000637	35.00	2.27	0.000449	36.77	2.23	0.000303	36.58	2.24	0.00025	37.41	2.22
0.000647	34.95	2.27	0.000456	36.74	2.23	0.000308	36.59	2.23	0.000254	37.42	2.22
0.000657	34.91	2.27	0.000462	36.70	2.23	0.000313	36.60	2.23	0.000254	37.43	2.22
0.000667	34.89	2.27	0.000471	36.64	2.23	0.000319	36.61	2.23	0.000259	37.44	2.22
0.000677	34.88	2.27	0.000479	36.58	2.23	0.000324	36.64	2.23	0.000263	37.47	2.22
0.000687	34.90	2.27	0.000487	36.53	2.24	0.000329	36.67	2.23	0.000266	37.50	2.22
0.000697	34.92	2.27	0.000495	36.47	2.24	0.000333	36.71	2.23	0.00027	37.55	2.22
0.000707	34.94	2.27	0.000502	36.42	2.24	0.000339	36.74	2.23	0.000274	37.56	2.22
0.000717	34.98	2.27	0.00051	36.38	2.24	0.000344	36.78	2.23	0.000277	37.56	2.22
0.000727	35.02	2.27	0.000517	36.34	2.24	0.00035	36.82	2.23	0.000281	37.51	2.22
0.000737	35.07	2.27	0.000524	36.31	2.24	0.000356	36.88	2.23	0.000285	37.42	2.22
0.000747	35.11	2.26	0.000531	36.28	2.24	0.000362	36.94	2.23	0.00029	37.34	2.22
0.000757	35.16	2.26	0.000538	36.26	2.24	0.000368	37.02	2.23	0.000294	37.28	2.22
0.000767	35.20	2.26	0.000546	36.24	2.24	0.000373	37.11	2.23	0.000299	37.24	2.22
0.000777	35.23	2.26	0.000554	36.22	2.24	0.000379	37.21	2.22	0.000303	37.21	2.22
0.000787	35.24	2.26	0.000562	36.21	2.24	0.000385	37.32	2.22	0.000303	37.20	2.22
0.000798	35.25	2.26	0.000562	36.19	2.24	0.000391	37.44	2.22	0.000306	37.20	2.22
0.000808	35.25	2.26	0.000571	36.17	2.24	0.000396	37.59	2.22	0.00031	37.22	2.22
0.000818	35.25	2.26	0.000579	36.15	2.24	0.0004	37.76	2.22	0.000315	37.25	2.22

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.000828	35.23	2.26	0.000587	36.12	2.24	0.000405	37.90	2.21	0.000319	37.29	2.22
0.000838	35.21	2.26	0.000596	36.11	2.24	0.00041	38.01	2.21	0.000323	37.33	2.22
0.000848	35.18	2.26	0.000604	36.11	2.24	0.000416	38.09	2.21	0.000327	37.38	2.22
0.000858	35.18	2.26	0.000612	36.11	2.24	0.000423	38.19	2.21	0.000331	37.43	2.22
0.000868	35.19	2.26	0.00062	36.12	2.24	0.00043	38.31	2.21	0.000335	37.50	2.22
0.000878	35.21	2.26	0.000628	36.14	2.24	0.000437	38.46	2.21	0.000339	37.56	2.22
0.000888	35.22	2.26	0.000635	36.17	2.24	0.000443	38.63	2.20	0.000343	37.62	2.22
0.000898	35.23	2.26	0.000643	36.21	2.24	0.000449	38.83	2.20	0.000343	37.68	2.22
0.000908	35.24	2.26	0.000651	36.25	2.24	0.000455	39.05	2.20	0.000347	37.75	2.22
0.000918	35.25	2.26	0.000659	36.30	2.24	0.000461	39.22	2.20	0.000352	37.82	2.22
0.000928	35.26	2.26	0.000667	36.37	2.24	0.000466	39.37	2.20	0.000352	37.91	2.21
0.000938	35.27	2.26	0.000676	36.44	2.24	0.000472	39.48	2.20	0.000357	38.02	2.21
0.000948	35.28	2.26	0.000684	36.52	2.24	0.000472	39.62	2.19	0.000362	38.14	2.21
0.000958	35.29	2.26	0.000693	36.62	2.23	0.000478	39.74	2.19	0.000367	38.28	2.21
0.000968	35.31	2.26	0.000701	36.72	2.23	0.000483	39.83	2.19	0.000372	38.43	2.21
0.000968	35.32	2.26	0.000709	36.84	2.23	0.000489	39.89	2.19	0.000372	38.56	2.21
0.000978	35.33	2.26	0.000717	36.96	2.23	0.000494	39.91	2.19	0.000376	38.68	2.20
0.000988	35.35	2.26	0.000724	37.10	2.23	0.0005	39.90	2.19	0.00038	38.78	2.20
0.000998	35.37	2.26	0.000732	37.25	2.22	0.000505	39.88	2.19	0.000384	38.88	2.20
0.001008	35.39	2.26	0.000739	37.41	2.22	0.000509	39.84	2.19	0.000388	38.96	2.20
0.001018	35.39	2.26	0.000746	37.59	2.22	0.000515	39.81	2.19	0.000392	39.05	2.20

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.001028	35.39	2.26	0.000754	37.68	2.22	0.000519	39.79	2.19	0.000395	39.14	2.20
0.001038	35.37	2.26	0.000761	37.70	2.22	0.000523	39.76	2.19	0.000398	39.23	2.20
0.001048	35.36	2.26	0.000771	37.63	2.22	0.000527	39.74	2.19	0.000401	39.32	2.20
0.001048	35.36	2.26	0.00078	37.58	2.22	0.00053	39.71	2.19	0.000405	39.42	2.20
0.001058	35.36	2.26	0.000788	37.55	2.22	0.000534	39.69	2.19	0.000408	39.51	2.20
0.001069	35.36	2.26	0.000795	37.53	2.22	0.000538	39.67	2.19	0.000412	39.59	2.20
0.001079	35.37	2.26	0.000802	37.42	2.22	0.000542	39.65	2.19	0.000415	39.68	2.19
0.001089	35.38	2.26	0.000808	37.22	2.22	0.000546	39.63	2.19	0.000418	39.76	2.19
0.001099	35.40	2.26	0.000816	36.92	2.23	0.00055	39.62	2.19	0.000422	39.83	2.19
0.001109	35.41	2.26	0.000823	36.63	2.23	0.000554	39.62	2.19	0.000425	39.91	2.19
0.001119	35.42	2.26	0.00083	36.38	2.24	0.000556	39.62	2.19	0.000428	39.98	2.19
0.001129	35.44	2.26	0.00083	36.17	2.24	0.000558	39.62	2.19	0.000431	40.05	2.19
0.001139	35.46	2.26	0.00084	35.98	2.25	0.000561	39.63	2.19	0.000434	40.13	2.19
0.001149	35.48	2.26	0.000849	35.79	2.25	0.000563	39.65	2.19	0.000436	40.20	2.19
0.001159	35.51	2.26	0.000858	35.61	2.25	0.000565	39.66	2.19	0.000439	40.27	2.19
0.001169	35.54	2.26	0.000867	35.43	2.26	0.000566	39.69	2.19	0.000441	40.34	2.19
0.001179	35.57	2.25	0.000876	35.26	2.26	0.00057	39.71	2.19	0.000443	40.41	2.19
0.001189	35.60	2.25	0.000882	35.10	2.27	0.000574	39.74	2.19	0.000446	40.48	2.19
0.001199	35.63	2.25	0.000887	34.91	2.27	0.000578	39.77	2.19	0.000449	40.56	2.19
0.001209	35.67	2.25	0.000892	34.77	2.27	0.000583	39.81	2.19	0.000451	40.63	2.19
0.001219	35.72	2.25	0.000899	34.67	2.28	0.000587	39.85	2.19	0.000454	40.69	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.001229	35.76	2.25	0.000906	34.63	2.28	0.00059	39.90	2.19	0.000456	40.76	2.19
0.001239	35.81	2.25	0.000912	34.61	2.28	0.000594	39.96	2.19	0.000459	40.83	2.19
0.001249	35.85	2.25	0.00092	34.62	2.28	0.000598	40.02	2.19	0.000463	40.90	2.19
0.001259	35.88	2.25	0.000928	34.64	2.28	0.000602	40.08	2.19	0.000467	40.96	2.19
0.001269	35.91	2.25	0.000936	34.68	2.28	0.000606	40.14	2.19	0.000471	41.02	2.19
0.001279	35.94	2.25	0.000942	34.72	2.27	0.00061	40.20	2.19	0.000474	41.09	2.19
0.001289	35.97	2.25	0.000942	34.75	2.27	0.000614	40.26	2.19	0.000477	41.16	2.19
0.001299	35.99	2.25	0.000949	34.79	2.27	0.000617	40.32	2.19	0.00048	41.22	2.18
0.001309	36.01	2.25	0.000954	34.85	2.27	0.00062	40.39	2.19	0.000483	41.28	2.18
0.001319	36.03	2.25	0.00096	34.95	2.27	0.000623	40.46	2.19	0.000487	41.34	2.18
0.00133	36.05	2.24	0.00097	35.04	2.27	0.000626	40.52	2.19	0.00049	41.40	2.18
0.00134	36.07	2.24	0.00098	35.12	2.26	0.00063	40.58	2.19	0.000494	41.45	2.18
0.00135	36.10	2.24	0.00099	35.20	2.26	0.000634	40.64	2.19	0.000497	41.50	2.18
0.00136	36.12	2.24	0.001	35.27	2.26	0.000638	40.70	2.19	0.0005	41.54	2.18
0.00137	36.15	2.24	0.00101	35.32	2.26	0.000643	40.77	2.19	0.000502	41.58	2.18
0.00138	36.19	2.24	0.00102	35.37	2.26	0.000647	40.83	2.19	0.000504	41.62	2.18
0.00139	36.23	2.24	0.00103	35.41	2.26	0.000652	40.90	2.19	0.000506	41.66	2.18
0.0014	36.24	2.24	0.00104	35.44	2.26	0.000657	40.97	2.19	0.00051	41.70	2.18
0.00141	36.20	2.24	0.00105	35.46	2.26	0.000661	41.04	2.19	0.000513	41.74	2.18
0.00142	36.12	2.24	0.00106	35.47	2.26	0.000665	41.11	2.19	0.000516	41.77	2.18
0.00143	36.06	2.24	0.00107	35.47	2.26	0.000669	41.19	2.19	0.000519	41.81	2.18

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.00144	36.01	2.25	0.00107	35.46	2.26	0.000674	41.27	2.18	0.000522	41.86	2.18
0.00145	35.98	2.25	0.00107	35.46	2.26	0.000678	41.35	2.18	0.000525	41.91	2.18
0.00146	35.95	2.25	0.00108	35.46	2.26	0.000683	41.42	2.18	0.000527	41.96	2.18
0.00147	35.94	2.25	0.001089	35.46	2.26	0.000688	41.48	2.18	0.000528	42.01	2.18
0.00148	35.93	2.25	0.001097	35.47	2.26	0.000692	41.55	2.18	0.000531	42.06	2.18
0.00149	35.92	2.25	0.001106	35.48	2.26	0.000697	41.61	2.18	0.000535	42.10	2.18
0.0015	35.92	2.25	0.001115	35.51	2.26	0.000701	41.68	2.18	0.000538	42.15	2.18
0.00151	35.91	2.25	0.001124	35.54	2.26	0.000705	41.74	2.18	0.000541	42.20	2.18
0.00152	35.91	2.25	0.001132	35.56	2.26	0.00071	41.80	2.18	0.000544	42.25	2.18
0.00153	35.92	2.25	0.00114	35.59	2.25	0.000713	41.86	2.18	0.000544	42.31	2.18
0.00154	35.94	2.25	0.001148	35.61	2.25	0.000717	41.92	2.18	0.000548	42.37	2.18
0.00155	35.98	2.25	0.001155	35.64	2.25	0.000719	41.98	2.18	0.000552	42.42	2.18
0.00155	36.03	2.25	0.001161	35.67	2.25	0.000722	42.04	2.18	0.000555	42.47	2.18
0.00156	36.09	2.24	0.001167	35.70	2.25	0.000725	42.09	2.18	0.000558	42.52	2.18
0.00157	36.15	2.24	0.001173	35.73	2.25	0.000729	42.14	2.18	0.000561	42.57	2.18
0.001581	36.21	2.24	0.001178	35.76	2.25	0.000732	42.20	2.18	0.000564	42.63	2.18
0.001591	36.28	2.24	0.001187	35.79	2.25	0.000736	42.26	2.18	0.000567	42.69	2.18
0.001601	36.35	2.24	0.001196	35.81	2.25	0.000739	42.33	2.18	0.00057	42.75	2.18
0.001611	36.43	2.24	0.001205	35.83	2.25	0.000742	42.41	2.18	0.000573	42.82	2.18
0.001621	36.52	2.24	0.001213	35.86	2.25	0.000745	42.50	2.18	0.000576	42.88	2.18
0.001621	36.61	2.23	0.001222	35.87	2.25	0.000748	42.59	2.18	0.000579	42.93	2.18

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.001631	36.60	2.23	0.00123	35.89	2.25	0.000752	42.69	2.18	0.000583	42.97	2.18
0.001641	36.49	2.24	0.001237	35.91	2.25	0.000755	42.78	2.18	0.000586	43.01	2.18
0.001651	36.31	2.24	0.001244	35.94	2.25	0.000758	42.87	2.18	0.000589	43.04	2.18
0.001661	36.07	2.24	0.001253	35.97	2.25	0.000761	42.94	2.18	0.000589	43.07	2.18
0.001671	35.81	2.25	0.001263	35.99	2.25	0.000765	43.01	2.18	0.000591	43.10	2.18
0.001681	35.58	2.25	0.001271	36.03	2.25	0.000768	43.07	2.18	0.000594	43.13	2.18
0.001691	35.39	2.26	0.00128	36.07	2.24	0.000772	43.13	2.18	0.000598	43.16	2.18
0.001701	35.24	2.26	0.00129	36.12	2.24	0.000775	43.19	2.18	0.000601	43.20	2.18
0.001711	35.11	2.27	0.0013	36.17	2.24	0.000779	43.25	2.18	0.000605	43.25	2.18
0.001721	35.00	2.27	0.001309	36.24	2.24	0.000782	43.32	2.18	0.000608	43.30	2.18
0.001731	34.90	2.27	0.001318	36.32	2.24	0.000786	43.40	2.18	0.000608	43.37	2.18
0.001741	34.84	2.27	0.001327	36.39	2.24	0.00079	43.49	2.18	0.000612	43.44	2.18
0.001751	34.80	2.27	0.001337	36.45	2.24	0.000791	43.58	2.18	0.000615	43.52	2.18
0.001761	34.76	2.27	0.001346	36.50	2.24	0.000795	43.66	2.18	0.000616	43.61	2.18
0.001771	34.72	2.27	0.001356	36.56	2.24	0.000799	43.75	2.18	0.000618	43.70	2.18
0.001781	34.67	2.28	0.001366	36.62	2.23	0.000804	43.85	2.19	0.000621	43.79	2.18
0.001791	34.61	2.28	0.001375	36.69	2.23	0.000808	43.94	2.19	0.000623	43.88	2.19
0.001801	34.55	2.28	0.001375	36.76	2.23	0.000812	44.04	2.19	0.000626	43.96	2.19
0.001811	34.47	2.28	0.001384	36.85	2.23	0.000817	44.13	2.19	0.000629	44.05	2.19
0.001821	34.38	2.28	0.001384	36.94	2.23	0.000821	44.23	2.19	0.000631	44.14	2.19
0.001831	34.26	2.29	0.001393	37.05	2.23	0.000824	44.31	2.19	0.000634	44.24	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.001841	34.11	2.29	0.001402	37.17	2.22	0.000828	44.39	2.19	0.000637	44.34	2.19
0.001841	33.98	2.29	0.001412	37.30	2.22	0.000832	44.46	2.19	0.00064	44.44	2.19
0.001852	33.90	2.30	0.001422	37.45	2.22	0.000835	44.52	2.19	0.00064	44.54	2.19
0.001862	33.84	2.30	0.001429	37.62	2.22	0.000839	44.57	2.19	0.000643	44.63	2.19
0.001872	33.82	2.30	0.001434	37.81	2.22	0.000843	44.62	2.19	0.000645	44.71	2.19
0.001882	33.83	2.30	0.00144	37.99	2.21	0.000846	44.67	2.19	0.000648	44.78	2.19
0.001892	33.87	2.30	0.001446	38.18	2.21	0.000849	44.72	2.19	0.00065	44.84	2.19
0.001902	33.92	2.29	0.001455	38.38	2.21	0.000853	44.78	2.19	0.000652	44.88	2.19
0.001912	33.98	2.29	0.001463	38.56	2.21	0.000856	44.83	2.19	0.000652	44.92	2.19
0.001922	34.06	2.29	0.001472	38.72	2.20	0.00086	44.90	2.19	0.000654	44.95	2.19
0.001932	34.15	2.29	0.001478	38.88	2.20	0.000863	44.97	2.19	0.000656	44.97	2.19
0.001942	34.23	2.29	0.001483	39.03	2.20	0.000867	45.05	2.19	0.000658	44.98	2.19
0.001952	34.31	2.28	0.001488	39.17	2.20	0.000871	45.12	2.19	0.00066	44.99	2.19
0.001962	34.37	2.28	0.001496	39.31	2.20	0.000875	45.19	2.19	0.000662	44.99	2.19
0.001972	34.42	2.28	0.001502	39.44	2.20	0.000878	45.25	2.19	0.000664	44.98	2.19
0.001982	34.46	2.28	0.001504	39.56	2.20	0.000882	45.30	2.19	0.000666	44.98	2.19
0.001992	34.51	2.28	0.001511	39.67	2.19	0.000887	45.33	2.19	0.000669	44.97	2.19
0.002002	34.55	2.28	0.001511	39.79	2.19	0.000892	45.36	2.19	0.000672	44.96	2.19
0.002012	34.60	2.28	0.001513	39.90	2.19	0.000897	45.37	2.19	0.000675	44.95	2.19
0.002022	34.65	2.28	0.001518	40.00	2.19	0.000902	45.39	2.19	0.000678	44.94	2.19
0.002032	34.71	2.27	0.001522	40.11	2.19	0.000906	45.39	2.19	0.000681	44.92	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.002042	34.76	2.27	0.001526	40.20	2.19	0.000911	45.40	2.19	0.000684	44.91	2.19
0.002052	34.82	2.27	0.001532	40.29	2.19	0.000915	45.40	2.19	0.000687	44.91	2.19
0.002062	34.87	2.27	0.001537	40.38	2.19	0.00092	45.41	2.19	0.000687	44.90	2.19
0.002072	34.92	2.27	0.001542	40.46	2.19	0.000924	45.42	2.19	0.000689	44.89	2.19
0.002082	34.97	2.27	0.001548	40.54	2.19	0.000929	45.43	2.19	0.000692	44.88	2.19
0.002092	35.02	2.27	0.001552	40.61	2.19	0.000929	45.45	2.20	0.000696	44.87	2.19
0.002102	35.06	2.27	0.001557	40.68	2.19	0.000934	45.48	2.20	0.0007	44.84	2.19
0.002112	35.11	2.27	0.001561	40.75	2.19	0.000939	45.48	2.20	0.000704	44.81	2.19
0.002123	35.16	2.26	0.001565	40.82	2.19	0.000944	45.48	2.20	0.000708	44.78	2.19
0.002133	35.21	2.26	0.001569	40.88	2.19	0.000949	45.46	2.20	0.000708	44.74	2.19
0.002143	35.26	2.26	0.001573	40.95	2.19	0.000954	45.42	2.19	0.000712	44.69	2.19
0.002153	35.31	2.26	0.001573	41.00	2.19	0.000959	45.37	2.19	0.000716	44.62	2.19
0.002163	35.35	2.26	0.001577	41.06	2.19	0.000959	45.30	2.19	0.000717	44.54	2.19
0.002173	35.39	2.26	0.001578	41.10	2.19	0.000961	45.20	2.19	0.00072	44.45	2.19
0.002183	35.41	2.26	0.001582	41.14	2.19	0.000966	45.08	2.19	0.000724	44.34	2.19
0.002193	35.43	2.26	0.001587	41.17	2.19	0.000972	44.93	2.19	0.000727	44.22	2.19
0.002203	35.45	2.26	0.001592	41.21	2.19	0.000978	44.76	2.19	0.00073	44.08	2.19
0.002213	35.46	2.26	0.001596	41.25	2.18	0.000985	44.57	2.19	0.000732	43.90	2.19
0.002223	35.48	2.26	0.0016	41.30	2.18	0.000986	44.34	2.19	0.000737	43.70	2.18
0.002233	35.48	2.26	0.001604	41.35	2.18	0.000993	44.21	2.19	0.000738	43.45	2.18
0.002243	35.49	2.26	0.001608	41.40	2.18	0.000996	44.17	2.19	0.000741	43.17	2.18

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.002253	35.49	2.26	0.001612	41.45	2.18	0.001003	44.22	2.19	0.000742	42.85	2.18
0.002263	35.49	2.26	0.001615	41.50	2.18	0.00101	44.35	2.19	0.000746	42.60	2.18
0.002273	35.48	2.26	0.00162	41.55	2.18	0.001017	44.57	2.19	0.000749	42.43	2.18
0.002283	35.47	2.26	0.001622	41.61	2.18	0.001017	44.87	2.19	0.000753	42.33	2.18
0.002293	35.47	2.26	0.001627	41.66	2.18	0.001023	45.14	2.19	0.000753	42.31	2.18
0.002303	35.48	2.26	0.001634	41.71	2.18	0.001029	45.36	2.19	0.000756	42.35	2.18
0.002313	35.49	2.26	0.001641	41.76	2.18	0.001035	45.54	2.20	0.000759	42.47	2.18
0.002313	35.51	2.26	0.001647	41.81	2.18	0.001035	45.69	2.20	0.000759	42.65	2.18
0.002323	35.53	2.26	0.001654	41.85	2.18	0.001037	45.81	2.20	0.000759	42.92	2.18
0.002333	35.55	2.26	0.001654	41.90	2.18	0.001039	46.05	2.20	0.000762	43.26	2.18
0.002343	35.58	2.25	0.00166	41.95	2.18	0.001045	46.40	2.20	0.000766	43.69	2.18
0.002353	35.59	2.25	0.001667	42.00	2.18	0.001051	46.71	2.21	0.000769	44.21	2.19
0.002362	35.57	2.25	0.001673	42.05	2.18	0.001057	47.00	2.21	0.000772	44.82	2.19
0.002372	35.53	2.26	0.001679	42.11	2.18	0.001063	47.25	2.22	0.000776	45.38	2.19
0.002382	35.50	2.26	0.001679	42.17	2.18	0.00107	47.48	2.22	0.00078	45.90	2.20
0.002392	35.47	2.26	0.001686	42.23	2.18	0.001076	47.70	2.22	0.00078	46.40	2.20
0.002402	35.45	2.26	0.001691	42.28	2.18	0.001082	47.88	2.22	0.000783	46.87	2.21
0.002412	35.43	2.26	0.001696	42.33	2.18	0.001088	48.02	2.23	0.000788	47.32	2.22
0.002422	35.41	2.26	0.001703	42.38	2.18	0.001095	48.14	2.23	0.000788	47.76	2.22
0.002432	35.41	2.26	0.00171	42.43	2.18	0.001101	48.22	2.23	0.000792	48.17	2.23
0.002442	35.41	2.26	0.001715	42.48	2.18	0.001107	48.28	2.23	0.000797	48.56	2.24

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.002452	35.42	2.26	0.001716	42.54	2.18	0.001112	48.30	2.23	0.000802	48.94	2.24
0.002462	35.44	2.26	0.001722	42.59	2.18	0.001117	48.27	2.23	0.000804	49.32	2.25
0.002472	35.47	2.26	0.00173	42.64	2.18	0.001122	48.20	2.23	0.000804	49.68	2.26
0.002482	35.51	2.26	0.001736	42.70	2.18	0.001128	48.09	2.23	0.000808	50.03	2.27
0.002492	35.56	2.26	0.001742	42.77	2.18	0.001133	47.93	2.23	0.000813	50.37	2.28
0.002502	35.61	2.25	0.001747	42.82	2.18	0.001139	47.73	2.22	0.000817	50.70	2.28
0.002513	35.66	2.25	0.001752	42.88	2.18	0.001142	47.49	2.22	0.000822	51.01	2.29
0.002523	35.73	2.25	0.001758	42.93	2.18	0.001148	47.35	2.22	0.000826	51.32	2.30
0.002533	35.80	2.25	0.001764	42.97	2.18	0.001148	47.33	2.22	0.00083	51.63	2.31
0.002543	35.88	2.25	0.001769	43.02	2.18	0.001153	47.17	2.21	0.000834	51.94	2.32
0.002553	35.95	2.25	0.001774	43.07	2.18	0.001159	46.87	2.21	0.000838	52.24	2.33
0.002563	36.02	2.25	0.001779	43.11	2.18	0.001165	46.44	2.20	0.000842	52.56	2.34
0.002573	36.10	2.24	0.001784	43.15	2.18	0.001165	45.89	2.20	0.000845	52.88	2.35
0.002583	36.06	2.24	0.001788	43.19	2.18	0.001172	45.24	2.19	0.000849	53.21	2.36
0.002593	36.04	2.25	0.001791	43.22	2.18	0.001178	44.65	2.19	0.000852	53.54	2.37
0.002603	36.03	2.25	0.001794	43.24	2.18	0.001184	44.13	2.19	0.000855	53.89	2.39
0.002613	36.03	2.25	0.001795	43.27	2.18	0.001184	43.64	2.18	0.000855	54.26	2.40
0.002623	36.05	2.25	0.001801	43.30	2.18	0.001185	43.15	2.18	0.000857	54.64	2.42
0.002633	36.07	2.24	0.001805	43.32	2.18	0.001191	42.73	2.18	0.00086	54.85	2.42
0.002643	36.12	2.24	0.00181	43.36	2.18	0.001196	42.38	2.18	0.000863	55.06	2.43
0.002653	36.17	2.24	0.001815	43.40	2.18	0.001202	42.08	2.18	0.000866	55.29	2.44

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.002663	36.23	2.24	0.001819	43.45	2.18	0.001208	41.81	2.18	0.000869	55.53	2.45
0.002673	36.31	2.24	0.001822	43.50	2.18	0.001215	41.56	2.18	0.000869	55.79	2.47
0.002683	36.40	2.24	0.001828	43.56	2.18	0.00122	41.33	2.18	0.000872	55.90	2.47
0.002693	36.51	2.24	0.001834	43.60	2.18	0.001225	41.12	2.19	0.000875	55.88	2.47
0.002703	36.60	2.23	0.001838	43.65	2.18	0.00123	40.95	2.19	0.00088	55.68	2.46
0.002703	36.64	2.23	0.001842	43.69	2.18	0.00123	40.83	2.19	0.000886	55.51	2.45
0.002713	36.63	2.23	0.001848	43.73	2.18	0.001235	40.73	2.19	0.000892	55.35	2.45
0.002723	36.58	2.23	0.001854	43.76	2.18	0.001235	40.66	2.19	0.000898	55.21	2.44
0.002733	36.44	2.24	0.001859	43.78	2.18	0.001241	40.61	2.19	0.000903	55.08	2.43
0.002743	36.31	2.24	0.001865	43.82	2.18	0.001241	40.59	2.19	0.000905	54.96	2.43
0.002753	36.19	2.24	0.001871	43.85	2.19	0.001246	40.59	2.19	0.00091	54.84	2.42
0.002763	36.07	2.24	0.001877	43.90	2.19	0.001252	40.59	2.19	0.000915	54.73	2.42
0.002773	35.97	2.25	0.001884	43.96	2.19	0.001257	40.60	2.19	0.00092	54.62	2.41
0.002773	35.88	2.25	0.00189	44.02	2.19	0.001261	40.65	2.19	0.000926	54.51	2.41
0.002784	35.79	2.25	0.001896	44.09	2.19	0.001266	40.73	2.19	0.000931	54.41	2.41
0.002794	35.72	2.25	0.001896	44.16	2.19	0.00127	40.79	2.19	0.000936	54.30	2.40
0.002804	35.66	2.25	0.001902	44.23	2.19	0.001274	40.87	2.19	0.000941	54.18	2.40
0.002814	35.60	2.25	0.001908	44.29	2.19	0.001274	40.96	2.19	0.000947	54.07	2.39
0.002824	35.55	2.26	0.001913	44.35	2.19	0.001279	41.05	2.19	0.000952	53.95	2.39
0.002834	35.51	2.26	0.001918	44.41	2.19	0.001279	41.14	2.19	0.000957	53.81	2.38
0.002844	35.47	2.26	0.001923	44.46	2.19	0.001284	41.24	2.18	0.000957	53.76	2.38

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.002854	35.43	2.26	0.001927	44.51	2.19	0.001289	41.35	2.18	0.000961	53.55	2.37
0.002864	35.41	2.26	0.001932	44.54	2.19	0.001293	41.47	2.18	0.000964	53.21	2.36
0.002874	35.38	2.26	0.001938	44.56	2.19	0.001297	41.57	2.18	0.000967	52.70	2.34
0.002884	35.36	2.26	0.001944	44.59	2.19	0.001297	41.68	2.18	0.000971	52.03	2.32
0.002894	35.35	2.26	0.00195	44.62	2.19	0.001302	41.78	2.18	0.000974	51.48	2.30
0.002904	35.34	2.26	0.001956	44.67	2.19	0.001306	41.90	2.18	0.000979	51.06	2.29
0.002914	35.33	2.26	0.001962	44.72	2.19	0.00131	42.02	2.18	0.000979	50.51	2.28
0.002924	35.32	2.26	0.001968	44.78	2.19	0.001315	42.13	2.18	0.000983	49.87	2.26
0.002934	35.30	2.26	0.001974	44.83	2.19	0.001319	42.24	2.18	0.000988	49.11	2.25
0.002944	35.28	2.26	0.00198	44.88	2.19	0.001319	42.35	2.18	0.000988	48.45	2.23
0.002954	35.25	2.26	0.001981	44.94	2.19	0.001321	42.45	2.18	0.000993	47.87	2.22
0.002964	35.22	2.26	0.00199	45.00	2.19	0.001325	42.56	2.18	0.000993	47.37	2.22
0.002964	35.17	2.26	0.001998	45.06	2.19	0.00133	42.66	2.18	0.000999	46.95	2.21
0.002974	35.14	2.26	0.002007	45.11	2.19	0.001334	42.75	2.18	0.001004	46.61	2.21
0.002984	35.11	2.27	0.002014	45.18	2.19	0.001338	42.84	2.18	0.001008	46.31	2.20
0.002994	35.09	2.27	0.002014	45.25	2.19	0.001338	42.93	2.18	0.001012	46.06	2.20
0.003004	35.08	2.27	0.00202	45.32	2.19	0.001342	43.01	2.18	0.001015	45.86	2.20
0.003014	35.07	2.27	0.002025	45.39	2.19	0.001347	43.07	2.18	0.001019	45.69	2.20
0.003014	35.07	2.27	0.002031	45.47	2.20	0.001351	43.13	2.18	0.001023	45.57	2.20
0.003024	35.08	2.27	0.002038	45.55	2.20	0.001355	43.20	2.18	0.001026	45.48	2.20
0.003034	35.10	2.27	0.002038	45.63	2.20	0.001359	43.27	2.18	0.001026	45.42	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.003044	35.11	2.26	0.002043	45.70	2.20	0.001359	43.35	2.18	0.001027	45.39	2.19
0.003055	35.13	2.26	0.002048	45.78	2.20	0.00136	43.43	2.18	0.00103	45.38	2.19
0.003065	35.15	2.26	0.002048	45.86	2.20	0.001364	43.50	2.18	0.001034	45.40	2.19
0.003075	35.17	2.26	0.002053	45.95	2.20	0.001368	43.59	2.18	0.001037	45.43	2.19
0.003085	35.19	2.26	0.00206	46.05	2.20	0.001372	43.67	2.18	0.00104	45.47	2.20
0.003095	35.20	2.26	0.00206	46.14	2.20	0.001376	43.76	2.18	0.001043	45.53	2.20
0.003105	35.22	2.26	0.002066	46.22	2.20	0.00138	43.86	2.19	0.001046	45.62	2.20
0.003115	35.23	2.26	0.002073	46.30	2.20	0.001382	43.96	2.19	0.001048	45.70	2.20
0.003125	35.25	2.26	0.00208	46.38	2.20	0.001387	44.06	2.19	0.001051	45.78	2.20
0.003135	35.26	2.26	0.002086	46.47	2.21	0.001391	44.16	2.19	0.001053	45.86	2.20
0.003145	35.28	2.26	0.002094	46.55	2.21	0.001396	44.26	2.19	0.001055	45.93	2.20
0.003155	35.29	2.26	0.002102	46.64	2.21	0.001401	44.37	2.19	0.001057	46.00	2.20
0.003165	35.31	2.26	0.002108	46.74	2.21	0.001404	44.48	2.19	0.001059	46.08	2.20
0.003175	35.32	2.26	0.002115	46.84	2.21	0.001408	44.59	2.19	0.001061	46.15	2.20
0.003185	35.34	2.26	0.002115	46.95	2.21	0.001411	44.70	2.19	0.001063	46.23	2.20
0.003195	35.34	2.26	0.002121	47.05	2.21	0.001414	44.80	2.19	0.001064	46.31	2.20
0.003205	35.35	2.26	0.002126	47.15	2.21	0.001418	44.91	2.19	0.001064	46.40	2.20
0.003215	35.35	2.26	0.002134	47.25	2.22	0.001421	45.01	2.19	0.001065	46.48	2.21
0.003225	35.36	2.26	0.002142	47.35	2.22	0.001425	45.11	2.19	0.001065	46.56	2.21
0.003235	35.36	2.26	0.002149	47.47	2.22	0.001426	45.20	2.19	0.001068	46.63	2.21
0.003245	35.36	2.26	0.002155	47.59	2.22	0.00143	45.27	2.19	0.001072	46.70	2.21

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.003255	35.37	2.26	0.002163	47.71	2.22	0.001435	45.34	2.19	0.001074	46.76	2.21
0.003265	35.38	2.26	0.00217	47.85	2.22	0.001439	45.40	2.19	0.001077	46.82	2.21
0.003275	35.41	2.26	0.002177	48.00	2.23	0.001444	45.44	2.19	0.00108	46.88	2.21
0.003285	35.45	2.26	0.002186	48.14	2.23	0.001448	45.48	2.20	0.001082	46.95	2.21
0.003295	35.49	2.26	0.002195	48.29	2.23	0.001453	45.51	2.20	0.001084	47.01	2.21
0.003305	35.55	2.26	0.002204	48.44	2.23	0.001457	45.55	2.20	0.001086	47.07	2.21
0.003315	35.61	2.25	0.002212	48.60	2.24	0.001462	45.58	2.20	0.001087	47.13	2.21
0.003326	35.67	2.25	0.002221	48.76	2.24	0.001466	45.61	2.20	0.001089	47.19	2.21
0.003336	35.72	2.25	0.002231	48.91	2.24	0.001471	45.64	2.20	0.001091	47.24	2.22
0.003346	35.77	2.25	0.002241	49.06	2.25	0.001475	45.67	2.20	0.001093	47.28	2.22
0.003356	35.81	2.25	0.002249	49.22	2.25	0.001475	45.71	2.20	0.001093	47.32	2.22
0.003366	35.86	2.25	0.002256	49.37	2.25	0.00148	45.75	2.20	0.001095	47.37	2.22
0.003376	35.93	2.25	0.002257	49.52	2.26	0.001483	45.79	2.20	0.001098	47.42	2.22
0.003386	36.02	2.25	0.002267	49.66	2.26	0.001487	45.83	2.20	0.001101	47.47	2.22
0.003396	36.12	2.24	0.002275	49.79	2.26	0.001491	45.88	2.20	0.001104	47.53	2.22
0.003406	36.23	2.24	0.002283	49.92	2.26	0.001496	45.93	2.20	0.001108	47.60	2.22
0.003416	36.36	2.24	0.002285	50.05	2.27	0.001496	45.98	2.20	0.001111	47.67	2.22
0.003426	36.50	2.24	0.002295	50.17	2.27	0.0015	46.04	2.20	0.001115	47.74	2.22
0.003436	36.65	2.23	0.002305	50.28	2.27	0.001506	46.10	2.20	0.001118	47.81	2.22
0.003446	36.81	2.23	0.002305	50.38	2.28	0.001512	46.16	2.20	0.001121	47.87	2.22
0.003456	36.99	2.23	0.002315	50.48	2.28	0.001518	46.22	2.20	0.001124	47.94	2.23

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.003458	37.12	2.23	0.002325	50.59	2.28	0.001524	46.29	2.20	0.001126	48.02	2.23
0.003468	37.24	2.22	0.002335	50.71	2.28	0.001529	46.36	2.20	0.001129	48.09	2.23
0.003478	37.37	2.22	0.002344	50.83	2.29	0.001533	46.44	2.21	0.001131	48.16	2.23
0.003488	37.50	2.22	0.002352	50.94	2.29	0.001537	46.52	2.21	0.001134	48.24	2.23
0.003498	37.62	2.22	0.00236	51.04	2.29	0.001541	46.60	2.21	0.001136	48.33	2.23
0.003508	37.75	2.22	0.00237	51.13	2.30	0.001545	46.67	2.21	0.00114	48.41	2.23
0.003519	37.88	2.21	0.00237	51.20	2.30	0.00155	46.75	2.21	0.001143	48.49	2.24
0.003529	37.99	2.21	0.002376	51.26	2.30	0.001555	46.83	2.21	0.001146	48.57	2.24
0.003539	38.10	2.21	0.002382	51.31	2.30	0.00156	46.91	2.21	0.001149	48.65	2.24
0.003543	38.20	2.21	0.002382	51.35	2.30	0.001566	46.99	2.21	0.001149	48.72	2.24
0.003553	38.29	2.21	0.002387	51.38	2.30	0.001571	47.08	2.21	0.001151	48.79	2.24
0.003563	38.38	2.21	0.002387	51.40	2.30	0.001576	47.17	2.21	0.001153	48.86	2.24
0.003573	38.47	2.21	0.002393	51.40	2.30	0.00158	47.26	2.22	0.001156	48.92	2.24
0.003583	38.56	2.21	0.002393	51.39	2.30	0.001585	47.35	2.22	0.001159	48.99	2.24
0.003583	38.64	2.20	0.002399	51.37	2.30	0.00159	47.43	2.22	0.001159	49.04	2.25
0.003593	38.72	2.20	0.002406	51.33	2.30	0.001594	47.52	2.22	0.001162	49.10	2.25
0.003597	38.78	2.20	0.002412	51.27	2.30	0.001599	47.61	2.22	0.001165	49.16	2.25
0.003607	38.85	2.20	0.002418	51.19	2.30	0.001603	47.70	2.22	0.001165	49.22	2.25
0.003617	38.91	2.20	0.002423	51.08	2.29	0.001607	47.80	2.22	0.001167	49.27	2.25
0.003627	38.98	2.20	0.002433	50.95	2.29	0.001611	47.90	2.23	0.001167	49.32	2.25
0.003638	39.05	2.20	0.002442	50.78	2.29	0.001616	48.02	2.23	0.00117	49.37	2.25

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.003648	39.12	2.20	0.002443	50.58	2.28	0.00162	48.12	2.23	0.001174	49.41	2.25
0.003658	39.20	2.20	0.002451	50.34	2.27	0.001625	48.23	2.23	0.001177	49.46	2.25
0.003668	39.27	2.20	0.002457	50.06	2.27	0.001628	48.33	2.23	0.00118	49.52	2.26
0.003678	39.34	2.20	0.002464	49.75	2.26	0.001631	48.44	2.23	0.001184	49.59	2.26
0.003688	39.41	2.20	0.00247	49.39	2.25	0.001634	48.54	2.24	0.001187	49.65	2.26
0.003698	39.48	2.20	0.002477	48.98	2.24	0.001637	48.64	2.24	0.00119	49.72	2.26
0.003708	39.55	2.20	0.002483	48.34	2.23	0.00164	48.74	2.24	0.001192	49.78	2.26
0.003718	39.62	2.19	0.002485	47.48	2.22	0.00164	48.84	2.24	0.001195	49.84	2.26
0.003718	39.69	2.19	0.002492	46.54	2.21	0.001646	48.94	2.24	0.001197	49.91	2.26
0.003728	39.76	2.19	0.002496	45.52	2.20	0.001651	49.03	2.25	0.001199	49.97	2.27
0.003738	39.84	2.19	0.002503	44.58	2.19	0.001657	49.12	2.25	0.001201	50.03	2.27
0.003748	39.91	2.19	0.002509	43.79	2.18	0.001662	49.22	2.25	0.001203	50.09	2.27
0.003758	39.99	2.19	0.002515	43.14	2.18	0.001666	49.32	2.25	0.001205	50.15	2.27
0.003768	40.06	2.19	0.002524	42.64	2.18	0.00167	49.42	2.25	0.001206	50.21	2.27
0.003777	40.14	2.19	0.00253	42.22	2.18	0.001674	49.52	2.26	0.001207	50.26	2.27
0.003785	40.21	2.19	0.002535	41.88	2.18	0.001678	49.63	2.26	0.001207	50.32	2.27
0.003793	40.28	2.19	0.002542	41.60	2.18	0.001681	49.72	2.26	0.001207	50.38	2.28
0.0038	40.36	2.19	0.002548	41.41	2.18	0.001685	49.81	2.26	0.001209	50.45	2.28
0.003811	40.44	2.19	0.002553	41.27	2.18	0.001687	49.90	2.26	0.001212	50.53	2.28
0.003821	40.52	2.19	0.002554	41.16	2.19	0.00169	49.98	2.27	0.001214	50.60	2.28
0.003822	40.59	2.19	0.002561	41.10	2.19	0.001694	50.07	2.27	0.001215	50.67	2.28

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.00383	40.67	2.19	0.002568	40.75	2.19	0.001697	50.16	2.27	0.001218	50.74	2.28
0.003838	40.75	2.19	0.002574	40.46	2.19	0.001697	50.25	2.27	0.00122	50.81	2.29
0.003845	40.84	2.19	0.002583	40.22	2.19	0.001703	50.34	2.27	0.001222	50.89	2.29
0.003855	40.93	2.19	0.00259	40.03	2.19	0.001703	50.45	2.28	0.001224	50.98	2.29
0.003865	41.01	2.19	0.002598	39.84	2.19	0.001709	50.56	2.28	0.001224	51.05	2.29
0.003875	41.08	2.19	0.002598	39.70	2.19	0.001709	50.67	2.28	0.001226	51.12	2.29
0.003885	41.15	2.19	0.002604	39.58	2.20	0.00171	50.78	2.29	0.001229	51.18	2.30
0.003895	41.21	2.19	0.00261	39.48	2.20	0.001716	50.90	2.29	0.001231	51.23	2.30
0.003903	41.27	2.18	0.00261	39.38	2.20	0.001721	51.03	2.29	0.001233	51.28	2.30
0.003912	41.32	2.18	0.002615	39.34	2.20	0.001728	51.17	2.30	0.001235	51.32	2.30
0.003921	41.38	2.18	0.002615	39.38	2.20	0.001734	51.32	2.30	0.001236	51.36	2.30
0.003928	41.43	2.18	0.00262	39.53	2.20	0.001741	51.48	2.30	0.001236	51.40	2.30
0.003938	41.49	2.18	0.002625	39.81	2.19	0.001747	51.66	2.31	0.001238	51.44	2.30
0.003949	41.54	2.18	0.002631	40.10	2.19	0.001754	51.85	2.32	0.001241	51.47	2.30
0.003959	41.58	2.18	0.002636	40.42	2.19	0.001754	52.05	2.32	0.001244	51.51	2.31
0.003969	41.62	2.18	0.002641	40.75	2.19	0.001754	52.24	2.33	0.001248	51.55	2.31
0.003979	41.66	2.18	0.002641	41.08	2.19	0.001761	52.42	2.33	0.001252	51.60	2.31
0.003989	41.69	2.18	0.002642	41.34	2.18	0.001761	52.58	2.34	0.001255	51.66	2.31
0.003999	41.72	2.18	0.002642	41.51	2.18	0.001767	52.74	2.34	0.001258	51.71	2.31
0.004009	41.74	2.18	0.002646	41.62	2.18	0.001767	52.90	2.35	0.001262	51.76	2.31
0.004011	41.77	2.18	0.00265	41.65	2.18	0.001774	53.04	2.35	0.001265	51.80	2.31

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.004011	41.80	2.18	0.00265	41.61	2.18	0.001781	53.19	2.36	0.001266	51.83	2.32
0.004021	41.83	2.18	0.002653	41.57	2.18	0.001787	53.33	2.36	0.001266	51.87	2.32
0.004031	41.86	2.18	0.002653	41.52	2.18	0.001788	53.47	2.37	0.001269	51.90	2.32
0.004041	41.89	2.18	0.002657	41.46	2.18	0.001797	53.61	2.37	0.001272	51.92	2.32
0.004051	41.92	2.18	0.002667	41.38	2.18	0.001805	53.75	2.38	0.001275	51.93	2.32
0.004061	41.95	2.18	0.002672	41.33	2.18	0.001805	53.89	2.39	0.001278	51.92	2.32
0.004071	41.99	2.18	0.002677	41.30	2.18	0.001806	54.03	2.39	0.001281	51.88	2.32
0.004081	42.03	2.18	0.002683	41.29	2.18	0.001806	54.17	2.40	0.001284	51.83	2.31
0.004092	42.07	2.18	0.002689	41.33	2.18	0.001813	54.32	2.40	0.001287	51.76	2.31
0.004102	42.12	2.18	0.002694	41.39	2.18	0.001821	54.46	2.41	0.001289	51.67	2.31
0.004112	42.16	2.18	0.002698	41.47	2.18	0.001828	54.59	2.41	0.001292	51.58	2.31
0.004117	42.20	2.18	0.002699	41.55	2.18	0.001828	54.73	2.42	0.001295	51.47	2.30
0.004127	42.24	2.18	0.002703	41.63	2.18	0.001837	54.88	2.43	0.001298	51.35	2.30
0.004137	42.28	2.18	0.002707	41.71	2.18	0.001844	55.03	2.43	0.001301	51.20	2.30
0.004146	42.31	2.18	0.002711	41.79	2.18	0.001852	55.18	2.44	0.001304	51.03	2.29
0.004149	42.34	2.18	0.002715	41.88	2.18	0.00186	55.32	2.45	0.001307	50.83	2.29
0.004159	42.37	2.18	0.002719	41.95	2.18	0.001868	55.46	2.45	0.00131	50.60	2.28
0.004161	42.40	2.18	0.002723	42.01	2.18	0.001875	55.58	2.46	0.001312	50.35	2.27
0.004171	42.43	2.18	0.002727	42.06	2.18	0.001882	55.70	2.46	0.001315	50.07	2.27
0.004181	42.46	2.18	0.002731	42.10	2.18	0.001884	55.81	2.47	0.001317	49.76	2.26
0.004191	42.49	2.18	0.002735	42.13	2.18	0.001885	55.91	2.47	0.001319	49.42	2.25

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.004201	42.53	2.18	0.002739	42.15	2.18	0.001893	56.00	2.48	0.00132	49.03	2.25
0.004201	42.57	2.18	0.002742	42.16	2.18	0.001901	56.09	2.48	0.001322	48.61	2.24
0.004211	42.61	2.18	0.002745	42.16	2.18	0.00191	56.16	2.48	0.001326	48.13	2.23
0.004211	42.64	2.18	0.002748	42.15	2.18	0.001916	56.23	2.49	0.001329	47.60	2.22
0.00422	42.68	2.18	0.002751	42.13	2.18	0.001923	56.28	2.49	0.001329	47.01	2.21
0.00423	42.71	2.18	0.002754	42.13	2.18	0.001929	56.29	2.49	0.001332	46.35	2.20
0.00424	42.74	2.18	0.002755	42.12	2.18	0.00193	56.27	2.49	0.001334	45.62	2.20
0.00425	42.75	2.18	0.002763	42.13	2.18	0.001937	56.25	2.49	0.001337	44.81	2.19
0.00426	42.77	2.18	0.002763	42.14	2.18	0.001942	56.21	2.49	0.001339	44.13	2.19
0.00427	42.79	2.18	0.002764	42.16	2.18	0.001949	56.13	2.48	0.001339	43.57	2.18
0.00428	42.81	2.18	0.002767	42.20	2.18	0.001949	56.02	2.48	0.001339	43.13	2.18
0.00429	42.85	2.18	0.002771	42.26	2.18	0.001957	55.86	2.47	0.001339	42.80	2.18
0.0043	42.90	2.18	0.002775	42.30	2.18	0.001965	55.66	2.46	0.001342	42.59	2.18
0.00431	42.94	2.18	0.002779	42.33	2.18	0.001971	55.44	2.45	0.001346	42.48	2.18
0.004319	42.99	2.18	0.002783	42.35	2.18	0.001977	55.19	2.44	0.001347	42.48	2.18
0.004329	43.03	2.18	0.002786	42.36	2.18	0.001984	54.91	2.43	0.001347	42.58	2.18
0.004338	43.07	2.18	0.002786	42.37	2.18	0.00199	54.59	2.41	0.001351	42.80	2.18
0.004347	43.11	2.18	0.002786	42.38	2.18	0.001996	54.20	2.40	0.001351	43.12	2.18
0.004355	43.15	2.18	0.002788	42.40	2.18	0.001996	53.74	2.38	0.001354	43.56	2.18
0.004365	43.20	2.18	0.002794	42.42	2.18	0.002003	53.20	2.36	0.001354	44.11	2.19
0.004375	43.24	2.18	0.002799	42.45	2.18	0.002003	52.58	2.34	0.001357	44.80	2.19

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.004385	43.29	2.18	0.002804	42.48	2.18	0.00201	51.87	2.32	0.001358	45.63	2.20
0.004395	43.33	2.18	0.002809	42.53	2.18	0.00201	51.07	2.29	0.001358	46.59	2.21
0.004405	43.37	2.18	0.002812	42.59	2.18	0.002017	50.32	2.27	0.001363	47.48	2.22
0.004415	43.41	2.18	0.002816	42.65	2.18	0.002025	49.63	2.26	0.001367	48.31	2.23
0.004425	43.45	2.18	0.00282	42.74	2.18	0.002028	48.98	2.24	0.001372	49.07	2.25
0.004435	43.49	2.18	0.00282	42.82	2.18	0.002032	48.45	2.23	0.001376	49.78	2.26
0.004445	43.53	2.18	0.002824	42.91	2.18	0.002035	47.99	2.23	0.00138	50.42	2.28
0.004455	43.59	2.18	0.002828	43.00	2.18	0.002039	47.57	2.22	0.001384	51.00	2.29
0.004465	43.65	2.18	0.002829	43.10	2.18	0.002042	47.19	2.21	0.001388	51.52	2.31
0.004475	43.73	2.18	0.002833	43.21	2.18	0.002045	46.83	2.21	0.001392	51.99	2.32
0.004485	43.82	2.18	0.002834	43.32	2.18	0.002047	46.54	2.21	0.001396	52.42	2.33
0.004494	43.89	2.19	0.002838	43.44	2.18	0.002053	46.31	2.20	0.0014	52.80	2.35
0.004504	43.97	2.19	0.002841	43.57	2.18	0.002053	46.10	2.20	0.001406	53.13	2.36
0.004513	44.04	2.19	0.002845	43.69	2.18	0.002058	45.94	2.20	0.001412	53.42	2.37
0.004522	44.12	2.19	0.002848	43.80	2.18	0.002063	45.82	2.20	0.001417	53.67	2.38
0.004532	44.19	2.19	0.002853	43.91	2.19	0.002064	45.73	2.20	0.00142	53.88	2.39
0.004542	44.25	2.19	0.00286	44.01	2.19	0.002069	45.69	2.20	0.001425	54.06	2.39
0.004552	44.31	2.19	0.002864	44.12	2.19	0.002074	45.68	2.20	0.00143	54.21	2.40
0.004562	44.36	2.19	0.002868	44.22	2.19	0.002079	45.67	2.20	0.001435	54.32	2.40
0.004571	44.41	2.19	0.002871	44.31	2.19	0.002084	45.69	2.20	0.001439	54.40	2.41
0.004581	44.45	2.19	0.002875	44.40	2.19	0.002089	45.72	2.20	0.001443	54.43	2.41

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.004591	44.49	2.19	0.002879	44.48	2.19	0.002095	45.78	2.20	0.001447	54.44	2.41
0.004601	44.54	2.19	0.002885	44.55	2.19	0.002097	45.86	2.20	0.001452	54.39	2.41
0.004611	44.59	2.19	0.002891	44.63	2.19	0.002099	45.94	2.20	0.001454	54.30	2.40
0.004621	44.66	2.19	0.002897	44.70	2.19	0.002102	46.02	2.20	0.001458	54.15	2.40
0.004631	44.73	2.19	0.002901	44.77	2.19	0.002105	46.10	2.20	0.001462	53.95	2.39
0.004641	44.81	2.19	0.002907	44.84	2.19	0.002107	46.17	2.20	0.001467	53.69	2.38
0.004651	44.89	2.19	0.002912	44.89	2.19	0.00211	46.24	2.20	0.001467	53.38	2.37
0.004661	44.98	2.19	0.002917	44.94	2.19	0.002113	46.31	2.20	0.001471	53.27	2.36
0.004671	45.08	2.19	0.002922	44.99	2.19	0.002116	46.38	2.20	0.001476	53.36	2.37
0.004681	45.17	2.19	0.002927	45.04	2.19	0.002116	46.45	2.21	0.00148	53.65	2.38
0.00469	45.27	2.19	0.002929	45.09	2.19	0.002117	46.52	2.21	0.00148	54.15	2.40
0.004699	45.37	2.19	0.002934	45.15	2.19	0.00212	46.60	2.21	0.001484	54.85	2.42
0.004709	45.48	2.20	0.00294	45.20	2.19	0.002122	46.67	2.21	0.001488	55.50	2.45
0.004719	45.58	2.20	0.002943	45.26	2.19	0.002124	46.74	2.21	0.001491	56.10	2.48
0.004729	45.67	2.20	0.002947	45.31	2.19	0.002126	46.80	2.21	0.001495	56.65	2.51
0.004739	45.76	2.20	0.002952	45.36	2.19	0.002127	46.87	2.21	0.001498	57.15	2.54
0.004749	45.85	2.20	0.002957	45.41	2.19	0.002129	46.95	2.21	0.001501	57.59	2.56
0.004759	45.94	2.20	0.002957	45.46	2.20	0.002131	47.02	2.21	0.001503	57.99	2.58
0.004769	46.04	2.20	0.002964	45.52	2.20	0.002132	47.11	2.21	0.001506	58.17	2.60
0.004779	46.13	2.20	0.002968	45.57	2.20	0.002134	47.19	2.21	0.00151	58.19	2.60
0.004789	46.23	2.20	0.002973	45.63	2.20	0.002134	47.29	2.22	0.001513	58.02	2.59

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.004799	46.32	2.20	0.002977	45.69	2.20	0.002134	47.38	2.22	0.001516	57.66	2.57
0.004809	46.42	2.20	0.002981	45.75	2.20	0.002134	47.46	2.22	0.00152	57.10	2.53
0.004819	46.51	2.21	0.002981	45.82	2.20	0.002134	47.53	2.22	0.001521	56.50	2.50
0.004829	46.58	2.21	0.002988	45.88	2.20	0.002134	47.60	2.22	0.001524	55.86	2.47
0.00484	46.65	2.21	0.002993	45.95	2.20	0.002134	47.66	2.22	0.001524	55.15	2.44
0.00485	46.72	2.21	0.002998	46.02	2.20	0.002135	47.72	2.22	0.001529	54.70	2.42
0.00486	46.77	2.21	0.003003	46.09	2.20	0.002135	47.77	2.22	0.001531	54.50	2.41
0.00487	46.83	2.21	0.003008	46.15	2.20	0.002136	47.82	2.22	0.001535	54.57	2.41
0.00488	46.88	2.21	0.003013	46.21	2.20	0.002136	47.87	2.22	0.001539	54.52	2.41
0.00489	46.93	2.21	0.00302	46.27	2.20	0.002137	47.91	2.23	0.001543	54.36	2.40
0.0049	46.99	2.21	0.003024	46.34	2.20	0.002138	47.96	2.23	0.001546	54.04	2.39
0.00491	47.04	2.21	0.003029	46.41	2.20	0.002139	48.00	2.23	0.00155	53.55	2.37
0.00491	47.09	2.21	0.003035	46.48	2.21	0.002141	48.04	2.23	0.001554	52.90	2.35
0.00492	47.16	2.21	0.003039	46.53	2.21	0.002143	48.08	2.23	0.001557	52.08	2.32
0.00493	47.22	2.22	0.003044	46.59	2.21	0.002143	48.11	2.23	0.001561	51.09	2.29
0.004932	47.30	2.22	0.003044	46.65	2.21	0.002143	48.15	2.23	0.001564	49.90	2.26
0.004942	47.37	2.22	0.003046	46.72	2.21	0.002143	48.18	2.23	0.001567	48.86	2.24
0.004952	47.44	2.22	0.003054	46.78	2.21	0.002143	48.21	2.23	0.00157	47.91	2.23
0.004962	47.51	2.22	0.003059	46.85	2.21	0.002143	48.24	2.23	0.001574	47.08	2.21
0.004972	47.58	2.22	0.003064	46.90	2.21	0.002147	48.27	2.23	0.001577	46.39	2.20
0.004982	47.64	2.22	0.003064	46.97	2.21	0.002152	48.29	2.23	0.001581	45.82	2.20

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.004992	47.72	2.22	0.003065	47.03	2.21	0.002156	48.32	2.23	0.001584	45.36	2.19
0.005002	47.79	2.22	0.00307	47.10	2.21	0.002159	48.35	2.23	0.001587	45.02	2.19
0.005012	47.86	2.22	0.00307	47.15	2.21	0.002163	48.37	2.23	0.00159	44.78	2.19
0.005022	47.92	2.23	0.003075	47.21	2.21	0.002167	48.40	2.23	0.001594	44.65	2.19
0.005032	47.99	2.23	0.00308	47.26	2.22	0.002171	48.43	2.23	0.001597	44.63	2.19
0.005042	48.06	2.23	0.003081	47.30	2.22	0.002171	48.46	2.23	0.0016	44.57	2.19
0.005052	48.14	2.23	0.003087	47.35	2.22	0.002174	48.49	2.24	0.001602	44.50	2.19
0.005062	48.21	2.23	0.003093	47.40	2.22	0.002178	48.52	2.24	0.001604	44.41	2.19
0.005072	48.29	2.23	0.003098	47.47	2.22	0.002179	48.56	2.24	0.001606	44.33	2.19
0.005082	48.37	2.23	0.003103	47.54	2.22	0.002181	48.60	2.24	0.001609	44.24	2.19
0.005092	48.45	2.23	0.003108	47.63	2.22	0.002185	48.64	2.24	0.001612	44.18	2.19
0.005102	48.53	2.24	0.003114	47.72	2.22	0.002189	48.69	2.24	0.001615	44.14	2.19
0.005112	48.62	2.24	0.00312	47.80	2.22	0.002189	48.74	2.24	0.001618	44.10	2.19
0.005123	48.71	2.24	0.003123	47.89	2.23	0.002194	48.79	2.24	0.001622	44.07	2.19
0.005133	48.80	2.24	0.003128	47.97	2.23	0.002198	48.84	2.24	0.001626	44.06	2.19
0.005133	48.88	2.24	0.003133	48.04	2.23	0.002202	48.89	2.24	0.001629	44.07	2.19
0.005143	48.96	2.24	0.003138	48.11	2.23	0.002206	48.95	2.24	0.001632	44.10	2.19
0.005153	49.04	2.25	0.003145	48.18	2.23	0.002211	49.01	2.25	0.001632	44.15	2.19
0.005163	49.12	2.25	0.003145	48.25	2.23	0.002213	49.07	2.25	0.001635	44.20	2.19
0.005173	49.20	2.25	0.003153	48.32	2.23	0.002217	49.14	2.25	0.001637	44.24	2.19
0.005183	49.27	2.25	0.00316	48.39	2.23	0.002222	49.21	2.25	0.00164	44.29	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.005193	49.33	2.25	0.003166	48.46	2.23	0.002226	49.28	2.25	0.001642	44.34	2.19
0.005203	49.38	2.25	0.003171	48.52	2.24	0.00223	49.36	2.25	0.001644	44.39	2.19
0.005213	49.41	2.25	0.003176	48.58	2.24	0.002231	49.43	2.25	0.001646	44.45	2.19
0.005223	49.44	2.25	0.003182	48.65	2.24	0.002236	49.51	2.26	0.001646	44.50	2.19
0.005233	49.48	2.25	0.00319	48.72	2.24	0.002241	49.58	2.26	0.001648	44.55	2.19
0.005243	49.51	2.26	0.003198	48.81	2.24	0.002245	49.65	2.26	0.00165	44.59	2.19
0.005245	49.54	2.26	0.003205	48.89	2.24	0.002247	49.73	2.26	0.001652	44.62	2.19
0.005255	49.56	2.26	0.003212	48.99	2.24	0.002252	49.80	2.26	0.001654	44.65	2.19
0.005265	49.56	2.26	0.003221	49.09	2.25	0.002257	49.87	2.26	0.001655	44.68	2.19
0.005274	49.56	2.26	0.003229	49.21	2.25	0.002262	49.95	2.27	0.001656	44.70	2.19
0.005284	49.54	2.26	0.003237	49.33	2.25	0.002266	50.02	2.27	0.001658	44.72	2.19
0.005294	49.53	2.26	0.003244	49.46	2.25	0.002271	50.10	2.27	0.001659	44.74	2.19
0.005304	49.52	2.26	0.00325	49.58	2.26	0.002274	50.19	2.27	0.001659	44.77	2.19
0.005314	49.50	2.26	0.003256	49.70	2.26	0.002279	50.28	2.27	0.00166	44.80	2.19
0.005324	49.48	2.25	0.00326	49.82	2.26	0.002282	50.36	2.28	0.001661	44.84	2.19
0.005334	49.46	2.25	0.003268	49.93	2.26	0.002286	50.44	2.28	0.001663	44.88	2.19
0.005344	49.43	2.25	0.003273	50.03	2.27	0.002289	50.53	2.28	0.001665	44.94	2.19
0.005354	49.38	2.25	0.003278	50.14	2.27	0.002292	50.60	2.28	0.001667	44.99	2.19
0.005364	49.31	2.25	0.003283	50.23	2.27	0.002295	50.68	2.28	0.001668	45.06	2.19
0.005374	49.22	2.25	0.003288	50.31	2.27	0.002299	50.75	2.28	0.001671	45.13	2.19
0.005384	49.11	2.25	0.003296	50.38	2.28	0.002301	50.83	2.29	0.001674	45.19	2.19

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.005394	48.97	2.24	0.003305	50.45	2.28	0.002301	50.91	2.29	0.001676	45.26	2.19
0.005404	48.81	2.24	0.003313	50.53	2.28	0.002303	50.99	2.29	0.001678	45.33	2.19
0.005414	48.62	2.24	0.003319	50.60	2.28	0.002307	51.07	2.29	0.001679	45.42	2.19
0.005418	48.39	2.23	0.003326	50.68	2.28	0.002311	51.15	2.30	0.001682	45.50	2.20
0.005428	48.14	2.23	0.003334	50.75	2.29	0.002316	51.24	2.30	0.001685	45.59	2.20
0.005438	47.85	2.22	0.003341	50.84	2.29	0.002321	51.33	2.30	0.001688	45.69	2.20
0.005438	47.53	2.22	0.003349	50.92	2.29	0.002325	51.43	2.30	0.001691	45.78	2.20
0.005448	47.17	2.21	0.003357	50.99	2.29	0.002329	51.52	2.31	0.001694	45.86	2.20
0.005458	46.77	2.21	0.003363	51.06	2.29	0.002333	51.60	2.31	0.001696	45.94	2.20
0.005468	46.32	2.20	0.003368	51.12	2.29	0.002337	51.69	2.31	0.001699	46.03	2.20
0.005478	45.82	2.20	0.003368	51.16	2.30	0.00234	51.77	2.31	0.001701	46.11	2.20
0.005488	45.27	2.19	0.003376	51.19	2.30	0.002345	51.85	2.32	0.001703	46.19	2.20
0.005498	44.66	2.19	0.003377	51.21	2.30	0.002349	51.93	2.32	0.001705	46.26	2.20
0.005508	43.99	2.19	0.003377	51.23	2.30	0.002354	52.01	2.32	0.001707	46.31	2.20
0.005508	43.23	2.18	0.003385	51.23	2.30	0.002358	52.10	2.32	0.001709	46.36	2.20
0.005518	42.54	2.18	0.003392	51.22	2.30	0.002363	52.19	2.33	0.00171	46.40	2.20
0.005528	41.90	2.18	0.003395	51.18	2.30	0.002366	52.29	2.33	0.001712	46.43	2.20
0.005538	41.30	2.18	0.003402	51.14	2.30	0.002369	52.39	2.33	0.001715	46.45	2.21
0.005548	40.75	2.19	0.003403	51.08	2.29	0.002372	52.48	2.34	0.001719	46.49	2.21
0.005558	40.26	2.19	0.003409	51.01	2.29	0.002376	52.58	2.34	0.001722	46.54	2.21
0.005568	39.81	2.19	0.003409	50.92	2.29	0.002379	52.67	2.34	0.001724	46.61	2.21

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв			
Time (sec)	Shear angle	Chip compr. ratio										
0.005578	39.42	2.20	0.003414	50.81	2.29	0.002382	52.77	2.34	0.001726	46.68	2.21	
0.005588	39.07	2.20	0.00342	50.68	2.28	0.002386	52.87	2.35	0.001726	46.75	2.21	
0.005589	38.78	2.20	0.00342	50.53	2.28	0.00239	52.97	2.35	0.001728	46.81	2.21	
0.005589	38.56	2.21	0.003425	50.36	2.28	0.002393	53.07	2.36	0.00173	46.88	2.21	
0.005599	38.35	2.21	0.003428	50.15	2.27	0.002397	53.17	2.36	0.001731	46.94	2.21	
0.005608	38.16	2.21	0.003429	49.92	2.26	0.0024	53.27	2.36	0.001732	47.00	2.21	
0.005618	37.98	2.21	0.003437	49.85	2.26	0.002404	53.38	2.37	0.001734	47.06	2.21	
0.005628	37.73	2.22	0.003445	49.96	2.27	0.002407	53.48	2.37	0.001736	47.11	2.21	
0.005637	37.50	2.22	0.003454	50.24	2.27	0.002411	53.59	2.37	0.001738	47.16	2.21	
0.005647	37.27	2.22	0.003454	50.50	2.28	0.002417	53.70	2.38	0.001739	47.22	2.21	
0.005656	37.06	2.23	0.003463	50.72	2.28	0.002423	53.80	2.38	0.001741	47.27	2.22	
0.005666	36.82	2.23	0.003472	50.92	2.29	0.002427	53.91	2.39	0.001743	47.32	2.22	
0.005676	36.59	2.23	0.003481	51.10	2.29	0.00243	54.02	2.39	0.001743	47.37	2.22	
0.005686	36.36	2.24	0.003486	51.47	2.30	0.002434	54.14	2.40	0.001746	47.43	2.22	
0.005691	36.16	2.24	0.003496	51.81	2.31	0.002438	54.25	2.40	0.001747	47.49	2.22	
0.005691	35.96	2.25	0.003506	52.12	2.32	0.002443	54.35	2.40	0.00175	47.57	2.22	
0.005701	35.80	2.25	0.003506	52.41	2.33	0.002447	54.46	2.41	0.001752	47.65	2.22	
0.005711	35.67	2.25	0.003516	52.67	2.34	0.002451	54.57	2.41	0.001754	47.72	2.22	
0.00572	35.52	2.26	0.003516	52.91	2.35	0.002456	54.68	2.42	0.001755	47.78	2.22	
0.00573	35.34	2.26	0.003526	53.13	2.36	0.00246	54.79	2.42	0.001759	47.84	2.22	
0.00574	35.20	2.26	0.003537	53.32	2.36	0.002464	54.89	2.43	0.001762	47.90	2.23	

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.00575	35.09	2.27	0.003537	53.51	2.37	0.002469	54.99	2.43	0.001763	47.96	2.23
0.00576	35.03	2.27	0.003543	53.68	2.38	0.002475	55.10	2.44	0.001766	48.03	2.23
0.00577	35.06	2.27	0.003548	53.85	2.38	0.002481	55.21	2.44	0.001769	48.08	2.23
0.00578	35.16	2.26	0.003554	54.00	2.39	0.002486	55.33	2.45	0.001771	48.14	2.23
0.00579	35.28	2.26	0.00356	54.15	2.40	0.002492	55.46	2.45	0.001773	48.18	2.23
0.0058	35.42	2.26	0.003567	54.29	2.40	0.002496	55.59	2.46	0.001774	48.22	2.23
0.00581	35.57	2.25	0.003573	54.43	2.41	0.002497	55.72	2.46	0.001777	48.26	2.23
0.00582	35.72	2.25	0.003582	54.56	2.41	0.002503	55.86	2.47	0.001779	48.31	2.23
0.00583	35.86	2.25	0.003589	54.68	2.42	0.002508	55.99	2.48	0.001782	48.35	2.23
0.005832	36.03	2.25	0.003592	54.78	2.42	0.002514	56.13	2.48	0.001783	48.39	2.23
0.005842	36.23	2.24	0.003602	54.87	2.43	0.00252	56.28	2.49	0.001783	48.43	2.23
0.005852	36.43	2.24	0.003612	54.94	2.43	0.002526	56.43	2.50	0.001786	48.48	2.24
0.005862	36.66	2.23	0.00362	55.00	2.43	0.002532	56.58	2.51	0.001789	48.53	2.24
0.005872	36.85	2.23	0.00363	55.05	2.43	0.002532	56.75	2.52	0.001792	48.59	2.24
0.005882	37.01	2.23	0.00363	55.07	2.43	0.002533	56.94	2.53	0.001795	48.65	2.24
0.005892	37.14	2.23	0.00364	55.07	2.43	0.002538	57.12	2.54	0.001797	48.70	2.24
0.005902	37.24	2.22	0.003648	55.05	2.43	0.002543	57.30	2.54	0.0018	48.76	2.24
0.005912	37.36	2.22	0.003656	55.00	2.43	0.002547	57.47	2.55	0.001802	48.83	2.24
0.005922	37.51	2.22	0.003663	54.94	2.43	0.002552	57.64	2.56	0.001805	48.90	2.24
0.005932	37.64	2.22	0.003669	54.85	2.42	0.002558	57.80	2.57	0.001808	48.96	2.24
0.005942	37.79	2.22	0.003676	54.74	2.42	0.002563	57.95	2.58	0.00181	49.03	2.25

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.005952	37.90	2.21	0.003676	54.60	2.41	0.002569	58.10	2.59	0.001813	49.11	2.25
0.005962	37.98	2.21	0.003677	54.41	2.41	0.002574	58.23	2.60	0.001815	49.18	2.25
0.005972	38.04	2.21	0.003685	54.08	2.39	0.002574	58.36	2.61	0.001817	49.25	2.25
0.005982	38.08	2.21	0.003693	53.72	2.38	0.002574	58.49	2.62	0.001819	49.31	2.25
0.005992	38.09	2.21	0.003697	53.32	2.36	0.00258	58.60	2.62	0.001821	49.37	2.25
0.006002	38.10	2.21	0.003704	52.86	2.35	0.002586	58.71	2.63	0.001823	49.43	2.25
0.006013	38.12	2.21	0.003713	52.34	2.33	0.002592	58.82	2.64	0.001825	49.51	2.26
0.006023	38.15	2.21	0.003715	52.02	2.32	0.002598	58.93	2.64	0.001828	49.59	2.26
0.006033	38.17	2.21	0.003716	51.91	2.32	0.002605	59.04	2.65	0.00183	49.67	2.26
0.006043	38.18	2.21	0.003724	51.61	2.31	0.002613	59.15	2.66	0.001834	49.76	2.26
0.006053	38.16	2.21	0.003732	51.15	2.30	0.00262	59.27	2.67	0.001836	49.87	2.26
0.006063	38.16	2.21	0.003738	50.49	2.28	0.002626	59.37	2.67	0.001839	49.97	2.27
0.006073	38.18	2.21	0.003746	49.60	2.26	0.002626	59.46	2.68	0.001842	50.08	2.27
0.006083	38.19	2.21	0.003755	48.88	2.24	0.002632	59.54	2.69	0.001844	50.20	2.27
0.006093	38.22	2.21	0.003763	48.06	2.23	0.002637	59.63	2.69	0.001847	50.30	2.27
0.006103	38.27	2.21	0.00377	47.14	2.21	0.002643	59.72	2.70	0.00185	50.40	2.28
0.006113	38.36	2.21	0.003777	46.10	2.20	0.002649	59.81	2.71	0.001853	50.51	2.28
0.006123	38.48	2.21	0.003783	44.94	2.19	0.002649	59.89	2.71	0.001856	50.64	2.28
0.006133	38.64	2.20	0.003789	43.94	2.19	0.002649	59.96	2.72	0.001859	50.76	2.29
0.006143	38.77	2.20	0.003795	43.07	2.18	0.002649	60.01	2.72	0.001862	50.88	2.29
0.006153	38.86	2.20	0.003796	42.31	2.18	0.002657	60.04	2.72	0.001863	50.98	2.29

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв		V= 200 м/хв		
Time (sec)	Shear angle	Chip compr. ratio									
0.006163	38.89	2.20	0.003802	41.73	2.18	0.002659	60.06	2.72	0.001866	51.07	2.29
0.006173	38.89	2.20	0.003812	41.29	2.18	0.002666	60.05	2.72	0.001868	51.16	2.30
0.006183	38.87	2.20	0.003813	40.82	2.19	0.002675	60.03	2.72	0.00187	51.24	2.30
0.006193	38.87	2.20	0.00382	40.40	2.19	0.00268	59.99	2.72	0.001873	51.32	2.30
0.006203	38.88	2.20	0.003821	40.08	2.19	0.002685	59.93	2.71	0.001875	51.40	2.30
0.006213	38.90	2.20	0.003826	39.81	2.19	0.002689	59.86	2.71	0.001876	51.48	2.30
0.006223	38.92	2.20	0.003832	39.59	2.20	0.002694	59.76	2.70	0.001879	51.57	2.31
0.006233	38.93	2.20	0.003838	39.41	2.20	0.002701	59.64	2.69	0.001881	51.66	2.31
0.006243	38.92	2.20	0.003844	39.25	2.20	0.002708	59.49	2.68	0.001884	51.76	2.31
0.006253	38.90	2.20	0.003845	39.11	2.20	0.002708	59.31	2.67	0.001886	51.86	2.32
0.006263	38.91	2.20	0.003853	39.01	2.20	0.002708	59.09	2.65	0.001889	51.97	2.32
0.006274	38.91	2.20	0.00386	38.97	2.20	0.002715	58.83	2.64	0.001891	52.08	2.32
0.006284	38.93	2.20	0.003867	38.93	2.20	0.002721	58.52	2.62	0.001891	52.19	2.33
0.006294	38.97	2.20	0.003877	38.93	2.20	0.002724	58.18	2.60	0.001894	52.29	2.33
0.006304	38.98	2.20	0.003883	38.92	2.20	0.002731	57.78	2.57	0.001894	52.40	2.33
0.006314	39.06	2.20	0.003885	38.94	2.20	0.002737	57.31	2.55	0.001896	52.50	2.34
0.006324	39.19	2.20	0.003891	38.96	2.20	0.002743	56.79	2.52	0.001899	52.60	2.34
0.006334	39.33	2.20	0.003897	39.01	2.20	0.002749	56.17	2.49	0.001901	52.71	2.34
0.006344	39.47	2.20	0.003903	39.08	2.20	0.002753	55.49	2.45	0.001903	52.82	2.35
0.006354	39.62	2.19	0.003909	39.18	2.20	0.002754	54.73	2.42	0.001905	52.94	2.35
0.006364	39.71	2.19	0.003915	39.32	2.20	0.00276	53.90	2.39	0.001907	53.07	2.36
	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
---------------	----------------	-------------------------	---------------	----------------	-------------------------	---------------	----------------	-------------------------	---------------	----------------	-------------------------
Time (sec)	Shear angle	Chip compr. ratio									
0.006374	39.83	2.19	0.003921	39.49	2.20	0.002767	53.00	2.35	0.001907	53.22	2.36
0.006384	39.92	2.19	0.003927	39.70	2.19	0.002774	52.02	2.32	0.001911	53.37	2.37
0.006394	40.01	2.19	0.003934	39.91	2.19	0.002781	50.99	2.29	0.001916	53.53	2.37
0.006404	40.07	2.19	0.003939	40.10	2.19	0.002787	50.05	2.27	0.00192	53.70	2.38
0.006414	40.11	2.19	0.003944	40.25	2.19	0.002787	48.97	2.24	0.001922	53.86	2.38
0.006424	40.15	2.19	0.003949	40.40	2.19	0.002792	48.02	2.23	0.001924	54.01	2.39
0.006434	40.13	2.19	0.003953	40.52	2.19	0.002792	47.18	2.21	0.001927	54.15	2.40
0.006444	40.15	2.19	0.003959	40.63	2.19	0.002794	46.47	2.21	0.001927	54.27	2.40
0.006454	40.19	2.19	0.003965	40.72	2.19	0.002794	45.87	2.20	0.001929	54.40	2.41
0.006464	40.27	2.19	0.00397	40.80	2.19	0.002798	45.37	2.19	0.001932	54.53	2.41
0.006473	40.32	2.19	0.003975	40.88	2.19	0.002803	44.98	2.19	0.001934	54.65	2.42
0.006483	40.35	2.19	0.003977	40.95	2.19	0.002808	44.69	2.19	0.001937	54.77	2.42
0.006488	40.31	2.19	0.003982	41.04	2.19	0.002813	44.49	2.19	0.00194	54.89	2.43
0.006498	40.33	2.19	0.003982	41.14	2.19	0.002819	44.35	2.19	0.001942	55.01	2.43
0.006508	40.33	2.19	0.003983	41.21	2.19	0.002825	44.28	2.19	0.001944	55.12	2.44
0.006518	40.36	2.19	0.003983	41.26	2.18	0.002825	44.24	2.19	0.001944	55.21	2.44
0.006529	40.40	2.19	0.003984	41.32	2.18	0.002831	44.20	2.19	0.001945	55.31	2.44
0.006539	40.39	2.19	0.003984	41.38	2.18	0.002837	44.19	2.19	0.001945	55.40	2.45
0.006549	40.39	2.19	0.003986	41.45	2.18	0.002844	44.21	2.19	0.001946	55.49	2.45
0.006559	40.37	2.19	0.003992	41.51	2.18	0.00285	44.26	2.19	0.001948	55.57	2.46
0.006569	40.30	2.19	0.003997	41.59	2.18	0.00285	44.32	2.19	0.001949	55.66	2.46

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.006579	40.21	2.19	0.004003	41.69	2.18	0.002853	44.38	2.19	0.00195	55.74	2.46
0.006589	40.14	2.19	0.004009	41.79	2.18	0.002856	44.46	2.19	0.00195	55.81	2.47
0.006599	40.07	2.19	0.004014	41.90	2.18	0.002856	44.53	2.19	0.001951	55.89	2.47
0.006609	39.98	2.19	0.00402	42.01	2.18	0.002861	44.62	2.19	0.001951	55.97	2.48
0.006619	39.88	2.19	0.004021	42.14	2.18	0.002865	44.73	2.19	0.001953	56.06	2.48
0.006629	39.83	2.19	0.004027	42.29	2.18	0.002866	44.85	2.19	0.001953	56.15	2.48
0.006639	39.79	2.19	0.004032	42.45	2.18	0.00287	44.97	2.19	0.001954	56.24	2.49
0.006649	39.77	2.19	0.004032	42.61	2.18	0.002875	45.09	2.19	0.001955	56.34	2.49
0.006659	39.77	2.19	0.004032	42.75	2.18	0.002875	45.22	2.19	0.001957	56.44	2.50
0.006669	39.82	2.19	0.004032	42.89	2.18	0.00288	45.36	2.19	0.001958	56.53	2.50
0.006679	39.90	2.19	0.004032	43.02	2.18	0.002886	45.50	2.20	0.001959	56.63	2.51
0.006689	40.02	2.19	0.004033	43.13	2.18	0.002891	45.63	2.20	0.00196	56.73	2.51
0.006699	40.15	2.19	0.004037	43.21	2.18	0.002896	45.78	2.20	0.001962	56.84	2.52
0.006709	40.29	2.19	0.00404	43.26	2.18	0.0029	45.94	2.20	0.001963	56.95	2.53
0.006719	40.41	2.19	0.004045	43.32	2.18	0.002905	46.09	2.20	0.001964	57.06	2.53
0.006729	40.56	2.19	0.004051	43.38	2.18	0.002908	46.25	2.20	0.001964	57.18	2.54
0.006739	40.74	2.19	0.004056	43.43	2.18	0.002913	46.40	2.20	0.001966	57.29	2.54
0.006749	40.95	2.19	0.004056	43.48	2.18	0.002917	46.55	2.21	0.00197	57.40	2.55
0.006759	41.13	2.19	0.004056	43.55	2.18	0.002921	46.70	2.21	0.001973	57.51	2.56
0.006769	41.30	2.18	0.004063	43.64	2.18	0.002925	46.84	2.21	0.001976	57.63	2.56
0.006779	41.45	2.18	0.00407	43.74	2.18	0.002929	46.99	2.21	0.00198	57.74	2.57

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.006783	41.57	2.18	0.004075	43.86	2.19	0.002932	47.14	2.21	0.001983	57.86	2.58
0.006792	41.66	2.18	0.004079	43.97	2.19	0.002933	47.29	2.22	0.001983	57.98	2.58
0.006792	41.72	2.18	0.004084	44.10	2.19	0.002934	47.43	2.22	0.001987	58.10	2.59
0.006802	41.78	2.18	0.00409	44.22	2.19	0.002938	47.57	2.22	0.001992	58.24	2.60
0.006808	41.82	2.18	0.004095	44.35	2.19	0.002943	47.70	2.22	0.001992	58.37	2.61
0.006809	41.84	2.18	0.004096	44.50	2.19	0.002947	47.82	2.22	0.001996	58.50	2.62
0.006819	41.88	2.18	0.004099	44.64	2.19	0.002951	47.94	2.23	0.001996	58.63	2.62
0.006829	41.92	2.18	0.0041	44.77	2.19	0.002954	48.06	2.23	0.002002	58.74	2.63
0.006839	41.96	2.18	0.004103	44.89	2.19	0.002957	48.17	2.23	0.002005	58.86	2.64
0.006849	41.98	2.18	0.004107	44.99	2.19	0.00296	48.28	2.23	0.002011	58.97	2.65
0.006858	41.98	2.18	0.00411	45.09	2.19	0.002964	48.39	2.23	0.002011	59.09	2.65
0.006859	41.95	2.18	0.004114	45.19	2.19	0.002967	48.50	2.24	0.002018	59.20	2.66
0.006869	41.92	2.18	0.004118	45.27	2.19	0.00297	48.60	2.24	0.002024	59.33	2.67
0.006876	41.88	2.18	0.004123	45.32	2.19	0.002973	48.70	2.24	0.00203	59.45	2.68
0.006883	41.83	2.18	0.004127	45.38	2.19	0.002977	48.80	2.24	0.002036	59.56	2.69
0.006889	41.77	2.18	0.004131	45.45	2.20	0.002977	48.89	2.24	0.002043	59.68	2.70
0.006899	41.73	2.18	0.004136	45.53	2.20	0.00298	48.97	2.24	0.002047	59.80	2.70
0.006909	41.71	2.18	0.004141	45.59	2.20	0.002984	49.04	2.25	0.002048	59.91	2.71
0.006919	41.71	2.18	0.004147	45.66	2.20	0.002987	49.11	2.25	0.002053	60.02	2.72
0.006928	41.72	2.18	0.004153	45.73	2.20	0.002991	49.18	2.25	0.002058	60.12	2.73
0.006937	41.75	2.18	0.004158	45.80	2.20	0.002991	49.24	2.25	0.002063	60.22	2.74

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.006938	41.79	2.18	0.004163	45.85	2.20	0.002994	49.30	2.25	0.002067	60.31	2.74
0.006947	41.82	2.18	0.004165	45.91	2.20	0.002996	49.36	2.25	0.002072	60.41	2.75
0.006955	41.86	2.18	0.00417	45.98	2.20	0.002997	49.41	2.25	0.002076	60.50	2.76
0.006957	41.90	2.18	0.004177	46.03	2.20	0.003	49.46	2.25	0.002081	60.59	2.76
0.006957	41.93	2.18	0.004184	46.08	2.20	0.003003	49.49	2.26	0.002086	60.68	2.77
0.006967	41.95	2.18	0.00419	46.14	2.20	0.003006	49.53	2.26	0.002092	60.77	2.78
0.006967	41.97	2.18	0.004192	46.20	2.20	0.003009	49.57	2.26	0.002093	60.86	2.79
0.006977	41.97	2.18	0.004196	46.26	2.20	0.003013	49.62	2.26	0.002097	60.95	2.79
0.006978	41.97	2.18	0.004197	46.31	2.20	0.003015	49.67	2.26	0.002102	61.03	2.80
0.006979	41.96	2.18	0.0042	46.37	2.20	0.003016	49.71	2.26	0.002107	61.14	2.81
0.006979	41.96	2.18	0.004203	46.43	2.20	0.003018	49.76	2.26	0.002111	61.28	2.82
0.006989	41.97	2.18	0.004206	46.49	2.21	0.003021	49.80	2.26	0.002114	61.30	2.82
0.006989	42.01	2.18	0.00421	46.55	2.21	0.003026	49.84	2.26	0.002118	61.21	2.81
0.006999	42.05	2.18	0.004213	46.60	2.21	0.00303	49.88	2.26	0.002122	60.98	2.80
0.007009	42.12	2.18	0.004219	46.66	2.21	0.003035	49.92	2.26	0.002126	60.62	2.77
0.007009	42.20	2.18	0.004221	46.71	2.21	0.00304	49.97	2.27	0.002129	60.09	2.73
0.007019	42.27	2.18	0.004227	46.75	2.21	0.003044	50.01	2.27	0.002134	59.51	2.68
0.007029	42.35	2.18	0.004233	46.79	2.21	0.003049	50.05	2.27	0.002139	58.91	2.64
0.007036	42.43	2.18	0.004238	46.83	2.21	0.003049	50.09	2.27	0.002143	58.29	2.60
0.007043	42.51	2.18	0.004243	46.87	2.21	0.003053	50.14	2.27	0.002144	57.60	2.56
0.007049	42.59	2.18	0.004243	46.89	2.21	0.003056	50.19	2.27	0.002147	56.69	2.51

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007055	42.66	2.18	0.004244	46.91	2.21	0.003057	50.24	2.27	0.002151	55.90	2.47
0.007061	42.74	2.18	0.00425	46.94	2.21	0.003061	50.29	2.27	0.002154	55.23	2.44
0.007066	42.82	2.18	0.00425	46.96	2.21	0.003064	50.35	2.27	0.002158	54.74	2.42
0.007067	42.91	2.18	0.004251	46.98	2.21	0.003068	50.41	2.28	0.002162	54.09	2.39
0.007075	42.99	2.18	0.004256	47.01	2.21	0.003072	50.48	2.28	0.002165	53.25	2.36
0.007083	43.06	2.18	0.004261	47.03	2.21	0.003076	50.55	2.28	0.002169	52.19	2.33
0.007091	43.13	2.18	0.004267	47.06	2.21	0.003078	50.63	2.28	0.002172	51.25	2.30
0.007091	43.19	2.18	0.004267	47.08	2.21	0.003082	50.70	2.28	0.002175	50.38	2.28
0.007095	43.26	2.18	0.004274	47.11	2.21	0.003087	50.78	2.29	0.002176	49.57	2.26
0.007104	43.31	2.18	0.004279	47.14	2.21	0.003092	50.85	2.29	0.00218	48.86	2.24
0.007114	43.36	2.18	0.004281	47.17	2.21	0.003092	50.93	2.29	0.002183	48.01	2.23
0.007124	43.41	2.18	0.004286	47.20	2.21	0.003097	51.01	2.29	0.002187	47.28	2.22
0.007124	43.47	2.18	0.00429	47.24	2.22	0.003102	51.08	2.29	0.00219	46.66	2.21
0.007132	43.52	2.18	0.004291	47.28	2.22	0.003106	51.15	2.30	0.002193	46.23	2.20
0.00714	43.56	2.18	0.004294	47.32	2.22	0.003109	51.23	2.30	0.002195	45.97	2.20
0.007142	43.61	2.18	0.004295	47.36	2.22	0.003113	51.30	2.30	0.002198	45.75	2.20
0.007144	43.64	2.18	0.004301	47.42	2.22	0.003113	51.37	2.30	0.002202	45.54	2.20
0.007144	43.68	2.18	0.004306	47.47	2.22	0.003117	51.43	2.30	0.002203	45.37	2.19
0.007146	43.72	2.18	0.004312	47.53	2.22	0.00312	51.49	2.31	0.002207	45.23	2.19
0.007155	43.75	2.18	0.004317	47.58	2.22	0.003123	51.54	2.31	0.00221	45.11	2.19
0.007163	43.77	2.18	0.004319	47.65	2.22	0.003127	51.60	2.31	0.002213	45.01	2.19

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007171	43.79	2.18	0.004325	47.70	2.22	0.00313	51.65	2.31	0.002216	44.93	2.19
0.007178	43.80	2.18	0.00433	47.75	2.22	0.003134	51.70	2.31	0.002218	44.88	2.19
0.007188	43.81	2.18	0.004334	47.78	2.22	0.003137	51.73	2.31	0.002221	44.83	2.19
0.007198	43.82	2.18	0.004339	47.82	2.22	0.00314	51.77	2.31	0.002224	44.81	2.19
0.007208	43.83	2.18	0.004345	47.86	2.22	0.003144	51.81	2.31	0.002227	44.82	2.19
0.007218	43.83	2.19	0.004351	47.91	2.23	0.003147	51.84	2.32	0.002229	44.85	2.19
0.007228	43.84	2.19	0.004357	47.96	2.23	0.003151	51.89	2.32	0.002232	44.90	2.19
0.007229	43.84	2.19	0.004357	48.02	2.23	0.003155	51.93	2.32	0.002232	44.96	2.19
0.007239	43.85	2.19	0.004363	48.09	2.23	0.003159	51.98	2.32	0.002232	45.02	2.19
0.00724	43.86	2.19	0.004367	48.15	2.23	0.003163	52.02	2.32	0.002235	45.07	2.19
0.007249	43.88	2.19	0.004372	48.23	2.23	0.003166	52.06	2.32	0.002238	45.12	2.19
0.007259	43.91	2.19	0.004378	48.30	2.23	0.00317	52.10	2.32	0.002241	45.17	2.19
0.007269	43.93	2.19	0.004382	48.39	2.23	0.00317	52.14	2.32	0.002245	45.22	2.19
0.007279	43.96	2.19	0.004387	48.46	2.23	0.003173	52.19	2.33	0.002247	45.27	2.19
0.007289	43.99	2.19	0.004392	48.54	2.24	0.003177	52.24	2.33	0.00225	45.31	2.19
0.007299	44.02	2.19	0.004392	48.61	2.24	0.00318	52.30	2.33	0.00225	45.36	2.19
0.007309	44.05	2.19	0.004396	48.68	2.24	0.003184	52.36	2.33	0.002253	45.42	2.19
0.007313	44.09	2.19	0.004401	48.74	2.24	0.003187	52.42	2.33	0.002253	45.49	2.20
0.007322	44.14	2.19	0.004405	48.79	2.24	0.003191	52.50	2.34	0.002256	45.56	2.20
0.007331	44.18	2.19	0.004405	48.83	2.24	0.003195	52.57	2.34	0.002259	45.66	2.20
0.007339	44.23	2.19	0.004412	48.88	2.24	0.003199	52.66	2.34	0.002262	45.75	2.20

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007347	44.27	2.19	0.004417	48.93	2.24	0.003203	52.75	2.34	0.002266	45.86	2.20
0.007357	44.31	2.19	0.004422	48.98	2.24	0.003208	52.85	2.35	0.002269	45.97	2.20
0.007361	44.36	2.19	0.004427	49.03	2.25	0.003208	52.95	2.35	0.002272	46.10	2.20
0.007361	44.40	2.19	0.004432	49.07	2.25	0.003212	53.06	2.36	0.002275	46.23	2.20
0.007368	44.44	2.19	0.004435	49.11	2.25	0.003216	53.18	2.36	0.002278	46.35	2.20
0.007375	44.49	2.19	0.004439	49.15	2.25	0.003219	53.31	2.36	0.00228	46.45	2.21
0.007382	44.53	2.19	0.004445	49.18	2.25	0.003223	53.45	2.37	0.002281	46.55	2.21
0.007388	44.56	2.19	0.004445	49.20	2.25	0.003228	53.58	2.37	0.002283	46.63	2.21
0.007394	44.61	2.19	0.004445	49.22	2.25	0.003232	53.72	2.38	0.002285	46.69	2.21
0.007401	44.66	2.19	0.004451	49.24	2.25	0.003237	53.88	2.38	0.002289	46.75	2.21
0.007411	44.71	2.19	0.004455	49.27	2.25	0.003242	54.03	2.39	0.002292	46.82	2.21
0.007421	44.75	2.19	0.00446	49.30	2.25	0.003247	54.20	2.40	0.002296	46.89	2.21
0.007431	44.79	2.19	0.00446	49.35	2.25	0.003253	54.38	2.40	0.002299	46.96	2.21
0.007441	44.83	2.19	0.004465	49.40	2.25	0.003253	54.56	2.41	0.002301	47.02	2.21
0.007441	44.87	2.19	0.004471	49.46	2.25	0.003256	54.74	2.42	0.002304	47.08	2.21
0.00745	44.90	2.19	0.004477	49.52	2.26	0.003259	54.91	2.43	0.002306	47.14	2.21
0.007451	44.93	2.19	0.004482	49.59	2.26	0.00326	55.08	2.43	0.002309	47.20	2.21
0.007461	44.97	2.19	0.004487	49.64	2.26	0.00326	55.24	2.44	0.002311	47.24	2.22
0.007471	45.01	2.19	0.004493	49.68	2.26	0.003263	55.40	2.45	0.002313	47.27	2.22
0.00748	45.05	2.19	0.004498	49.72	2.26	0.003267	55.55	2.46	0.002315	47.29	2.22
0.00749	45.09	2.19	0.004501	49.77	2.26	0.00327	55.71	2.46	0.002317	47.33	2.22

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007499	45.13	2.19	0.004509	49.81	2.26	0.003274	55.86	2.47	0.002319	47.37	2.22
0.007508	45.18	2.19	0.004515	49.85	2.26	0.003278	56.01	2.48	0.002322	47.42	2.22
0.00751	45.22	2.19	0.004521	49.91	2.26	0.003281	56.17	2.49	0.002325	47.48	2.22
0.007519	45.26	2.19	0.004527	49.97	2.27	0.003285	56.33	2.49	0.002327	47.53	2.22
0.007529	45.29	2.19	0.004527	50.04	2.27	0.003285	56.49	2.50	0.00233	47.59	2.22
0.007529	45.31	2.19	0.004533	50.11	2.27	0.003289	56.65	2.51	0.002333	47.65	2.22
0.007539	45.33	2.19	0.004539	50.20	2.27	0.003293	56.82	2.52	0.002336	47.70	2.22
0.007549	45.36	2.19	0.004546	50.28	2.27	0.003297	56.99	2.53	0.002339	47.75	2.22
0.007559	45.38	2.19	0.004552	50.35	2.27	0.003302	57.16	2.54	0.002342	47.80	2.22
0.007569	45.41	2.19	0.004557	50.43	2.28	0.003306	57.33	2.55	0.002342	47.86	2.22
0.007579	45.46	2.20	0.004559	50.51	2.28	0.003311	57.48	2.55	0.002344	47.91	2.23
0.007589	45.50	2.20	0.004565	50.60	2.28	0.003311	57.62	2.56	0.002347	47.97	2.23
0.007599	45.56	2.20	0.004571	50.69	2.28	0.003317	57.75	2.57	0.002349	48.04	2.23
0.007609	45.62	2.20	0.004576	50.78	2.29	0.003323	57.88	2.58	0.002352	48.10	2.23
0.007619	45.69	2.20	0.004583	50.88	2.29	0.00333	58.00	2.59	0.002355	48.17	2.23
0.007628	45.75	2.20	0.004589	51.00	2.29	0.003336	58.13	2.59	0.002358	48.23	2.23
0.007637	45.81	2.20	0.004589	51.12	2.29	0.003342	58.26	2.60	0.00236	48.30	2.23
0.007647	45.86	2.20	0.004596	51.24	2.30	0.003348	58.39	2.61	0.00236	48.36	2.23
0.007657	45.92	2.20	0.004597	51.37	2.30	0.003354	58.52	2.62	0.002363	48.42	2.23
0.007667	45.97	2.20	0.004603	51.51	2.31	0.003357	58.65	2.63	0.002365	48.49	2.24
0.007676	46.03	2.20	0.004603	51.65	2.31	0.003363	58.76	2.63	0.002366	48.56	2.24

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007686	46.08	2.20	0.00461	51.80	2.31	0.003369	58.86	2.64	0.002368	48.63	2.24
0.007696	46.15	2.20	0.004617	51.96	2.32	0.003375	58.96	2.65	0.002371	48.70	2.24
0.007706	46.22	2.20	0.004625	52.13	2.32	0.003381	59.05	2.65	0.002373	48.76	2.24
0.007716	46.29	2.20	0.004632	52.32	2.33	0.003388	59.13	2.66	0.002376	48.83	2.24
0.007726	46.34	2.20	0.004633	52.51	2.34	0.003393	59.22	2.66	0.002379	48.90	2.24
0.007726	46.40	2.20	0.004639	52.71	2.34	0.003398	59.29	2.67	0.002379	48.97	2.24
0.007736	46.45	2.21	0.004646	52.90	2.35	0.003403	59.36	2.67	0.002381	49.03	2.25
0.007745	46.51	2.21	0.004652	53.08	2.36	0.003407	59.42	2.68	0.002383	49.09	2.25
0.007754	46.56	2.21	0.004659	53.27	2.36	0.003412	59.47	2.68	0.002384	49.15	2.25
0.007764	46.61	2.21	0.004661	53.46	2.37	0.003417	59.51	2.68	0.002386	49.21	2.25
0.007774	46.67	2.21	0.004667	53.64	2.38	0.003423	59.54	2.69	0.002388	49.27	2.25
0.007784	46.73	2.21	0.00467	53.81	2.38	0.003428	59.56	2.69	0.002391	49.32	2.25
0.007794	46.78	2.21	0.00467	53.98	2.39	0.003432	59.56	2.69	0.002392	49.38	2.25
0.007804	46.84	2.21	0.004678	54.14	2.39	0.003438	59.54	2.69	0.002393	49.44	2.25
0.007814	46.90	2.21	0.004678	54.30	2.40	0.003444	59.51	2.68	0.002395	49.51	2.26
0.007824	46.97	2.21	0.004688	54.45	2.41	0.00345	59.46	2.68	0.002397	49.59	2.26
0.007834	47.05	2.21	0.004697	54.60	2.41	0.003455	59.40	2.68	0.002399	49.66	2.26
0.007844	47.12	2.21	0.004707	54.74	2.42	0.003459	59.31	2.67	0.002401	49.72	2.26
0.007854	47.19	2.21	0.004714	54.88	2.43	0.003464	59.20	2.66	0.002403	49.76	2.26
0.007864	47.24	2.22	0.004714	55.00	2.43	0.00347	59.07	2.65	0.002405	49.80	2.26
0.007869	47.29	2.22	0.004714	55.12	2.44	0.003476	58.91	2.64	0.002407	49.85	2.26

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.007878	47.33	2.22	0.004714	55.22	2.44	0.003483	58.71	2.63	0.002409	49.90	2.26
0.007888	47.37	2.22	0.004719	55.32	2.44	0.00349	58.48	2.62	0.002411	49.95	2.27
0.007898	47.41	2.22	0.004726	55.41	2.45	0.003496	58.20	2.60	0.002413	50.00	2.27
0.007907	47.46	2.22	0.004736	55.50	2.45	0.003502	57.84	2.58	0.002415	50.05	2.27
0.007917	47.50	2.22	0.004745	55.58	2.46	0.003508	57.44	2.55	0.002417	50.10	2.27
0.007927	47.55	2.22	0.004746	55.66	2.46	0.003513	56.97	2.53	0.00242	50.16	2.27
0.007937	47.61	2.22	0.004752	55.73	2.46	0.003519	56.46	2.50	0.002422	50.21	2.27
0.007937	47.66	2.22	0.004753	55.80	2.47	0.003526	55.89	2.47	0.002425	50.27	2.27
0.007947	47.72	2.22	0.004756	55.88	2.47	0.003532	55.27	2.44	0.002428	50.34	2.27
0.007957	47.78	2.22	0.004763	55.95	2.47	0.003539	54.57	2.41	0.002431	50.41	2.28
0.007967	47.84	2.22	0.004771	56.02	2.48	0.003545	53.79	2.38	0.002434	50.47	2.28
0.007977	47.89	2.23	0.004778	56.08	2.48	0.003551	52.96	2.35	0.002434	50.54	2.28
0.007987	47.94	2.23	0.004784	56.14	2.48	0.003557	52.04	2.32	0.002437	50.61	2.28
0.007997	47.99	2.23	0.004791	56.18	2.49	0.003564	51.06	2.29	0.00244	50.68	2.28
0.008007	48.05	2.23	0.004791	56.22	2.49	0.003564	50.19	2.27	0.002443	50.75	2.28
0.008007	48.09	2.23	0.004791	56.25	2.49	0.003564	49.45	2.25	0.002446	50.80	2.29
0.008017	48.13	2.23	0.004798	56.29	2.49	0.003565	48.81	2.24	0.002449	50.85	2.29
0.008027	48.17	2.23	0.004805	56.32	2.49	0.003571	48.27	2.23	0.002451	50.89	2.29
0.008027	48.21	2.23	0.004807	56.35	2.49	0.003576	47.82	2.22	0.002454	50.93	2.29
0.008037	48.25	2.23	0.004814	56.36	2.50	0.003581	47.43	2.22	0.002457	50.97	2.29
0.008047	48.31	2.23	0.004821	56.38	2.50	0.003581	47.08	2.21	0.00246	51.02	2.29

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.008057	48.37	2.23	0.004827	56.38	2.50	0.003585	46.77	2.21	0.002463	51.07	2.29
0.008057	48.45	2.23	0.004833	56.39	2.50	0.003589	46.49	2.21	0.002466	51.13	2.30
0.008067	48.53	2.24	0.004843	56.39	2.50	0.003591	46.24	2.20	0.00247	51.20	2.30
0.008067	48.61	2.24	0.004849	56.37	2.50	0.003594	46.01	2.20	0.002475	51.27	2.30
0.008077	48.70	2.24	0.004855	56.34	2.49	0.003596	45.79	2.20	0.002475	51.35	2.30
0.008088	48.79	2.24	0.00486	56.31	2.49	0.003599	45.59	2.20	0.002478	51.44	2.30
0.008098	48.88	2.24	0.004862	56.26	2.49	0.0036	45.42	2.19	0.002479	51.53	2.31
0.008108	48.96	2.24	0.004869	56.20	2.49	0.003602	45.28	2.19	0.002481	51.62	2.31
0.008108	49.05	2.25	0.004876	56.13	2.48	0.003602	45.16	2.19	0.002482	51.71	2.31
0.008118	49.13	2.25	0.004883	56.03	2.48	0.003602	45.05	2.19	0.002484	51.80	2.31
0.008128	49.22	2.25	0.00489	55.92	2.47	0.003602	44.98	2.19	0.002485	51.89	2.32
0.008138	49.32	2.25	0.004891	55.80	2.47	0.003602	44.92	2.19	0.002485	51.98	2.32
0.008148	49.41	2.25	0.004892	55.66	2.46	0.003607	44.87	2.19	0.002487	52.07	2.32
0.008158	49.50	2.26	0.004897	55.90	2.47	0.003609	44.85	2.19	0.002489	52.18	2.33
0.008161	49.60	2.26	0.004904	56.11	2.48	0.003609	44.83	2.19	0.002491	52.27	2.33
0.008171	49.69	2.26	0.00491	56.31	2.49	0.003614	44.83	2.19	0.002491	52.36	2.33
0.008181	49.78	2.26	0.004916	56.38	2.50	0.003614	44.84	2.19	0.002494	52.45	2.33
0.008191	49.87	2.26	0.004922	56.33	2.49	0.003619	44.86	2.19	0.002498	52.55	2.34
0.008201	49.95	2.27	0.004922	56.20	2.49	0.003624	44.90	2.19	0.002501	52.65	2.34
0.008211	50.04	2.27	0.004932	56.06	2.48	0.003627	44.94	2.19	0.002505	52.76	2.34
0.008221	50.13	2.27	0.004941	55.89	2.47	0.00363	44.99	2.19	0.002505	52.88	2.35

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.008232	50.22	2.27	0.004945	55.69	2.46	0.00363	45.02	2.19	0.002509	53.02	2.35
0.008242	50.31	2.27	0.004951	55.79	2.47	0.00363	45.06	2.19	0.002512	53.15	2.36
0.008252	50.40	2.28	0.004957	56.19	2.49	0.003631	45.09	2.19	0.002513	53.27	2.36
0.008262	50.49	2.28	0.004964	56.45	2.50	0.003631	45.11	2.19	0.002516	53.39	2.37
0.008272	50.58	2.28	0.00497	56.56	2.51	0.003634	45.14	2.19	0.00252	53.51	2.37
0.008282	50.67	2.28	0.004977	56.53	2.50	0.003638	45.17	2.19	0.002523	53.64	2.38
0.008292	50.75	2.29	0.004984	56.44	2.50	0.003641	45.21	2.19	0.002526	53.77	2.38
0.008302	50.84	2.29	0.004984	56.22	2.49	0.003645	45.26	2.19	0.00253	53.91	2.39
0.008312	50.92	2.29	0.00499	55.80	2.47	0.003645	45.31	2.19	0.002533	54.05	2.39
0.008322	51.01	2.29	0.004997	55.22	2.44	0.003645	45.36	2.19	0.002533	54.19	2.40
0.008332	51.11	2.29	0.005003	54.48	2.41	0.003646	45.41	2.19	0.002537	54.33	2.40
0.008342	51.21	2.30	0.00501	53.58	2.37	0.003646	45.47	2.20	0.002537	54.46	2.41
0.008345	51.31	2.30	0.005017	52.50	2.34	0.003648	45.53	2.20	0.002542	54.59	2.41
0.008355	51.43	2.30	0.00502	51.23	2.30	0.003649	45.60	2.20	0.002546	54.73	2.42
0.008365	51.55	2.31	0.005027	50.17	2.27	0.00365	45.67	2.20	0.002546	54.87	2.43
0.008375	51.66	2.31	0.005032	48.92	2.24	0.003653	45.75	2.20	0.002551	55.01	2.43
0.008385	51.76	2.31	0.005038	47.56	2.22	0.003656	45.83	2.20	0.002555	55.15	2.44
0.008395	51.87	2.32	0.005038	46.36	2.20	0.003658	45.91	2.20	0.002558	55.29	2.44
0.008405	51.98	2.32	0.00504	45.28	2.19	0.003661	46.00	2.20	0.00256	55.43	2.45
0.008415	52.10	2.32	0.005047	44.01	2.19	0.003664	46.09	2.20	0.002562	55.57	2.46
0.008425	52.24	2.33	0.005055	42.86	2.18	0.003667	46.18	2.20	0.002565	55.72	2.46

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.008435	52.39	2.33	0.005057	41.81	2.18	0.00367	46.26	2.20	0.002569	55.87	2.47
0.008445	52.55	2.34	0.005063	40.92	2.19	0.003673	46.33	2.20	0.002573	56.04	2.48
0.008455	52.73	2.34	0.005065	40.16	2.19	0.003675	46.40	2.20	0.002577	56.22	2.49
0.008466	52.91	2.35	0.005068	39.48	2.20	0.003675	46.47	2.21	0.00258	56.38	2.50
0.008476	53.11	2.36	0.005074	38.88	2.20	0.003677	46.53	2.21	0.002584	56.53	2.50
0.008486	53.32	2.36	0.00508	38.33	2.21	0.003681	46.60	2.21	0.002588	56.67	2.51
0.008496	53.56	2.37	0.005082	37.87	2.21	0.003681	46.67	2.21	0.002591	56.80	2.52
0.008506	53.82	2.38	0.005088	37.46	2.22	0.003685	46.74	2.21	0.002591	56.91	2.52
0.008516	54.11	2.39	0.005094	37.07	2.23	0.003689	46.80	2.21	0.002591	57.01	2.53
0.008526	54.43	2.41	0.0051	36.78	2.23	0.003693	46.87	2.21	0.002592	57.13	2.54
0.008536	54.76	2.42	0.0051	36.51	2.24	0.003693	46.94	2.21	0.002596	57.26	2.54
0.008546	55.08	2.43	0.005105	36.32	2.24	0.003696	47.01	2.21	0.0026	57.38	2.55
0.008556	55.33	2.45	0.005105	36.20	2.24	0.003699	47.08	2.21	0.0026	57.50	2.56
0.008566	55.52	2.45	0.005115	36.15	2.24	0.003702	47.14	2.21	0.0026	57.62	2.56
0.008568	55.63	2.46	0.005122	36.06	2.24	0.003706	47.21	2.21	0.002603	57.74	2.57
0.008578	55.79	2.47	0.005124	36.00	2.25	0.00371	47.27	2.22	0.002607	57.86	2.58
0.008588	55.88	2.47	0.005128	35.99	2.25	0.003714	47.32	2.22	0.002607	57.98	2.58
0.008598	55.99	2.48	0.005135	36.01	2.25	0.003717	47.38	2.22	0.00261	58.10	2.59
0.008608	56.02	2.48	0.005142	36.04	2.25	0.003721	47.43	2.22	0.002611	58.22	2.60
0.008618	55.94	2.47	0.005149	36.10	2.24	0.003725	47.47	2.22	0.002615	58.33	2.61
0.008628	55.76	2.47	0.005155	36.17	2.24	0.003728	47.52	2.22	0.002618	58.45	2.61

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.008638	55.48	2.45	0.005161	36.27	2.24	0.003728	47.57	2.22	0.002623	58.56	2.62
0.008639	55.14	2.44	0.005167	36.43	2.24	0.003729	47.61	2.22	0.002627	58.68	2.63
0.008649	54.80	2.42	0.005173	36.63	2.23	0.003732	47.65	2.22	0.002632	58.80	2.64
0.008659	54.41	2.41	0.005178	36.87	2.23	0.003735	47.69	2.22	0.002637	58.92	2.64
0.008669	54.02	2.39	0.005184	37.11	2.23	0.003738	47.73	2.22	0.00264	59.05	2.65
0.008679	53.48	2.37	0.005191	37.39	2.22	0.003741	47.78	2.22	0.002643	59.18	2.66
0.008689	52.87	2.35	0.005193	37.72	2.22	0.003744	47.83	2.22	0.002646	59.31	2.67
0.008699	52.18	2.33	0.005199	38.03	2.21	0.003747	47.89	2.23	0.002649	59.44	2.68
0.008709	51.47	2.30	0.005206	38.31	2.21	0.003747	47.94	2.23	0.002649	59.57	2.69
0.008719	50.68	2.28	0.005213	38.64	2.20	0.00375	48.00	2.23	0.00265	59.71	2.70
0.008729	49.76	2.26	0.005219	38.96	2.20	0.003754	48.06	2.23	0.002654	59.85	2.71
0.008739	48.72	2.24	0.005226	39.26	2.20	0.003754	48.12	2.23	0.002658	59.99	2.72
0.00875	47.96	2.23	0.005226	39.53	2.20	0.003757	48.19	2.23	0.00266	60.14	2.73
0.00876	47.46	2.22	0.005231	39.78	2.19	0.003757	48.26	2.23	0.002663	60.30	2.74
0.00877	47.22	2.22	0.005236	40.02	2.19	0.003761	48.33	2.23	0.002667	60.46	2.75
0.00878	46.89	2.21	0.005242	40.24	2.19	0.003765	48.40	2.23	0.002671	60.61	2.77
0.00879	46.41	2.20	0.005247	40.46	2.19	0.003768	48.46	2.23	0.002675	60.78	2.78
0.0088	45.80	2.20	0.005253	40.67	2.19	0.003772	48.52	2.24	0.002678	60.96	2.79
0.00881	45.03	2.19	0.005262	40.88	2.19	0.003775	48.58	2.24	0.002681	61.13	2.81
0.008819	44.07	2.19	0.005269	41.10	2.19	0.003779	48.64	2.24	0.002684	61.30	2.82
0.008829	43.27	2.18	0.005276	41.33	2.18	0.003782	48.70	2.24	0.002686	61.47	2.84

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.008839	42.64	2.18	0.005278	41.56	2.18	0.003784	48.76	2.24	0.002687	61.64	2.85
0.008849	42.20	2.18	0.005282	41.82	2.18	0.003787	48.81	2.24	0.002687	61.82	2.87
0.008859	41.88	2.18	0.005287	42.08	2.18	0.003789	48.87	2.24	0.002694	62.01	2.89
0.008859	41.26	2.18	0.005293	42.31	2.18	0.003791	48.92	2.24	0.002694	62.20	2.90
0.008869	40.74	2.19	0.0053	42.52	2.18	0.003794	48.97	2.24	0.002697	62.42	2.92
0.008879	40.33	2.19	0.005301	42.73	2.18	0.003795	49.02	2.25	0.002699	62.52	2.93
0.008889	39.77	2.19	0.005308	42.91	2.18	0.003798	49.07	2.25	0.002701	62.51	2.93
0.008899	39.30	2.20	0.005313	43.10	2.18	0.0038	49.12	2.25	0.002702	62.38	2.92
0.008905	38.91	2.20	0.005319	43.27	2.18	0.003803	49.17	2.25	0.002702	62.25	2.91
0.008915	38.23	2.21	0.005325	43.44	2.18	0.003805	49.22	2.25	0.002705	62.11	2.89
0.008925	37.60	2.22	0.005331	43.60	2.18	0.003807	49.28	2.25	0.002705	61.97	2.88
0.008935	37.04	2.23	0.005338	43.74	2.18	0.003811	49.33	2.25	0.002708	61.81	2.87
0.008945	36.55	2.24	0.005338	43.87	2.19	0.003815	49.38	2.25	0.00271	61.64	2.85
0.008955	36.13	2.24	0.005338	44.00	2.19	0.003819	49.44	2.25	0.002713	61.46	2.84
0.008965	35.77	2.25	0.005338	44.13	2.19	0.003822	49.51	2.26	0.002713	61.27	2.82
0.008975	35.48	2.26	0.005338	44.27	2.19	0.003826	49.56	2.26	0.002714	61.01	2.80
0.008977	35.25	2.26	0.005344	44.41	2.19	0.003828	49.62	2.26	0.002718	60.67	2.77
0.008987	35.10	2.27	0.005349	44.55	2.19	0.003831	49.67	2.26	0.002722	60.32	2.74
0.008997	35.02	2.27	0.005355	44.68	2.19	0.003833	49.73	2.26	0.002723	59.97	2.72
0.009007	35.02	2.27	0.00536	44.79	2.19	0.003836	49.79	2.26	0.002728	59.56	2.69
0.009017	34.99	2.27	0.00536	44.90	2.19	0.003839	49.85	2.26	0.002729	59.14	2.66

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009027	34.92	2.27	0.005365	45.00	2.19	0.003842	49.91	2.26	0.002736	58.85	2.64
0.009037	34.90	2.27	0.00537	45.09	2.19	0.003846	49.97	2.27	0.002736	58.69	2.63
0.009047	34.90	2.27	0.005375	45.17	2.19	0.003849	50.03	2.27	0.002736	58.51	2.62
0.009057	34.90	2.27	0.005375	45.24	2.19	0.003852	50.09	2.27	0.002737	58.30	2.60
0.009068	34.87	2.27	0.005376	45.30	2.19	0.003855	50.15	2.27	0.00274	58.06	2.59
0.009068	34.86	2.27	0.005376	45.35	2.19	0.003856	50.21	2.27	0.00274	57.66	2.57
0.009078	34.86	2.27	0.005376	45.41	2.19	0.00386	50.27	2.27	0.002745	57.07	2.53
0.009088	34.85	2.27	0.005377	45.48	2.20	0.003864	50.34	2.27	0.002745	56.43	2.50
0.009098	34.81	2.27	0.005378	45.57	2.20	0.003869	50.40	2.28	0.00275	55.74	2.46
0.009108	34.74	2.27	0.005383	45.67	2.20	0.003872	50.47	2.28	0.002755	54.98	2.43
0.009118	34.72	2.27	0.005388	45.77	2.20	0.003875	50.55	2.28	0.002761	54.15	2.40
0.009128	34.68	2.28	0.005395	45.90	2.20	0.003879	50.62	2.28	0.002767	53.24	2.36
0.009138	34.66	2.28	0.005401	46.02	2.20	0.00388	50.69	2.28	0.002768	52.41	2.33
0.009148	34.64	2.28	0.005407	46.14	2.20	0.003884	50.76	2.29	0.002773	51.53	2.31
0.009158	34.65	2.28	0.00541	46.25	2.20	0.003888	50.83	2.29	0.002778	50.55	2.28
0.009168	34.68	2.28	0.005413	46.36	2.20	0.003888	50.90	2.29	0.002785	49.61	2.26
0.009178	34.73	2.27	0.005416	46.46	2.21	0.003892	50.97	2.29	0.002785	48.71	2.24
0.009188	34.75	2.27	0.005416	46.56	2.21	0.003897	51.05	2.29	0.002789	47.95	2.23
0.009199	34.74	2.27	0.005419	46.65	2.21	0.003901	51.13	2.30	0.002793	47.32	2.22
0.009209	34.75	2.27	0.005422	46.74	2.21	0.003905	51.21	2.30	0.002797	46.84	2.21
0.009219	34.76	2.27	0.005425	46.83	2.21	0.003908	51.28	2.30	0.0028	46.46	2.21

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009229	34.79	2.27	0.005429	46.92	2.21	0.003913	51.35	2.30	0.002801	46.14	2.20
0.009239	34.84	2.27	0.005429	47.00	2.21	0.003917	51.42	2.30	0.002803	45.86	2.20
0.009249	34.92	2.27	0.005435	47.08	2.21	0.003919	51.48	2.30	0.002808	45.61	2.20
0.009253	35.05	2.27	0.005436	47.16	2.21	0.003921	51.55	2.31	0.00281	45.38	2.19
0.009263	35.19	2.26	0.005438	47.24	2.22	0.003921	51.61	2.31	0.002815	45.19	2.19
0.009263	35.31	2.26	0.005438	47.32	2.22	0.003921	51.67	2.31	0.00282	45.03	2.19
0.009263	35.48	2.26	0.005445	47.40	2.22	0.003921	51.73	2.31	0.002821	44.90	2.19
0.009273	35.68	2.25	0.005451	47.50	2.22	0.003924	51.79	2.31	0.002825	44.82	2.19
0.009283	35.92	2.25	0.005456	47.59	2.22	0.003927	51.84	2.32	0.002828	44.76	2.19
0.009293	36.21	2.24	0.005458	47.68	2.22	0.003931	51.90	2.32	0.002832	44.72	2.19
0.009303	36.54	2.24	0.005464	47.77	2.22	0.003934	51.96	2.32	0.002835	44.71	2.19
0.009313	36.91	2.23	0.005471	47.86	2.22	0.003937	52.02	2.32	0.002839	44.72	2.19
0.009323	37.26	2.22	0.005476	47.95	2.23	0.003937	52.09	2.32	0.002842	44.74	2.19
0.00933	37.56	2.22	0.005479	48.05	2.23	0.003937	52.16	2.33	0.002842	44.79	2.19
0.00933	37.83	2.21	0.005486	48.14	2.23	0.00394	52.23	2.33	0.002844	44.85	2.19
0.00934	38.08	2.21	0.005492	48.24	2.23	0.003944	52.32	2.33	0.002847	44.93	2.19
0.009349	38.31	2.21	0.005493	48.34	2.23	0.003947	52.41	2.33	0.002847	45.01	2.19
0.009358	38.51	2.21	0.0055	48.43	2.23	0.003951	52.51	2.34	0.00285	45.11	2.19
0.009366	38.69	2.20	0.005505	48.52	2.24	0.003954	52.62	2.34	0.002855	45.19	2.19
0.009376	38.86	2.20	0.00551	48.61	2.24	0.003958	52.73	2.34	0.002859	45.27	2.19
0.009376	39.03	2.20	0.005515	48.69	2.24	0.003962	52.85	2.35	0.002864	45.36	2.19

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009386	39.20	2.20	0.005524	48.76	2.24	0.003965	52.96	2.35	0.002864	45.44	2.19
0.009396	39.36	2.20	0.005529	48.83	2.24	0.003965	53.06	2.35	0.002867	45.52	2.20
0.009406	39.53	2.20	0.005535	48.89	2.24	0.003966	53.16	2.36	0.00287	45.60	2.20
0.009416	39.69	2.19	0.00554	48.95	2.24	0.003969	53.26	2.36	0.00287	45.68	2.20
0.009426	39.84	2.19	0.005546	49.01	2.25	0.003969	53.36	2.37	0.002874	45.75	2.20
0.009436	39.98	2.19	0.005552	49.07	2.25	0.003971	53.45	2.37	0.002878	45.83	2.20
0.009445	40.11	2.19	0.005553	49.14	2.25	0.003976	53.55	2.37	0.002881	45.91	2.20
0.009454	40.23	2.19	0.005558	49.19	2.25	0.003977	53.64	2.38	0.002885	46.00	2.20
0.009459	40.35	2.19	0.005558	49.24	2.25	0.003978	53.73	2.38	0.002888	46.09	2.20
0.009469	40.46	2.19	0.005564	49.29	2.25	0.00398	53.82	2.38	0.00289	46.17	2.20
0.009479	40.58	2.19	0.005564	49.33	2.25	0.00398	53.91	2.39	0.002892	46.26	2.20
0.009489	40.70	2.19	0.005571	49.38	2.25	0.003983	54.01	2.39	0.002892	46.34	2.20
0.009499	40.82	2.19	0.005578	49.43	2.25	0.003983	54.10	2.39	0.002894	46.41	2.20
0.009507	40.92	2.19	0.005583	49.49	2.26	0.003984	54.20	2.40	0.002894	46.49	2.21
0.009517	41.02	2.19	0.00559	49.55	2.26	0.003985	54.29	2.40	0.002897	46.56	2.21
0.009527	41.10	2.19	0.005596	49.60	2.26	0.003989	54.39	2.41	0.002897	46.64	2.21
0.009537	41.19	2.19	0.005602	49.66	2.26	0.003991	54.49	2.41	0.002897	46.71	2.21
0.009547	41.28	2.18	0.005608	49.73	2.26	0.003994	54.59	2.41	0.002899	46.77	2.21
0.009557	41.38	2.18	0.005614	49.79	2.26	0.003994	54.68	2.42	0.002902	46.83	2.21
0.009557	41.47	2.18	0.005614	49.85	2.26	0.003999	54.78	2.42	0.002904	46.89	2.21
0.009567	41.57	2.18	0.005618	49.91	2.26	0.004003	54.87	2.43	0.002905	46.94	2.21

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009567	41.67	2.18	0.005623	49.98	2.27	0.004006	54.98	2.43	0.002906	47.00	2.21
0.009577	41.78	2.18	0.005629	50.03	2.27	0.00401	55.09	2.43	0.002909	47.06	2.21
0.009577	41.87	2.18	0.005635	50.09	2.27	0.004014	55.22	2.44	0.002912	47.13	2.21
0.009587	41.96	2.18	0.005641	50.15	2.27	0.004018	55.35	2.45	0.002915	47.20	2.21
0.009597	42.05	2.18	0.005646	50.21	2.27	0.004021	55.50	2.45	0.002917	47.27	2.22
0.009607	42.16	2.18	0.005651	50.27	2.27	0.004023	55.66	2.46	0.002919	47.35	2.22
0.009617	42.28	2.18	0.005657	50.33	2.27	0.004028	55.82	2.47	0.002921	47.42	2.22
0.009623	42.41	2.18	0.005662	50.40	2.28	0.004034	55.98	2.48	0.002922	47.50	2.22
0.009632	42.52	2.18	0.005666	50.45	2.28	0.004039	56.13	2.48	0.002924	47.57	2.22
0.009642	42.63	2.18	0.005671	50.51	2.28	0.004045	56.28	2.49	0.002925	47.64	2.22
0.009646	42.74	2.18	0.005673	50.58	2.28	0.00405	56.43	2.50	0.002927	47.70	2.22
0.009656	42.83	2.18	0.00568	50.66	2.28	0.004056	56.58	2.51	0.002927	47.77	2.22
0.009664	42.93	2.18	0.005685	50.74	2.28	0.004057	56.73	2.51	0.002927	47.83	2.22
0.009674	43.01	2.18	0.00569	50.83	2.29	0.004057	56.87	2.52	0.002928	47.90	2.23
0.009684	43.10	2.18	0.005695	50.91	2.29	0.004062	57.02	2.53	0.00293	47.97	2.23
0.009694	43.18	2.18	0.0057	50.99	2.29	0.004063	57.15	2.54	0.002932	48.05	2.23
0.009704	43.26	2.18	0.005702	51.07	2.29	0.004068	57.28	2.54	0.002934	48.12	2.23
0.009714	43.35	2.18	0.005704	51.14	2.30	0.004072	57.41	2.55	0.002938	48.20	2.23
0.009719	43.43	2.18	0.005707	51.21	2.30	0.004072	57.53	2.56	0.002941	48.29	2.23
0.009719	43.50	2.18	0.005709	51.27	2.30	0.004072	57.64	2.56	0.002946	48.37	2.23
0.009719	43.56	2.18	0.005712	51.32	2.30	0.004077	57.76	2.57	0.002949	48.45	2.23

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009728	43.63	2.18	0.005714	51.37	2.30	0.004082	57.86	2.58	0.002952	48.52	2.24
0.009728	43.69	2.18	0.005716	51.42	2.30	0.004088	57.97	2.58	0.002955	48.59	2.24
0.009728	43.75	2.18	0.005718	51.47	2.30	0.004094	58.07	2.59	0.002959	48.67	2.24
0.009728	43.81	2.18	0.005719	51.52	2.31	0.004097	58.17	2.60	0.002963	48.74	2.24
0.009738	43.86	2.19	0.005723	51.57	2.31	0.004097	58.27	2.60	0.002963	48.81	2.24
0.009738	43.89	2.19	0.005727	51.62	2.31	0.004097	58.37	2.61	0.002965	48.88	2.24
0.009747	43.92	2.19	0.005731	51.66	2.31	0.004102	58.47	2.61	0.002968	48.94	2.24
0.009758	43.95	2.19	0.005736	51.71	2.31	0.004106	58.55	2.62	0.00297	48.99	2.24
0.009768	43.97	2.19	0.005741	51.76	2.31	0.004106	58.64	2.63	0.002972	49.03	2.25
0.009778	43.98	2.19	0.005746	51.80	2.31	0.004107	58.72	2.63	0.002976	49.06	2.25
0.009778	43.99	2.19	0.005751	51.85	2.32	0.004111	58.80	2.64	0.002979	49.08	2.25
0.009788	43.99	2.19	0.005756	51.89	2.32	0.004115	58.87	2.64	0.002982	49.11	2.25
0.00979	43.98	2.19	0.005761	51.94	2.32	0.004115	58.93	2.64	0.002983	49.14	2.25
0.009798	43.98	2.19	0.005765	52.00	2.32	0.004115	58.99	2.65	0.002986	49.18	2.25
0.009807	43.99	2.19	0.005769	52.06	2.32	0.004115	59.05	2.65	0.00299	49.21	2.25
0.009815	44.01	2.19	0.005774	52.12	2.32	0.004115	59.11	2.66	0.00299	49.25	2.25
0.009825	44.03	2.19	0.005779	52.19	2.33	0.00412	59.18	2.66	0.002993	49.28	2.25
0.009835	44.06	2.19	0.005785	52.25	2.33	0.00412	59.24	2.67	0.002993	49.31	2.25
0.009837	44.09	2.19	0.005792	52.32	2.33	0.004125	59.31	2.67	0.002995	49.34	2.25
0.009847	44.11	2.19	0.005795	52.38	2.33	0.004125	59.38	2.67	0.002998	49.36	2.25
0.009857	44.14	2.19	0.005796	52.43	2.33	0.004131	59.45	2.68	0.003001	49.39	2.25

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.009867	44.18	2.19	0.005797	52.49	2.34	0.004136	59.53	2.69	0.003001	49.42	2.25
0.009878	44.21	2.19	0.005797	52.54	2.34	0.004136	59.62	2.69	0.003004	49.46	2.25
0.009888	44.24	2.19	0.005803	52.60	2.34	0.004142	59.71	2.70	0.003004	49.50	2.26
0.009888	44.26	2.19	0.005804	52.66	2.34	0.004147	59.80	2.70	0.003005	49.54	2.26
0.009894	44.28	2.19	0.005804	52.73	2.34	0.004152	59.90	2.71	0.003007	49.57	2.26
0.009904	44.30	2.19	0.005808	52.81	2.35	0.004157	59.98	2.72	0.003009	49.60	2.26
0.009914	44.31	2.19	0.005812	52.90	2.35	0.004162	60.05	2.72	0.003011	49.63	2.26
0.009924	44.33	2.19	0.005816	53.00	2.35	0.004168	60.11	2.73	0.003013	49.65	2.26
0.009934	44.35	2.19	0.00582	53.10	2.36	0.004168	60.16	2.73	0.003016	49.67	2.26
0.009944	44.37	2.19	0.005821	53.20	2.36	0.004174	60.20	2.73	0.003016	49.70	2.26
0.009954	44.39	2.19	0.005823	53.31	2.36	0.00418	60.24	2.74	0.003019	49.73	2.26
0.009964	44.41	2.19	0.005827	53.42	2.37	0.004186	60.26	2.74	0.003019	49.76	2.26
0.009974	44.44	2.19	0.00583	53.53	2.37	0.004192	60.28	2.74	0.003023	49.79	2.26
0.009975	44.47	2.19	0.005834	53.63	2.38	0.004199	60.28	2.74	0.003025	49.83	2.26
0.009985	44.49	2.19	0.005835	53.73	2.38	0.004206	60.26	2.74	0.003028	49.86	2.26
0.009985	44.51	2.19	0.005841	53.84	2.38	0.004212	60.23	2.74	0.003029	49.90	2.26
0.009995	44.54	2.19	0.005842	53.94	2.39	0.004219	60.17	2.73	0.003032	49.93	2.26
0.010005	44.56	2.19	0.005843	54.06	2.39	0.004227	60.08	2.73	0.003032	49.97	2.27
0.010005	44.58	2.19	0.005844	54.19	2.40	0.004234	59.96	2.72	0.003035	50.01	2.27
0.010015	44.61	2.19	0.00585	54.31	2.40	0.004234	59.82	2.71	0.003035	50.05	2.27
0.010025	44.64	2.19	0.005851	54.45	2.41	0.004237	59.55	2.69	0.003038	50.09	2.27

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.01003	44.68	2.19	0.005857	54.58	2.41	0.004242	59.25	2.67	0.003038	50.14	2.27
0.01004	44.72	2.19	0.005863	54.73	2.42	0.004242	58.91	2.64	0.003038	50.19	2.27
0.01005	44.75	2.19	0.005869	54.87	2.43	0.004247	58.52	2.62	0.00304	50.25	2.27
0.01006	44.78	2.19	0.005869	55.02	2.43	0.004252	58.09	2.59	0.003043	50.32	2.27
0.01007	44.83	2.19	0.005875	55.16	2.44	0.004256	57.60	2.56	0.003046	50.38	2.28
0.01008	44.86	2.19	0.00588	55.30	2.44	0.00426	56.99	2.53	0.003049	50.45	2.28
0.010084	44.90	2.19	0.005884	55.44	2.45	0.004263	56.25	2.49	0.00305	50.53	2.28
0.010094	44.95	2.19	0.005886	55.56	2.46	0.004267	55.79	2.47	0.00305	50.61	2.28
0.010104	44.99	2.19	0.005896	55.69	2.46	0.004271	55.25	2.44	0.003054	50.70	2.28
0.010113	45.04	2.19	0.005906	55.82	2.47	0.004276	54.97	2.43	0.003058	50.80	2.29
0.010124	45.08	2.19	0.005916	55.94	2.47	0.004281	54.57	2.41	0.003058	50.90	2.29
0.010133	45.13	2.19	0.005917	56.05	2.48	0.004286	54.08	2.39	0.003061	51.01	2.29
0.010142	45.18	2.19	0.005919	56.16	2.48	0.004291	53.47	2.37	0.003061	51.14	2.30
0.010151	45.22	2.19	0.005919	56.27	2.49	0.004297	52.78	2.35	0.003064	51.26	2.30
0.010161	45.27	2.19	0.00592	56.37	2.50	0.004303	51.97	2.32	0.003064	51.37	2.30
0.010171	45.32	2.19	0.00592	56.47	2.50	0.004308	51.10	2.29	0.003065	51.50	2.31
0.01018	45.37	2.19	0.00593	56.57	2.51	0.004313	50.15	2.27	0.003065	51.63	2.31
0.01019	45.43	2.19	0.00593	56.67	2.51	0.004318	49.33	2.25	0.003069	51.78	2.31
0.010199	45.49	2.20	0.005933	56.78	2.52	0.004322	48.60	2.24	0.003072	51.93	2.32
0.010208	45.56	2.20	0.005943	56.88	2.52	0.004322	47.93	2.23	0.003075	52.09	2.32
0.010218	45.63	2.20	0.00595	56.97	2.53	0.004328	47.33	2.22	0.003078	52.25	2.33

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.010228	45.70	2.20	0.005952	57.06	2.53	0.004333	46.78	2.21	0.003082	52.42	2.33
0.010228	45.77	2.20	0.005958	57.15	2.54	0.004338	46.29	2.20	0.003085	52.61	2.34
0.010238	45.82	2.20	0.005958	57.24	2.54	0.004342	45.86	2.20	0.003089	52.70	2.34
0.010238	45.87	2.20	0.005959	57.33	2.55	0.004347	45.49	2.20	0.003092	52.71	2.34
0.010248	45.92	2.20	0.005968	57.42	2.55	0.004352	45.15	2.19	0.003095	52.72	2.34
0.010248	45.97	2.20	0.005979	57.50	2.56	0.004356	44.86	2.19	0.003097	52.74	2.34
0.010258	46.01	2.20	0.005979	57.59	2.56	0.004361	44.61	2.19	0.0031	52.76	2.34
0.010268	46.06	2.20	0.005987	57.66	2.57	0.004366	44.40	2.19	0.0031	52.79	2.35
0.010268	46.11	2.20	0.005995	57.73	2.57	0.004366	44.22	2.19	0.0031	52.83	2.35
0.010278	46.16	2.20	0.005995	57.80	2.57	0.00437	44.07	2.19	0.003104	52.87	2.35
0.010285	46.22	2.20	0.005998	57.85	2.58	0.004374	43.95	2.19	0.003107	52.91	2.35
0.010295	46.29	2.20	0.005998	57.90	2.58	0.004378	43.85	2.19	0.003111	52.96	2.35
0.010305	46.36	2.20	0.006007	57.95	2.58	0.004383	43.78	2.18	0.003115	53.02	2.35
0.010316	46.42	2.20	0.006014	57.98	2.58	0.004387	43.72	2.18	0.003119	53.07	2.36
0.010326	46.50	2.21	0.006021	58.02	2.59	0.004392	43.68	2.18	0.003122	53.14	2.36
0.010335	46.57	2.21	0.006027	58.05	2.59	0.004396	43.66	2.18	0.003126	53.20	2.36
0.010336	46.64	2.21	0.006034	58.09	2.59	0.0044	43.66	2.18	0.00313	53.27	2.36
0.010346	46.71	2.21	0.00604	58.12	2.59	0.004404	43.68	2.18	0.003134	53.33	2.36
0.010356	46.78	2.21	0.006048	58.16	2.60	0.004407	43.71	2.18	0.003134	53.39	2.37
0.010366	46.85	2.21	0.006048	58.20	2.60	0.004408	43.74	2.18	0.003134	53.46	2.37
0.010376	46.91	2.21	0.006056	58.24	2.60	0.004412	43.78	2.18	0.003134	53.53	2.37

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.010386	46.98	2.21	0.006062	58.27	2.60	0.004416	43.82	2.18	0.003134	53.60	2.37
0.010396	47.05	2.21	0.006071	58.30	2.60	0.00442	43.87	2.19	0.003138	53.68	2.38
0.010406	47.12	2.21	0.006077	58.34	2.61	0.00442	43.91	2.19	0.003138	53.76	2.38
0.010416	47.20	2.21	0.006082	58.39	2.61	0.004424	43.96	2.19	0.003138	53.85	2.38
0.010426	47.26	2.22	0.006088	58.44	2.61	0.004428	44.01	2.19	0.003141	53.95	2.39
0.010436	47.32	2.22	0.006094	58.50	2.62	0.004431	44.06	2.19	0.003142	54.04	2.39
0.010446	47.39	2.22	0.006101	58.56	2.62	0.004433	44.11	2.19	0.003146	54.13	2.39
0.010446	47.46	2.22	0.006106	58.65	2.63	0.004435	44.16	2.19	0.00315	54.23	2.40
0.010456	47.53	2.22	0.00611	58.73	2.63	0.004437	44.21	2.19	0.003155	54.32	2.40
0.010465	47.60	2.22	0.006116	58.82	2.64	0.004437	44.25	2.19	0.00316	54.41	2.41
0.010474	47.68	2.22	0.006123	58.91	2.64	0.004437	44.30	2.19	0.00316	54.51	2.41
0.010484	47.74	2.22	0.006124	59.00	2.65	0.004438	44.35	2.19	0.00316	54.60	2.41
0.010484	47.81	2.22	0.006131	59.07	2.65	0.004442	44.41	2.19	0.00316	54.69	2.42
0.010494	47.87	2.22	0.006137	59.15	2.66	0.004446	44.47	2.19	0.003163	54.77	2.42
0.010504	47.92	2.23	0.006137	59.22	2.66	0.00445	44.53	2.19	0.003163	54.86	2.42
0.010514	47.96	2.23	0.006138	59.30	2.67	0.00445	44.60	2.19	0.003164	54.96	2.43
0.010524	48.00	2.23	0.006144	59.37	2.67	0.004453	44.68	2.19	0.003167	55.06	2.43
0.010531	48.04	2.23	0.00615	59.44	2.68	0.004456	44.76	2.19	0.003167	55.17	2.44
0.010539	48.09	2.23	0.006157	59.51	2.68	0.004458	44.84	2.19	0.00317	55.28	2.44
0.010546	48.13	2.23	0.006163	59.59	2.69	0.004462	44.91	2.19	0.003171	55.41	2.45
0.010553	48.17	2.23	0.00617	59.67	2.70	0.004467	44.99	2.19	0.003171	55.53	2.45

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.010563	48.20	2.23	0.006177	59.76	2.70	0.004471	45.06	2.19	0.003174	55.64	2.46
0.010564	48.24	2.23	0.006179	59.86	2.71	0.004475	45.14	2.19	0.003176	55.76	2.47
0.010574	48.28	2.23	0.006187	59.95	2.72	0.00448	45.22	2.19	0.003177	55.87	2.47
0.010584	48.32	2.23	0.006192	60.03	2.72	0.004484	45.30	2.19	0.003177	55.98	2.48
0.010594	48.37	2.23	0.006198	60.11	2.73	0.004488	45.38	2.19	0.003181	56.10	2.48
0.010604	48.41	2.23	0.006204	60.18	2.73	0.004492	45.46	2.20	0.003181	56.23	2.49
0.010614	48.45	2.23	0.006209	60.26	2.74	0.004493	45.55	2.20	0.003185	56.37	2.50
0.010614	48.50	2.24	0.006215	60.33	2.74	0.004497	45.63	2.20	0.00319	56.51	2.50
0.010624	48.55	2.24	0.006216	60.41	2.75	0.004501	45.70	2.20	0.003195	56.65	2.51
0.010634	48.61	2.24	0.006216	60.40	2.75	0.004506	45.77	2.20	0.0032	56.80	2.52
0.010644	48.68	2.24	0.006221	60.40	2.75	0.00451	45.83	2.20	0.003205	56.95	2.53
0.010654	48.75	2.24	0.006221	60.40	2.75	0.004515	45.90	2.20	0.003207	57.09	2.53
0.010664	48.82	2.24	0.006223	60.28	2.74	0.004519	45.97	2.20	0.003207	57.23	2.54
0.010674	48.90	2.24	0.006229	60.15	2.73	0.004523	46.04	2.20	0.00321	57.37	2.55
0.010684	48.98	2.24	0.006239	59.88	2.71	0.004527	46.11	2.20	0.003214	57.51	2.56
0.010694	49.06	2.25	0.006249	59.60	2.69	0.004527	46.18	2.20	0.003218	57.64	2.56
0.010702	49.16	2.25	0.006259	59.29	2.67	0.004531	46.25	2.20	0.003218	57.77	2.57
0.010713	49.27	2.25	0.006264	58.98	2.65	0.004535	46.32	2.20	0.003222	57.90	2.58
0.010723	49.38	2.25	0.006266	58.50	2.62	0.00454	46.39	2.20	0.003222	58.03	2.59
0.010733	49.49	2.26	0.006272	57.88	2.58	0.004543	46.47	2.21	0.003226	58.16	2.59
0.010733	49.60	2.26	0.006278	57.21	2.54	0.004544	46.56	2.21	0.003229	58.28	2.60

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.010736	49.70	2.26	0.006285	56.49	2.50	0.004544	46.65	2.21	0.003229	58.40	2.61
0.010746	49.79	2.26	0.00629	55.59	2.46	0.004548	46.72	2.21	0.003233	58.53	2.62
0.010756	49.89	2.26	0.006296	54.49	2.41	0.004553	46.79	2.21	0.003233	58.66	2.63
0.010766	49.97	2.27	0.006302	53.18	2.36	0.004557	46.84	2.21	0.003238	58.80	2.64
0.010766	50.07	2.27	0.006308	51.64	2.31	0.00456	46.90	2.21	0.00324	58.94	2.64
0.010768	50.17	2.27	0.006308	49.90	2.26	0.004564	46.95	2.21	0.003243	59.08	2.65
0.010778	50.28	2.27	0.006308	48.35	2.23	0.004568	47.01	2.21	0.003248	59.23	2.66
0.010788	50.38	2.28	0.006308	47.00	2.21	0.004572	47.07	2.21	0.003249	59.37	2.67
0.010798	50.48	2.28	0.006311	45.73	2.20	0.004575	47.13	2.21	0.003253	59.51	2.68
0.010808	50.57	2.28	0.006315	44.63	2.19	0.004579	47.20	2.21	0.003256	59.66	2.69
0.010818	50.66	2.28	0.006322	43.62	2.18	0.004582	47.27	2.22	0.003259	59.81	2.71
0.010828	50.76	2.29	0.006329	42.72	2.18	0.004584	47.35	2.22	0.003266	59.97	2.72
0.010838	50.86	2.29	0.006335	41.94	2.18	0.004588	47.43	2.22	0.003273	60.14	2.73
0.010839	50.96	2.29	0.006336	41.26	2.18	0.004591	47.51	2.22	0.003282	60.30	2.74
0.010849	51.06	2.29	0.006342	40.72	2.19	0.004595	47.58	2.22	0.003285	60.49	2.76
0.010859	51.16	2.30	0.006344	40.32	2.19	0.004599	47.66	2.22	0.003288	60.67	2.77
0.010869	51.26	2.30	0.006349	39.92	2.19	0.004603	47.75	2.22	0.003291	60.80	2.78
0.010879	51.37	2.30	0.006354	39.59	2.20	0.004603	47.83	2.22	0.003291	60.90	2.79
0.010889	51.49	2.31	0.006359	39.28	2.20	0.004607	47.92	2.23	0.003293	60.95	2.79
0.010899	51.61	2.31	0.006359	39.02	2.20	0.00461	48.01	2.23	0.003298	61.01	2.80
0.010909	51.73	2.31	0.006364	38.86	2.20	0.004615	48.10	2.23	0.0033	61.07	2.80

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.010919	51.86	2.32	0.006367	38.79	2.20	0.00462	48.21	2.23	0.003302	61.13	2.81
0.01092	51.98	2.32	0.006373	38.85	2.20	0.004624	48.32	2.23	0.003305	61.19	2.81
0.01093	52.09	2.32	0.006382	38.98	2.20	0.004629	48.45	2.23	0.003307	61.25	2.82
0.010931	52.20	2.33	0.00639	39.10	2.20	0.004634	48.58	2.24	0.00331	61.31	2.82
0.010931	52.32	2.33	0.006398	39.23	2.20	0.004638	48.72	2.24	0.003312	61.37	2.83
0.01094	52.43	2.33	0.006402	39.39	2.20	0.004641	48.88	2.24	0.003315	61.44	2.83
0.01095	52.54	2.34	0.00641	39.57	2.20	0.004645	49.04	2.25	0.003315	61.40	2.83
0.01096	52.64	2.34	0.006415	39.75	2.19	0.004648	49.22	2.25	0.003315	61.26	2.82
0.01097	52.74	2.34	0.006422	40.00	2.19	0.004649	49.41	2.25	0.003318	60.94	2.79
0.01098	52.85	2.35	0.006428	40.28	2.19	0.004652	49.61	2.26	0.003322	60.60	2.77
0.010981	52.96	2.35	0.006436	40.53	2.19	0.004656	49.83	2.26	0.003322	60.25	2.74
0.010991	53.07	2.36	0.006443	40.75	2.19	0.00466	50.06	2.27	0.003325	59.72	2.70
0.010992	53.19	2.36	0.006449	40.97	2.19	0.004663	50.30	2.27	0.003328	59.17	2.66
0.010996	53.31	2.36	0.006454	41.16	2.19	0.004663	50.57	2.28	0.003331	58.59	2.62
0.011006	53.43	2.37	0.006459	41.34	2.18	0.004668	50.85	2.29	0.003334	57.98	2.58
0.011008	53.56	2.37	0.006464	41.51	2.18	0.004672	51.15	2.30	0.003335	57.34	2.55
0.011018	53.70	2.38	0.006464	41.66	2.18	0.004676	51.46	2.30	0.003338	56.50	2.50
0.011028	53.85	2.38	0.006468	41.80	2.18	0.00468	51.79	2.31	0.003341	55.96	2.48
0.011031	54.02	2.39	0.006475	41.92	2.18	0.004685	52.13	2.32	0.003346	55.72	2.46
0.011041	54.21	2.40	0.006482	42.04	2.18	0.004689	52.51	2.34	0.003346	55.40	2.45
0.011051	54.41	2.41	0.006488	42.17	2.18	0.004693	52.92	2.35	0.003349	54.87	2.43

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011061	54.61	2.41	0.006493	42.29	2.18	0.004698	53.37	2.37	0.00335	54.60	2.41
0.011071	54.83	2.42	0.0065	42.40	2.18	0.0047	53.86	2.38	0.003353	54.12	2.39
0.011081	55.06	2.43	0.006504	42.51	2.18	0.004705	54.27	2.40	0.003357	53.55	2.37
0.011091	55.30	2.44	0.006504	42.61	2.18	0.00471	54.61	2.41	0.003358	52.89	2.35
0.011101	55.57	2.46	0.006504	42.69	2.18	0.004715	54.88	2.43	0.003362	52.05	2.32
0.011111	55.84	2.47	0.006504	42.75	2.18	0.004719	55.08	2.43	0.003366	51.40	2.30
0.011121	56.13	2.48	0.006505	42.81	2.18	0.004723	55.32	2.45	0.00337	50.94	2.29
0.011131	56.39	2.50	0.006507	42.86	2.18	0.004726	55.49	2.45	0.003375	50.35	2.27
0.011141	56.54	2.50	0.00651	42.92	2.18	0.00473	55.58	2.46	0.003375	49.65	2.26
0.011151	56.58	2.51	0.006513	42.99	2.18	0.004734	55.59	2.46	0.00338	48.86	2.24
0.011151	56.51	2.50	0.006513	43.08	2.18	0.004739	55.54	2.45	0.003381	47.96	2.23
0.011161	56.45	2.50	0.006514	43.17	2.18	0.004743	55.40	2.45	0.003384	47.23	2.22
0.011171	56.40	2.50	0.006517	43.27	2.18	0.004743	55.20	2.44	0.003384	46.66	2.21
0.011181	56.38	2.50	0.006524	43.39	2.18	0.004744	54.91	2.43	0.003386	46.28	2.20
0.011191	56.37	2.50	0.006531	43.51	2.18	0.004744	54.66	2.42	0.003389	46.04	2.20
0.011202	56.39	2.50	0.006539	43.61	2.18	0.004748	54.43	2.41	0.00339	45.94	2.20
0.011212	56.43	2.50	0.006546	43.72	2.18	0.004752	54.24	2.40	0.003392	45.53	2.20
0.011222	56.50	2.50	0.006553	43.83	2.18	0.004752	54.06	2.39	0.003394	45.25	2.19
0.011232	56.59	2.51	0.006558	43.94	2.19	0.004756	53.92	2.39	0.003397	44.70	2.19
0.011242	56.70	2.51	0.006565	44.05	2.19	0.004759	53.79	2.38	0.003401	44.25	2.19
0.011244	56.83	2.52	0.006568	44.16	2.19	0.004763	53.69	2.38	0.003404	43.91	2.19

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011254	56.99	2.53	0.006573	44.27	2.19	0.004767	53.61	2.37	0.003408	43.65	2.18
0.011264	57.16	2.54	0.00658	44.38	2.19	0.004767	53.56	2.37	0.003411	43.47	2.18
0.011274	57.36	2.55	0.006587	44.49	2.19	0.00477	53.52	2.37	0.003415	43.35	2.18
0.011284	57.59	2.56	0.006593	44.61	2.19	0.004774	53.51	2.37	0.003418	43.31	2.18
0.011294	57.86	2.58	0.006598	44.71	2.19	0.004779	53.52	2.37	0.003422	43.34	2.18
0.011304	57.99	2.58	0.006599	44.80	2.19	0.004783	53.54	2.37	0.003422	43.38	2.18
0.011314	57.97	2.58	0.006605	44.89	2.19	0.004788	53.57	2.37	0.003425	43.43	2.18
0.011317	57.79	2.57	0.006612	44.99	2.19	0.004793	53.63	2.38	0.003427	43.48	2.18
0.011327	57.43	2.55	0.006618	45.11	2.19	0.004798	53.70	2.38	0.003429	43.54	2.18
0.011337	56.91	2.52	0.006624	45.24	2.19	0.004802	53.78	2.38	0.003432	43.61	2.18
0.011347	56.70	2.51	0.006631	45.38	2.19	0.004807	53.88	2.39	0.003435	43.68	2.18
0.011357	56.80	2.52	0.006638	45.52	2.20	0.004808	53.99	2.39	0.003435	43.75	2.18
0.011359	57.05	2.53	0.006645	45.65	2.20	0.004813	54.11	2.39	0.003438	43.82	2.18
0.011369	57.44	2.55	0.006649	45.77	2.20	0.004818	54.23	2.40	0.003441	43.89	2.19
0.011373	57.94	2.58	0.006652	45.89	2.20	0.004823	54.36	2.40	0.003443	43.95	2.19
0.011383	58.29	2.60	0.006656	46.02	2.20	0.004829	54.49	2.41	0.003443	44.01	2.19
0.011393	58.50	2.62	0.006659	46.14	2.20	0.004835	54.63	2.41	0.003445	44.08	2.19
0.011403	58.57	2.62	0.006662	46.26	2.20	0.00484	54.77	2.42	0.003446	44.15	2.19
0.011413	58.51	2.62	0.006666	46.39	2.20	0.004847	54.90	2.43	0.003446	44.22	2.19
0.011424	58.31	2.60	0.006671	46.52	2.21	0.004852	55.04	2.43	0.00345	44.28	2.19
0.011434	57.97	2.58	0.006675	46.64	2.21	0.004858	55.17	2.44	0.003452	44.33	2.19

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011444	57.63	2.56	0.006679	46.76	2.21	0.004864	55.30	2.44	0.003455	44.39	2.19
0.011454	57.28	2.54	0.006681	46.88	2.21	0.004869	55.42	2.45	0.003455	44.45	2.19
0.011463	56.94	2.53	0.006684	46.99	2.21	0.004874	55.54	2.46	0.003457	44.51	2.19
0.011473	56.90	2.52	0.006689	47.10	2.21	0.00488	55.65	2.46	0.00346	44.58	2.19
0.011483	57.13	2.54	0.006695	47.21	2.21	0.004885	55.75	2.46	0.00346	44.64	2.19
0.011493	57.21	2.54	0.006696	47.31	2.22	0.004891	55.84	2.47	0.00346	44.71	2.19
0.011503	57.13	2.54	0.006703	47.41	2.22	0.004897	55.93	2.47	0.00346	44.77	2.19
0.011511	56.88	2.52	0.006705	47.50	2.22	0.004897	56.00	2.48	0.003463	44.83	2.19
0.011521	56.46	2.50	0.00671	47.59	2.22	0.004902	56.07	2.48	0.003465	44.88	2.19
0.011531	55.85	2.47	0.006714	47.68	2.22	0.004908	56.11	2.48	0.003468	44.92	2.19
0.011541	55.06	2.43	0.00672	47.76	2.22	0.004908	56.15	2.48	0.00347	44.96	2.19
0.011551	54.12	2.39	0.006725	47.84	2.22	0.004908	56.16	2.48	0.00347	45.01	2.19
0.011561	53.03	2.35	0.006734	47.91	2.23	0.004913	56.15	2.48	0.003471	45.06	2.19
0.011571	51.80	2.31	0.00674	47.98	2.23	0.004917	56.11	2.48	0.003472	45.13	2.19
0.011581	50.43	2.28	0.006747	48.05	2.23	0.004921	56.05	2.48	0.003472	45.22	2.19
0.011591	48.89	2.24	0.006752	48.12	2.23	0.004921	55.97	2.48	0.003475	45.32	2.19
0.011601	47.54	2.22	0.006755	48.17	2.23	0.004926	55.86	2.47	0.003479	45.43	2.19
0.011611	46.37	2.20	0.00676	48.23	2.23	0.004932	55.73	2.46	0.003481	45.55	2.20
0.011621	45.37	2.19	0.006765	48.29	2.23	0.004938	55.58	2.46	0.003483	45.64	2.20
0.011631	44.52	2.19	0.006765	48.34	2.23	0.004944	55.40	2.45	0.003483	45.73	2.20
0.011642	43.79	2.18	0.006765	48.40	2.23	0.00495	55.20	2.44	0.003485	45.82	2.20

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011652	43.19	2.18	0.006773	48.46	2.23	0.004956	54.95	2.43	0.003485	45.90	2.20
0.011662	42.70	2.18	0.006778	48.52	2.24	0.004962	54.67	2.42	0.003487	45.99	2.20
0.011672	42.32	2.18	0.006785	48.57	2.24	0.004968	54.35	2.40	0.00349	46.09	2.20
0.011682	42.03	2.18	0.006791	48.64	2.24	0.004968	53.98	2.39	0.003493	46.19	2.20
0.011683	41.77	2.18	0.006796	48.71	2.24	0.004971	53.81	2.38	0.003496	46.30	2.20
0.011693	41.54	2.18	0.006801	48.78	2.24	0.004975	53.92	2.39	0.003498	46.41	2.20
0.011704	41.34	2.18	0.006808	48.84	2.24	0.00498	54.23	2.40	0.003499	46.50	2.21
0.011711	41.17	2.19	0.006814	48.90	2.24	0.004986	54.48	2.41	0.003499	46.59	2.21
0.011721	41.03	2.19	0.006821	48.95	2.24	0.004991	54.67	2.42	0.003501	46.66	2.21
0.011731	40.92	2.19	0.006827	49.01	2.25	0.004998	54.80	2.42	0.003503	46.73	2.21
0.011741	40.82	2.19	0.006832	49.06	2.25	0.005004	54.88	2.43	0.003503	46.80	2.21
0.011751	40.76	2.19	0.00684	49.11	2.25	0.00501	54.90	2.43	0.003503	46.87	2.21
0.011761	40.74	2.19	0.006846	49.17	2.25	0.005015	54.86	2.42	0.003504	46.95	2.21
0.011771	40.79	2.19	0.00685	49.23	2.25	0.005021	54.76	2.42	0.003504	47.05	2.21
0.011781	40.86	2.19	0.006856	49.28	2.25	0.005027	54.60	2.41	0.003507	47.15	2.21
0.011791	40.92	2.19	0.006861	49.34	2.25	0.005033	54.37	2.40	0.003511	47.25	2.22
0.011801	40.99	2.19	0.006865	49.41	2.25	0.005033	54.07	2.39	0.003511	47.36	2.22
0.011811	41.07	2.19	0.00687	49.48	2.26	0.005038	53.70	2.38	0.003514	47.48	2.22
0.011821	41.16	2.19	0.006874	49.56	2.26	0.005043	53.25	2.36	0.003517	47.60	2.22
0.011831	41.25	2.18	0.006879	49.65	2.26	0.005049	52.73	2.34	0.003519	47.70	2.22
0.011841	41.34	2.18	0.00688	49.75	2.26	0.005054	52.12	2.32	0.003521	47.80	2.22

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011851	41.45	2.18	0.00688	49.87	2.26	0.005059	51.40	2.30	0.003523	47.89	2.23
0.011851	41.57	2.18	0.006887	50.00	2.27	0.005065	50.66	2.28	0.003525	47.98	2.23
0.011861	41.70	2.18	0.006887	50.13	2.27	0.005065	50.05	2.27	0.003526	48.07	2.23
0.011871	41.83	2.18	0.006892	50.27	2.27	0.005065	49.31	2.25	0.003528	48.16	2.23
0.011881	41.95	2.18	0.006895	50.40	2.28	0.00507	48.42	2.23	0.003529	48.26	2.23
0.011881	42.05	2.18	0.006902	50.54	2.28	0.005075	47.69	2.22	0.003531	48.37	2.23
0.011891	42.14	2.18	0.00691	50.69	2.28	0.005076	47.06	2.21	0.003534	48.47	2.23
0.011901	42.21	2.18	0.006911	50.83	2.29	0.005076	46.52	2.21	0.003534	48.56	2.24
0.011911	42.28	2.18	0.006917	50.97	2.29	0.005082	46.06	2.20	0.003536	48.63	2.24
0.011922	42.35	2.18	0.006923	51.10	2.29	0.005082	45.66	2.20	0.003536	48.70	2.24
0.011932	42.42	2.18	0.006927	51.24	2.30	0.005088	45.31	2.19	0.003538	48.74	2.24
0.011942	42.50	2.18	0.006932	51.37	2.30	0.005094	45.01	2.19	0.003538	48.78	2.24
0.011952	42.57	2.18	0.006937	51.52	2.31	0.0051	44.75	2.19	0.003541	48.81	2.24
0.011962	42.64	2.18	0.006942	51.67	2.31	0.005105	44.52	2.19	0.003545	48.83	2.24
0.011962	42.71	2.18	0.006946	51.82	2.31	0.00511	44.34	2.19	0.003548	48.86	2.24
0.011963	42.77	2.18	0.006947	51.97	2.32	0.005115	44.20	2.19	0.003548	48.88	2.24
0.011968	42.84	2.18	0.006952	52.11	2.32	0.005119	44.11	2.19	0.00355	48.91	2.24
0.011978	42.91	2.18	0.006952	52.24	2.33	0.005119	44.03	2.19	0.003553	48.94	2.24
0.011978	42.98	2.18	0.006957	52.37	2.33	0.005124	43.95	2.19	0.003553	48.98	2.24
0.011978	43.05	2.18	0.006958	52.49	2.34	0.005128	43.86	2.19	0.003555	49.01	2.25
0.011988	43.13	2.18	0.006958	52.62	2.34	0.00513	43.77	2.18	0.003558	49.05	2.25

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.011998	43.21	2.18	0.006958	52.73	2.34	0.005135	43.70	2.18	0.00356	49.10	2.25
0.012008	43.29	2.18	0.006963	52.83	2.35	0.005139	43.65	2.18	0.003563	49.15	2.25
0.012018	43.37	2.18	0.006964	52.92	2.35	0.005144	43.61	2.18	0.003565	49.21	2.25
0.012026	43.46	2.18	0.006968	53.00	2.35	0.005144	43.57	2.18	0.003567	49.27	2.25
0.012031	43.53	2.18	0.006969	53.09	2.36	0.005148	43.56	2.18	0.003569	49.33	2.25
0.012041	43.61	2.18	0.006969	53.17	2.36	0.005152	43.55	2.18	0.003572	49.39	2.25
0.012051	43.69	2.18	0.006969	53.27	2.36	0.005156	43.55	2.18	0.003575	49.44	2.25
0.012061	43.78	2.18	0.006979	53.38	2.37	0.00516	43.57	2.18	0.003577	49.49	2.26
0.012071	43.87	2.19	0.006981	53.49	2.37	0.00516	43.60	2.18	0.00358	49.55	2.26
0.012081	43.96	2.19	0.006981	53.59	2.37	0.005164	43.63	2.18	0.003582	49.60	2.26
0.012091	44.04	2.19	0.006988	53.71	2.38	0.005168	43.67	2.18	0.003585	49.64	2.26
0.012101	44.14	2.19	0.006989	53.82	2.38	0.005172	43.71	2.18	0.003588	49.68	2.26
0.012112	44.25	2.19	0.006997	53.93	2.39	0.005176	43.76	2.18	0.003591	49.72	2.26
0.012122	44.37	2.19	0.007005	54.03	2.39	0.005176	43.81	2.18	0.003594	49.76	2.26
0.012132	44.48	2.19	0.007013	54.13	2.39	0.00518	43.87	2.19	0.003597	49.81	2.26
0.012142	44.60	2.19	0.007019	54.23	2.40	0.00518	43.93	2.19	0.003597	49.86	2.26
0.012151	44.70	2.19	0.007025	54.33	2.40	0.00518	44.00	2.19	0.0036	49.91	2.26
0.01216	44.80	2.19	0.007025	54.42	2.41	0.00518	44.08	2.19	0.003603	49.98	2.27
0.012169	44.88	2.19	0.007031	54.51	2.41	0.00518	44.16	2.19	0.003604	50.04	2.27
0.012177	44.96	2.19	0.007036	54.60	2.41	0.005185	44.25	2.19	0.003607	50.12	2.27
0.012177	45.02	2.19	0.007042	54.68	2.42	0.005189	44.35	2.19	0.00361	50.20	2.27

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.012186	45.09	2.19	0.007045	54.78	2.42	0.005193	44.45	2.19	0.003611	50.28	2.27
0.012196	45.16	2.19	0.007051	54.87	2.43	0.005197	44.57	2.19	0.003612	50.36	2.28
0.012205	45.24	2.19	0.007056	54.95	2.43	0.005201	44.69	2.19	0.003612	50.44	2.28
0.012215	45.32	2.19	0.007057	55.04	2.43	0.005204	44.81	2.19	0.003615	50.53	2.28
0.012223	45.41	2.19	0.007059	55.13	2.44	0.005207	44.93	2.19	0.003618	50.61	2.28
0.01223	45.51	2.20	0.007068	55.21	2.44	0.00521	45.06	2.19	0.00362	50.69	2.28
0.01224	45.59	2.20	0.007074	55.30	2.44	0.005213	45.18	2.19	0.003622	50.77	2.29
0.01225	45.66	2.20	0.007079	55.39	2.45	0.005213	45.30	2.19	0.003622	50.85	2.29
0.01226	45.73	2.20	0.007084	55.47	2.45	0.005213	45.40	2.19	0.003622	50.93	2.29
0.012266	45.78	2.20	0.007089	55.54	2.46	0.005213	45.51	2.20	0.003625	51.01	2.29
0.01227	45.84	2.20	0.007095	55.61	2.46	0.005214	45.61	2.20	0.003628	51.09	2.29
0.01227	45.91	2.20	0.0071	55.66	2.46	0.005215	45.70	2.20	0.003631	51.17	2.30
0.01228	45.98	2.20	0.007106	55.71	2.46	0.005219	45.79	2.20	0.003634	51.25	2.30
0.01229	46.04	2.20	0.007111	55.75	2.46	0.005223	45.88	2.20	0.003637	51.32	2.30
0.0123	46.11	2.20	0.007116	55.79	2.47	0.005227	45.96	2.20	0.00364	51.40	2.30
0.01231	46.18	2.20	0.007121	55.83	2.47	0.005231	46.04	2.20	0.003643	51.48	2.30
0.01232	46.25	2.20	0.007121	55.88	2.47	0.005232	46.11	2.20	0.003643	51.55	2.31
0.012331	46.32	2.20	0.007128	55.92	2.47	0.005235	46.18	2.20	0.003645	51.63	2.31
0.012333	46.39	2.20	0.007134	55.94	2.47	0.005238	46.25	2.20	0.003647	51.72	2.31
0.012343	46.45	2.21	0.00714	55.95	2.47	0.005241	46.31	2.20	0.003649	51.80	2.31
0.012343	46.52	2.21	0.007148	55.95	2.47	0.005243	46.38	2.20	0.003652	51.87	2.32

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.012353	46.58	2.21	0.007156	55.94	2.47	0.005243	46.44	2.20	0.003653	51.94	2.32
0.012363	46.64	2.21	0.007164	55.91	2.47	0.005246	46.49	2.21	0.003656	52.01	2.32
0.012373	46.69	2.21	0.007173	55.88	2.47	0.005248	46.55	2.21	0.003658	52.08	2.32
0.012383	46.74	2.21	0.007182	55.83	2.47	0.005251	46.61	2.21	0.003662	52.13	2.32
0.012392	46.78	2.21	0.00719	55.78	2.47	0.005253	46.66	2.21	0.003665	52.16	2.33
0.0124	46.82	2.21	0.007197	55.74	2.46	0.005254	46.71	2.21	0.003668	52.20	2.33
0.012402	46.86	2.21	0.007198	55.69	2.46	0.005255	46.77	2.21	0.003671	52.23	2.33
0.012411	46.89	2.21	0.007198	55.62	2.46	0.005259	46.84	2.21	0.003673	52.26	2.33
0.012421	46.91	2.21	0.007205	55.53	2.45	0.005263	46.91	2.21	0.003676	52.30	2.33
0.01243	46.94	2.21	0.007212	55.43	2.45	0.005267	46.97	2.21	0.003679	52.34	2.33
0.012439	46.98	2.21	0.007212	55.30	2.44	0.005271	47.03	2.21	0.003681	52.37	2.33
0.012448	47.02	2.21	0.007214	55.14	2.44	0.005276	47.08	2.21	0.003684	52.41	2.33
0.012456	47.06	2.21	0.007224	54.96	2.43	0.005276	47.13	2.21	0.003684	52.44	2.33
0.012466	47.10	2.21	0.007229	54.74	2.42	0.00528	47.18	2.21	0.003686	52.48	2.34
0.012476	47.15	2.21	0.007233	54.50	2.41	0.00528	47.23	2.22	0.003686	52.51	2.34
0.01248	47.20	2.21	0.007234	54.25	2.40	0.005284	47.28	2.22	0.00369	52.54	2.34
0.01249	47.26	2.22	0.007241	53.95	2.39	0.005287	47.33	2.22	0.003691	52.58	2.34
0.012499	47.31	2.22	0.007248	53.62	2.38	0.00529	47.38	2.22	0.003694	52.62	2.34
0.012509	47.36	2.22	0.00725	53.27	2.36	0.005294	47.43	2.22	0.003694	52.65	2.34
0.012519	47.41	2.22	0.00725	52.87	2.35	0.005297	47.48	2.22	0.003697	52.70	2.34
0.012529	47.46	2.22	0.007257	52.43	2.33	0.005297	47.54	2.22	0.0037	52.76	2.34

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.012539	47.53	2.22	0.007264	51.94	2.32	0.005302	47.60	2.22	0.003702	52.82	2.35
0.012549	47.60	2.22	0.007271	51.37	2.30	0.005306	47.66	2.22	0.003702	52.90	2.35
0.012559	47.67	2.22	0.007279	50.73	2.28	0.005311	47.72	2.22	0.003705	53.00	2.35
0.012569	47.75	2.22	0.007285	50.02	2.27	0.005316	47.77	2.22	0.003708	53.09	2.36
0.012579	47.82	2.22	0.007295	49.22	2.25	0.005321	47.82	2.22	0.003711	53.18	2.36
0.012581	47.89	2.23	0.007295	48.31	2.23	0.005325	47.87	2.22	0.003714	53.27	2.36
0.012591	47.97	2.23	0.007304	47.28	2.22	0.00533	47.91	2.23	0.003717	53.37	2.37
0.012601	48.05	2.23	0.007304	46.12	2.20	0.00533	47.95	2.23	0.00372	53.46	2.37
0.012611	48.13	2.23	0.007314	44.83	2.19	0.005331	47.99	2.23	0.003723	53.56	2.37
0.012622	48.22	2.23	0.007319	43.39	2.18	0.005333	48.03	2.23	0.003724	53.65	2.38
0.012632	48.31	2.23	0.007319	41.79	2.18	0.005335	48.07	2.23	0.003727	53.75	2.38
0.012642	48.40	2.23	0.007325	40.03	2.19	0.005336	48.12	2.23	0.003727	53.82	2.38
0.012652	48.49	2.24	0.007332	38.08	2.21	0.005338	48.16	2.23	0.003729	53.90	2.39
0.012656	48.58	2.24	0.00734	35.93	2.25	0.00534	48.21	2.23	0.003733	53.97	2.39
0.012666	48.68	2.24	0.007347	33.54	2.31	0.005343	48.26	2.23	0.003736	54.05	2.39
0.012676	48.78	2.24	0.007354	30.90	2.40	0.005346	48.31	2.23	0.003739	54.12	2.39
0.012686	48.88	2.24	0.007364	27.96	2.53	0.005349	48.37	2.23	0.003743	54.19	2.40
0.01269	48.97	2.24	0.007374	25.30	2.70	0.005351	48.44	2.23	0.003743	54.27	2.40
0.0127	49.05	2.25	0.007384	22.89	2.90	0.005354	48.51	2.24	0.003746	54.34	2.40
0.01271	49.13	2.25	0.007394	20.72	3.13	0.005357	48.59	2.24	0.00375	54.42	2.41
0.012718	49.22	2.25	0.007404	18.75	3.39	0.005359	48.68	2.24	0.00375	54.50	2.41
	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
---------------	----------------	-------------------------	---------------	----------------	-------------------------	---------------	----------------	-------------------------	---------------	----------------	-------------------------
Time (sec)	Shear angle	Chip compr. ratio									
0.012728	49.30	2.25	0.007414	16.96	3.68	0.005361	48.76	2.24	0.003752	54.58	2.41
0.012738	49.38	2.25	0.007424	15.35	4.02	0.005364	48.84	2.24	0.003755	54.66	2.42
0.012748	49.45	2.25	0.007435	13.89	4.39	0.005366	48.92	2.24	0.003758	54.75	2.42
0.012758	49.51	2.26	0.007445	12.57	4.80	0.005368	49.00	2.25	0.003762	54.83	2.42
0.012758	49.58	2.26	0.007455	11.37	5.27	0.00537	49.09	2.25	0.003762	54.92	2.43
0.012768	49.66	2.26	0.007465	10.29	5.78	0.005374	49.18	2.25	0.003765	54.99	2.43
0.012778	49.75	2.26	0.007475	9.31	6.36	0.005378	49.28	2.25	0.003766	55.04	2.43
0.012788	49.83	2.26	0.007485	8.43	6.99	0.005382	49.38	2.25	0.003769	55.09	2.43
0.012798	49.91	2.26	0.007495	7.62	7.70	0.005386	49.50	2.26	0.003772	55.11	2.44
0.012808	49.98	2.27	0.007505	6.90	8.48	0.005386	49.61	2.26	0.003773	55.12	2.44
0.012818	50.05	2.27	0.007515	6.24	9.35	0.005391	49.74	2.26	0.003773	55.13	2.44
0.012828	50.12	2.27	0.007525	5.65	10.30	0.005394	49.87	2.26	0.003776	55.15	2.44
0.012838	50.19	2.27	0.007535	5.11	11.36	0.005398	50.00	2.27	0.003779	55.17	2.44
0.012848	50.26	2.27	0.007545	4.63	12.54	0.005401	50.12	2.27	0.003782	55.18	2.44
0.012858	50.33	2.27	0.007555	4.19	13.83	0.005404	50.24	2.27	0.003785	55.20	2.44
0.012858	50.38	2.28	0.007565	3.79	15.27	0.005408	50.37	2.28	0.003788	55.21	2.44
0.012868	50.43	2.28	0.007575	3.43	16.86	0.005412	50.49	2.28	0.00379	55.22	2.44
0.012878	50.48	2.28	0.007585	3.10	18.61	0.005413	50.62	2.28	0.003794	52.29	2.33
0.012888	50.53	2.28	0.007595	2.81	20.55	0.005417	50.74	2.28	0.003794	52.40	2.33
0.012898	50.59	2.28	0.007605	2.54	22.69	0.005421	50.88	2.29	0.003796	52.50	2.34
0.012908	50.66	2.28	0.007615	2.30	25.07	0.005424	51.02	2.29	0.003799	52.60	2.34

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.012918	50.73	2.28	0.007625	2.08	27.69	0.005428	51.15	2.30	0.003801	52.71	2.34
0.012927	50.81	2.29	0.007635	1.88	30.58	0.005432	51.28	2.30	0.003803	52.82	2.35
0.012937	50.90	2.29	0.007645	1.70	33.78	0.005432	51.41	2.30	0.003805	52.94	2.35
0.012947	51.00	2.29	0.007655	1.54	37.32	0.005437	51.54	2.31	0.003807	53.07	2.36
0.012947	51.10	2.29	0.007665	1.39	41.23	0.005438	51.68	2.31	0.003807	53.22	2.36
0.012957	51.21	2.30	0.007675	1.26	45.55	0.005442	51.81	2.31	0.003811	53.37	2.37
0.012967	51.34	2.30	0.007685	1.14	50.33	0.005445	51.94	2.32	0.003816	53.53	2.37
0.012977	51.45	2.30	0.007695	1.03	55.61	0.005448	52.07	2.32	0.00382	53.70	2.38
0.012977	51.55	2.31	0.007706	0.93	61.44	0.005451	52.20	2.33	0.003822	53.86	2.38
0.012977	51.66	2.31	0.007716	0.85	67.89	0.005455	52.32	2.33	0.003824	54.01	2.39
0.012986	51.78	2.31	0.007726	0.77	75.02	0.005458	52.45	2.33	0.003827	54.15	2.40
0.012995	51.89	2.32	0.007736	0.69	82.89	0.005461	52.57	2.34	0.003827	54.27	2.40
0.012995	52.00	2.32	0.007746	0.63	91.60	0.005463	52.69	2.34	0.003829	54.40	2.41
0.012999	52.11	2.32	0.007756	0.57	101.22	0.005466	52.79	2.35	0.003832	54.53	2.41
0.013009	52.21	2.33	0.007766	0.51	111.85	0.005468	52.89	2.35	0.003834	54.65	2.42
0.013019	52.32	2.33	0.007776	0.46	123.59	0.005472	52.98	2.35	0.003837	54.77	2.42
0.01302	52.42	2.33	0.007786	0.42	136.57	0.005476	53.08	2.36	0.00384	54.89	2.43
0.013025	52.53	2.34	0.007796	0.38	150.92	0.00548	53.17	2.36	0.003842	55.01	2.43
0.013035	52.64	2.34	0.007806	0.34	166.78	0.005484	53.27	2.36	0.003844	55.12	2.44
0.013046	52.74	2.34	0.007816	0.31	184.30	0.005488	53.38	2.37	0.003844	55.21	2.44
0.013056	52.85	2.35	0.007826	0.28	203.66	0.005493	53.49	2.37	0.003845	55.31	2.44

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.013066	52.96	2.35	0.007836	0.25	225.07	0.005497	53.60	2.37	0.003845	55.40	2.45
0.013076	53.07	2.36	0.007846	0.23	248.72	0.005501	53.72	2.38	0.003846	55.49	2.45
0.013086	53.18	2.36	0.007856	0.21	274.85	0.005501	53.84	2.38	0.003848	55.57	2.46
0.013086	53.29	2.36	0.007866	0.19	303.74	0.005506	53.96	2.39	0.003849	55.66	2.46
0.013086	53.39	2.37	0.007876	0.17	335.66	0.00551	54.08	2.39	0.00385	55.74	2.46
0.013086	53.50	2.37	0.007886	0.15	370.93	0.005515	54.20	2.40	0.00385	55.81	2.47
0.013096	53.60	2.37	0.007896	0.14	409.92	0.005516	54.32	2.40	0.003851	55.89	2.47
0.013106	53.70	2.38	0.007906	0.13	453.00	0.00552	54.43	2.41	0.003851	55.97	2.48
0.013106	53.80	2.38	0.007916	0.11	500.61	0.005525	54.55	2.41	0.003853	56.06	2.48
0.013116	53.90	2.39	0.007926	0.10	553.23	0.00553	54.68	2.42	0.003853	56.15	2.48
0.013126	54.01	2.39	0.007936	0.09	611.38	0.005534	54.81	2.42	0.003854	56.24	2.49
0.013136	54.12	2.39	0.007946	0.08	675.64	0.005539	54.94	2.43	0.003855	56.34	2.49
0.013146	54.24	2.40	0.007956	0.08	746.66	0.005543	55.08	2.43	0.003857	56.44	2.50
0.013156	54.36	2.40	0.007966	0.07	825.14	0.005547	55.23	2.44	0.003858	56.53	2.50
0.013157	54.47	2.41	0.007977	0.06	911.87	0.00555	55.38	2.45	0.003859	56.63	2.51
0.013167	54.58	2.41	0.007987	0.06	1007.73	0.005556	55.52	2.45	0.00386	56.73	2.51
0.013177	54.68	2.42	0.007997	0.05	1113.65	0.005561	55.68	2.46	0.003862	56.84	2.52
0.013185	54.79	2.42	0.008007	0.05	1230.71	0.005564	55.83	2.47	0.003863	56.95	2.53
0.013195	54.89	2.43	0.008017	0.04	1360.08	0.005568	55.99	2.48	0.003864	57.06	2.53
0.013205	54.99	2.43	0.008027	0.04	1503.06	0.005572	56.16	2.48	0.003864	57.18	2.54
0.013211	55.08	2.43	0.008037	0.03	1661.05	0.005572	56.32	2.49	0.003866	57.29	2.54

	V=50 м/хв			V=100 м/хн	3		V=150 м/хв			V=200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.013221	55.18	2.44	0.008047	0.03	1835.66	0.005576	56.49	2.50	0.00387	57.40	2.55
0.013231	55.27	2.44	0.008057	0.03	2028.64	0.005582	56.67	2.51	0.003873	57.51	2.56
0.013242	55.35	2.45	0.008067	0.03	2241.88	0.005587	56.84	2.52	0.003876	57.63	2.56
0.013252	55.45	2.45	0.008077	0.02	2477.50	0.005593	57.02	2.53	0.00388	57.74	2.57
0.013262	55.54	2.46	0.008087	0.02	2737.93	0.005599	57.19	2.54	0.003883	57.86	2.58
0.013272	55.63	2.46	0.008097	0.02	3025.78	0.005605	57.37	2.55	0.003883	57.98	2.58
0.013282	55.72	2.46	0.008107	0.02	3343.81	0.005607	57.56	2.56	0.003887	58.10	2.59
0.013292	55.80	2.47	0.008117	0.02	3695.37	0.005612	57.74	2.57	0.003892	58.24	2.60
0.013302	55.89	2.47	0.008127	0.01	4083.93	0.005614	57.91	2.58	0.003892	58.37	2.61
0.013312	55.98	2.48	0.008137	0.01	4513.14	0.005619	58.08	2.59	0.003896	58.50	2.62
0.013322	56.07	2.48	0.008147	0.01	4987.46	0.005623	58.24	2.60	0.003896	58.63	2.62
0.013328	56.17	2.49	0.008157	0.01	5512.09	0.005628	58.40	2.61	0.003902	58.74	2.63
0.013338	56.25	2.49	0.008167	0.01	6091.35	0.005634	58.56	2.62	0.003905	58.86	2.64
0.013348	56.34	2.49	0.008177	0.01	6731.52	0.005639	58.72	2.63	0.003911	58.97	2.65
0.013358	56.41	2.50	0.008187	0.01	7439.08	0.005644	58.89	2.64	0.003911	59.09	2.65
0.013369	56.45	2.50	0.008197	0.01	8221.06	0.005645	59.06	2.65	0.003918	59.20	2.66
0.013379	56.48	2.50	0.008207	0.01	9086.29	0.00565	59.22	2.66	0.003924	59.33	2.67
0.013389	56.49	2.50	0.008217	0.01	10041.22	0.005656	59.38	2.68	0.00393	59.45	2.68
0.013398	56.51	2.50	0.008227	0.01	11096.65	0.005656	59.54	2.69	0.003936	59.56	2.69
0.013408	56.54	2.50	0.008238	0.00	12262.09	0.005661	59.70	2.70	0.003943	59.68	2.70
0.013418	56.56	2.51	0.008248	0.00	13552.06	0.005666	59.85	2.71	0.003947	59.80	2.70

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.013418	56.59	2.51	0.008258	0.00	14975.23	0.00567	59.99	2.72	0.003948	59.91	2.71
0.013428	56.61	2.51	0.008268	0.00	16548.83	0.005675	60.12	2.73	0.003953	60.02	2.72
0.013428	56.63	2.51	0.008278	0.00	18291.36	0.005675	60.22	2.74	0.003958	60.12	2.73
0.013438	56.66	2.51	0.008288	0.00	20213.36	0.005679	60.33	2.74	0.003963	60.22	2.74
0.013448	56.68	2.51	0.008298	0.00	22340.24	0.00568	60.43	2.75	0.003967	60.31	2.74
0.013458	56.71	2.51	0.008308	0.00	24687.79	0.005684	60.53	2.76	0.003972	60.41	2.75
0.013468	56.74	2.51	0.008318	0.00	27284.64	0.005689	60.64	2.77	0.003976	60.50	2.76
0.013468	56.78	2.52	0.008328	0.00	30155.19	0.005694	60.73	2.78	0.003981	60.59	2.76
0.013478	56.81	2.52	0.008338	0.00	33328.48	0.0057	60.82	2.78	0.003986	60.68	2.77
0.013488	56.85	2.52	0.008348	0.00	36817.58	0.005705	60.89	2.79	0.003992	60.77	2.78
0.013496	56.90	2.52	0.008358	0.00	40684.86	0.005711	60.97	2.79	0.003993	60.86	2.79
0.013506	56.94	2.52	0.008368	0.00	44960.75	0.005717	61.04	2.80	0.003997	60.95	2.79
0.013516	56.97	2.53	0.008378	0.00	49718.08	0.005723	61.10	2.81	0.004002	61.03	2.80
0.013526	57.00	2.53	0.008388	0.00	54908.94	0.00573	61.17	2.81	0.004007	61.14	2.81
0.013536	57.03	2.53	0.008398	0.00	60725.55	0.005737	61.23	2.82	0.004011	61.28	2.82
0.013546	57.05	2.53	0.008408	0.00	67046.68	0.005737	61.30	2.82	0.004014	61.30	2.82
0.013556	57.07	2.53	0.008418	0.00	74159.00	0.005744	61.36	2.83	0.004018	61.21	2.81
0.013566	57.08	2.53	0.008428	0.00	81892.72	0.005752	61.41	2.83	0.004022	60.98	2.80
0.013576	57.08	2.53	0.008438	0.00	90560.66	0.005752	61.46	2.84	0.004026	60.62	2.77
0.013586	57.08	2.53	0.008448	0.00	100043.44	0.005757	61.51	2.84	0.004029	60.09	2.73
0.013596	57.08	2.53	0.008458	0.00	110665.80	0.005763	61.54	2.84	0.004034	59.51	2.68

	V=50 м/хв			V=100 м/хи	3		V=150 м/хв			V= 200 м/хв	
Time (sec)	Shear angle	Chip compr. ratio									
0.013606	57.05	2.53	0.008468	0.00	122227.89	0.005768	61.57	2.85	0.004039	58.91	2.64
0.013606	57.01	2.53	0.008478	0.00	134882.07	0.005774	61.59	2.85	0.004043	58.29	2.60
0.013616	56.95	2.53	0.008488	0.00	149283.53	0.005781	61.62	2.85	0.004044	57.60	2.56
0.013626	56.87	2.52	0.008498	0.00	164726.64	0.005781	61.63	2.85	0.004047	56.69	2.51
0.013636	56.76	2.52	0.008509	0.00	181983.71	0.005786	61.63	2.85	0.004051	55.90	2.47
0.013646	56.64	2.51	0.008519	0.00	201139.88	0.00579	61.60	2.85	0.004054	55.23	2.44
0.013656	56.50	2.50	0.008529	0.00	222189.39	0.005794	61.55	2.84	0.004058	54.74	2.42
0.013666	56.33	2.49	0.008539	0.00	246029.45	0.005795	61.49	2.84	0.004062	54.09	2.39
0.013676	56.14	2.48	0.008549	0.00	271681.80	0.005799	61.27	2.82	0.004065	53.25	2.36
0.013681	55.93	2.47	0.008559	0.00	300130.14	0.005803	61.03	2.80	0.004069	52.19	2.33
0.013691	55.69	2.46	0.008569	0.00	331357.55	0.005807	60.76	2.78	0.004072	51.25	2.30
0.013701	55.42	2.45	0.008579	0.00	367467.02	0.005807	60.34	2.74	0.004075	50.38	2.28
0.013711	55.13	2.44	0.008589	0.00	406559.24	0.005812	59.78	2.70	0.004076	49.57	2.26
0.013721	54.79	2.42	0.008599	0.00	447850.41	0.005812	59.18	2.66	0.00408	48.86	2.24
0.013731	54.42	2.41	0.008609	0.00	494179.75	0.005812	58.53	2.62	0.004083	48.01	2.23
0.013741	54.01	2.39	0.008619	0.00	545950.95	0.005816	57.68	2.57	0.004087	47.28	2.22
0.013751	53.55	2.37	0.008629	0.00	603419.46	0.005817	57.10	2.53	0.00409	46.66	2.21
0.013761	53.04	2.35	0.008639	0.00	666568.00	0.00582	56.30	2.49	0.004093	46.23	2.20
0.013771	52.75	2.34	0.008649	0.00	734933.94	0.005824	55.78	2.47	0.004095	45.97	2.20
0.013781	52.40	2.33	0.008659	0.00	818926.38	0.005827	55.60	2.46	0.004098	45.75	2.20
0.013787	52.34	2.33	0.008669	0.00	895700.72	0.005831	55.68	2.46	0.004102	45.54	2.20

Додаток В.

294

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0	214	0	231	0	230	0	249	0	222
0.000001	216	0.000001	233	0	232	0.000002	251	0.000001	224
0.000001	220	0.000001	237	0.000002	236	0.000002	255	0.000002	228
0.000003	225	0.000003	243	0.000003	242	0.000003	261	0.000003	233
0.000004	232	0.000003	250	0.000004	249	0.000004	269	0.000003	240
0.000006	241	0.000005	259	0.000005	258	0.000005	278	0.000004	248
0.000008	250	0.000006	269	0.000006	267	0.000006	288	0.000005	258
0.000008	260	0.000007	280	0.000007	278	0.000007	299	0.000006	268
0.000009	272	0.000009	292	0.000009	289	0.000008	310	0.000007	280
0.000011	284	0.00001	304	0.00001	301	0.00001	323	0.000008	292
0.000013	296	0.000011	317	0.000012	314	0.00001	335	0.000009	304
0.000014	310	0.000013	330	0.000012	327	0.000012	348	0.00001	317
0.000014	323	0.000013	344	0.000014	340	0.000013	361	0.00001	329
0.000016	338	0.000015	358	0.000015	354	0.000014	374	0.000012	342
0.000018	352	0.000016	372	0.000016	368	0.000015	387	0.000012	355
0.000019	367	0.000018	386	0.000017	383	0.000017	400	0.000014	369
0.000021	382	0.000018	400	0.000018	397	0.000017	413	0.000014	382
0.000023	397	0.00002	415	0.000019	412	0.000019	426	0.000016	395
0.000024	412	0.000022	429	0.000021	426	0.000021	438	0.000017	408

Результати моделювання температури різання від глибини різання

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000025	427	0.000023	443	0.000022	441	0.000021	450	0.000018	420
0.000026	441	0.000025	457	0.000023	455	0.000023	462	0.000019	433
0.000028	456	0.000026	471	0.000025	470	0.000024	474	0.000021	445
0.00003	470	0.000028	484	0.000025	484	0.000026	485	0.000022	457
0.000031	484	0.000029	497	0.000027	497	0.000026	496	0.000023	468
0.000033	498	0.000031	510	0.000029	511	0.000028	507	0.000025	480
0.000035	512	0.000033	522	0.000029	524	0.000029	517	0.000026	490
0.000036	526	0.000033	535	0.000031	537	0.00003	528	0.000026	501
0.000038	539	0.000035	547	0.000033	549	0.000031	538	0.000028	511
0.00004	552	0.000037	559	0.000034	561	0.000033	547	0.00003	521
0.000041	565	0.000038	570	0.000035	573	0.000033	556	0.00003	531
0.000043	578	0.00004	581	0.000037	584	0.000035	565	0.000031	540
0.000045	590	0.000042	592	0.000038	595	0.000036	574	0.000033	550
0.000046	602	0.000043	603	0.00004	606	0.000037	582	0.000033	558
0.000048	613	0.000045	614	0.000042	617	0.000039	591	0.000035	567
0.00005	624	0.000045	625	0.000042	628	0.00004	600	0.000035	575
0.000051	635	0.000047	636	0.000044	639	0.000041	608	0.000037	584
0.000053	646	0.000049	647	0.000045	649	0.000042	617	0.000039	592
0.000054	655	0.00005	658	0.000047	659	0.000044	625	0.000039	600
0.000056	665	0.000052	668	0.000048	669	0.000045	633	0.00004	609
0.000058	673	0.000054	678	0.000049	679	0.000046	641	0.000042	617
0.000059	682	0.000055	689	0.000051	688	0.000048	649	0.000043	625
0.000061	690	0.000057	699	0.000053	697	0.000049	657	0.000044	632

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000063	698	0.000059	709	0.000053	706	0.000051	665	0.000046	640
0.000064	706	0.00006	719	0.000054	714	0.000053	672	0.000046	647
0.000066	714	0.000062	729	0.000056	722	0.000054	680	0.000048	654
0.000068	721	0.000064	739	0.000057	729	0.000055	688	0.00005	660
0.000069	728	0.000065	748	0.000059	736	0.000057	695	0.00005	667
0.000071	736	0.000067	757	0.000061	743	0.000058	703	0.000052	673
0.000073	743	0.000069	766	0.000061	749	0.000059	710	0.000053	680
0.000074	750	0.00007	775	0.000063	755	0.000061	717	0.000053	686
0.000076	757	0.000072	783	0.000064	762	0.000063	723	0.000055	692
0.000078	764	0.000074	791	0.000066	768	0.000064	730	0.000057	698
0.000079	771	0.000075	799	0.000068	774	0.000065	736	0.000057	704
0.000081	777	0.000077	807	0.000069	780	0.000066	743	0.000059	710
0.000083	783	0.000079	814	0.000069	786	0.000068	749	0.00006	716
0.000084	789	0.00008	821	0.000071	792	0.00007	755	0.000062	721
0.000086	796	0.000082	827	0.000073	798	0.000071	760	0.000063	727
0.000088	802	0.000084	833	0.000073	803	0.000073	766	0.000064	732
0.000089	808	0.000085	839	0.000075	809	0.000074	771	0.000066	737
0.000091	814	0.000087	844	0.000076	814	0.000074	776	0.000067	742
0.000093	819	0.000088	849	0.000078	820	0.000076	781	0.000068	747
0.000094	824	0.00009	854	0.00008	825	0.000077	786	0.00007	751
0.000096	829	0.000092	857	0.000081	830	0.000079	790	0.000071	755
0.000098	834	0.000093	861	0.000081	836	0.00008	795	0.000073	759
0.000099	839	0.000095	864	0.000083	841	0.000082	799	0.000074	763

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000101	844	0.000097	867	0.000085	846	0.000084	802	0.000075	767
0.000103	849	0.000098	870	0.000086	852	0.000084	806	0.000077	770
0.000104	854	0.0001	873	0.000088	857	0.000085	809	0.000078	772
0.000106	858	0.000102	875	0.00009	863	0.000087	812	0.00008	775
0.000107	862	0.000103	877	0.000091	868	0.000089	816	0.000082	779
0.000109	867	0.000105	879	0.000093	873	0.00009	819	0.000083	782
0.000111	871	0.000107	881	0.000094	878	0.000091	823	0.000085	785
0.000112	875	0.000108	883	0.000096	882	0.000093	827	0.000086	788
0.000113	880	0.00011	885	0.000098	887	0.000095	831	0.000088	792
0.000115	884	0.000112	887	0.000099	892	0.000096	835	0.00009	795
0.000116	888	0.000113	889	0.000101	896	0.000098	839	0.00009	798
0.000117	891	0.000115	892	0.000103	900	0.0001	843	0.000092	801
0.000119	895	0.000117	894	0.000103	904	0.000101	847	0.000093	804
0.000121	898	0.000118	896	0.000105	907	0.000102	851	0.000095	807
0.000122	901	0.00012	898	0.000106	910	0.000104	855	0.000096	810
0.000123	904	0.000122	900	0.000108	913	0.000105	858	0.000097	814
0.000125	907	0.000123	903	0.00011	915	0.000107	862	0.000099	817
0.000126	911	0.000125	905	0.000111	917	0.000109	866	0.000101	821
0.000128	914	0.000127	907	0.000113	918	0.000109	869	0.000101	824
0.000128	917	0.000128	909	0.000115	919	0.000111	873	0.000103	828
0.000129	920	0.00013	911	0.000116	921	0.000112	876	0.000105	832
0.000131	923	0.000132	913	0.000118	922	0.000114	879	0.000106	835
0.000132	926	0.000133	916	0.00012	924	0.000116	882	0.000108	839

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000133	929	0.000135	918	0.000121	925	0.000117	884	0.000109	843
0.000134	932	0.000135	920	0.000121	926	0.000119	887	0.000111	846
0.000135	934	0.000137	923	0.000123	927	0.000121	889	0.000112	849
0.000136	937	0.000139	925	0.000125	928	0.000121	891	0.000113	853
0.000137	940	0.00014	928	0.000126	929	0.000123	893	0.000114	856
0.000138	942	0.000142	931	0.000128	931	0.000124	895	0.000116	860
0.000139	945	0.000144	934	0.00013	932	0.000126	897	0.000118	863
0.000139	948	0.000145	937	0.000131	934	0.000128	899	0.000119	866
0.00014	951	0.000147	940	0.000133	936	0.000129	901	0.000121	869
0.000141	954	0.000148	943	0.000135	937	0.000131	903	0.000122	872
0.000142	957	0.00015	946	0.000136	939	0.000133	904	0.000124	875
0.000142	960	0.000152	948	0.000138	940	0.000134	905	0.000126	878
0.000143	963	0.000153	951	0.00014	942	0.000136	907	0.000127	880
0.000144	966	0.000155	953	0.000141	943	0.000137	908	0.000129	883
0.000145	970	0.000155	955	0.000143	945	0.000138	909	0.00013	886
0.000146	973	0.000155	957	0.000145	946	0.000139	911	0.000132	888
0.000146	976	0.000157	959	0.000146	948	0.000141	912	0.000133	891
0.000147	979	0.000158	961	0.000148	950	0.000143	913	0.000135	894
0.000148	982	0.00016	964	0.00015	951	0.000144	914	0.000137	896
0.000149	985	0.000162	966	0.000151	953	0.000146	915	0.000138	899
0.00015	988	0.000163	968	0.000153	955	0.000148	916	0.00014	902
0.00015	990	0.000165	970	0.000154	956	0.000149	917	0.000142	904
0.00015	992	0.000166	972	0.000156	958	0.000151	918	0.000143	907

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000152	994	0.000167	974	0.000158	959	0.000153	919	0.000145	910
0.000153	996	0.000169	976	0.000158	961	0.000154	921	0.000147	912
0.000154	998	0.00017	978	0.00016	963	0.000156	922	0.000147	915
0.000154	1000	0.000171	980	0.000162	964	0.000157	923	0.000148	917
0.000155	1003	0.000172	982	0.000163	966	0.000159	924	0.00015	919
0.000156	1005	0.000173	984	0.000165	967	0.00016	925	0.000152	921
0.000157	1008	0.000175	985	0.000167	969	0.000162	925	0.000153	923
0.000159	1010	0.000177	987	0.000167	970	0.000163	926	0.000155	925
0.00016	1013	0.000178	988	0.000168	971	0.000165	927	0.000157	926
0.000162	1016	0.00018	990	0.00017	973	0.000166	928	0.000157	928
0.000163	1019	0.000181	992	0.000172	974	0.000168	929	0.000159	929
0.000165	1022	0.000182	993	0.000173	976	0.00017	930	0.000161	930
0.000166	1025	0.000184	994	0.000175	977	0.000171	931	0.000162	931
0.000168	1028	0.000185	996	0.000177	978	0.000173	932	0.000164	932
0.00017	1031	0.000187	998	0.000178	979	0.000175	933	0.000166	933
0.000171	1034	0.000188	999	0.00018	980	0.000176	934	0.000167	933
0.000172	1037	0.00019	1001	0.000182	981	0.000178	936	0.000169	933
0.000174	1039	0.000192	1003	0.000183	982	0.00018	937	0.000169	934
0.000176	1042	0.000193	1005	0.000185	983	0.000181	939	0.000171	934
0.000177	1044	0.000195	1007	0.000186	984	0.000183	940	0.000172	935
0.000179	1046	0.000196	1009	0.000188	986	0.000185	942	0.000174	936
0.00018	1048	0.000198	1011	0.00019	987	0.000186	944	0.000176	938
0.000182	1049	0.000199	1013	0.000191	988	0.000188	945	0.000177	939

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000184	1051	0.000201	1015	0.000193	988	0.00019	947	0.000179	940
0.000185	1052	0.000203	1018	0.000195	989	0.000191	949	0.000181	942
0.000187	1053	0.000204	1021	0.000196	990	0.000193	950	0.000182	943
0.000189	1054	0.000206	1023	0.000198	991	0.000195	952	0.000183	944
0.00019	1054	0.000208	1026	0.0002	992	0.000196	953	0.000184	946
0.000192	1055	0.000209	1029	0.000201	993	0.000198	954	0.000186	947
0.000194	1055	0.000211	1032	0.000203	994	0.0002	956	0.000188	949
0.000195	1056	0.000212	1035	0.000205	995	0.000201	957	0.000189	950
0.000197	1056	0.000212	1038	0.000206	995	0.000203	958	0.000191	952
0.000199	1057	0.000214	1040	0.000208	996	0.000205	959	0.000193	953
0.0002	1057	0.000216	1043	0.00021	997	0.000206	959	0.000194	954
0.000202	1057	0.000217	1046	0.000211	998	0.000208	960	0.000196	956
0.000204	1057	0.000217	1048	0.000213	998	0.00021	960	0.000198	957
0.000205	1058	0.000219	1051	0.000215	998	0.000211	960	0.000199	959
0.000207	1058	0.000221	1053	0.000216	998	0.000213	961	0.000201	961
0.000209	1058	0.000222	1056	0.000218	998	0.000215	961	0.000202	962
0.00021	1057	0.000224	1058	0.00022	998	0.000216	961	0.000204	964
0.000212	1057	0.000226	1060	0.000221	998	0.000218	961	0.000206	966
0.000214	1056	0.000227	1062	0.000223	999	0.000219	961	0.000206	968
0.000215	1055	0.000229	1064	0.000225	999	0.000221	961	0.000208	970
0.000217	1053	0.000231	1066	0.000226	999	0.000223	960	0.000209	971
0.000219	1052	0.000232	1068	0.000228	1000	0.000224	960	0.000211	973
0.00022	1051	0.000234	1071	0.00023	1000	0.000226	959	0.000213	975

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000222	1050	0.000236	1073	0.000231	1001	0.000228	958	0.000214	977
0.000224	1048	0.000237	1076	0.000233	1001	0.000229	958	0.000216	978
0.000225	1046	0.000239	1078	0.000235	1002	0.000231	957	0.000217	980
0.000227	1045	0.00024	1081	0.000236	1003	0.000233	956	0.000219	981
0.000229	1043	0.000242	1083	0.000238	1004	0.000234	955	0.000221	982
0.00023	1041	0.000244	1086	0.00024	1005	0.000236	954	0.000222	982
0.000232	1040	0.000245	1088	0.000241	1006	0.000238	953	0.000224	983
0.000233	1038	0.000245	1090	0.000243	1007	0.000239	952	0.000225	983
0.000235	1036	0.000247	1092	0.000244	1009	0.000241	952	0.000227	983
0.000237	1035	0.000249	1093	0.000246	1010	0.000243	951	0.000228	983
0.000238	1033	0.00025	1094	0.000248	1011	0.000244	951	0.00023	982
0.000239	1031	0.000252	1095	0.000249	1013	0.000246	951	0.000232	982
0.000241	1030	0.000254	1095	0.000251	1015	0.000248	950	0.000233	982
0.000243	1028	0.000255	1094	0.000253	1016	0.000249	950	0.000235	981
0.000244	1026	0.000257	1093	0.000254	1018	0.000251	950	0.000237	981
0.000244	1025	0.000259	1092	0.000256	1020	0.000253	950	0.000238	980
0.000245	1023	0.00026	1092	0.000258	1021	0.000254	950	0.00024	980
0.000246	1022	0.000262	1091	0.000259	1023	0.000256	950	0.000241	980
0.000248	1021	0.000264	1090	0.000261	1025	0.000258	950	0.000243	979
0.00025	1019	0.000265	1089	0.000263	1027	0.000259	950	0.000245	979
0.000251	1018	0.000267	1088	0.000264	1029	0.000261	950	0.000246	978
0.000253	1016	0.000269	1087	0.000266	1030	0.000263	950	0.000248	978
0.000255	1015	0.00027	1085	0.000268	1032	0.000264	950	0.00025	978

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000256	1014	0.000272	1083	0.000269	1034	0.000266	951	0.000251	978
0.000258	1012	0.000274	1082	0.000269	1035	0.000268	951	0.000253	979
0.00026	1011	0.000275	1080	0.000271	1037	0.000268	952	0.000255	979
0.000261	1010	0.000277	1077	0.000273	1038	0.00027	952	0.000256	979
0.000263	1008	0.000279	1075	0.000274	1040	0.000271	953	0.000258	979
0.000265	1007	0.00028	1072	0.000276	1041	0.000273	954	0.000259	980
0.000266	1006	0.000282	1069	0.000278	1042	0.000275	955	0.000261	980
0.000267	1005	0.000283	1066	0.000279	1043	0.000276	955	0.000263	981
0.000268	1004	0.000284	1063	0.000279	1043	0.000278	955	0.000264	981
0.000269	1003	0.000286	1061	0.000281	1044	0.00028	955	0.000266	982
0.000269	1002	0.000288	1059	0.000283	1045	0.000281	955	0.000268	982
0.00027	1002	0.000289	1057	0.000284	1045	0.000283	955	0.000269	983
0.000271	1001	0.000291	1055	0.000286	1046	0.000285	954	0.000271	983
0.000272	1001	0.000293	1053	0.000288	1047	0.000286	953	0.000273	984
0.000273	1001	0.000294	1052	0.000288	1047	0.000288	951	0.000274	984
0.000274	1000	0.000296	1050	0.000288	1047	0.00029	949	0.000276	985
0.000276	1000	0.000298	1049	0.00029	1048	0.00029	946	0.000277	985
0.000277	1001	0.000299	1048	0.000292	1049	0.000292	943	0.000279	985
0.000278	1001	0.000301	1047	0.000293	1050	0.000293	941	0.000281	985
0.000279	1001	0.000302	1046	0.000293	1051	0.000295	939	0.000282	985
0.00028	1002	0.000304	1045	0.000295	1052	0.000297	937	0.000284	984
0.000281	1003	0.000306	1044	0.000296	1052	0.000298	935	0.000286	984
0.000282	1004	0.000307	1043	0.000298	1053	0.0003	933	0.000287	983

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000283	1004	0.000309	1043	0.000298	1053	0.000302	931	0.000289	982
0.000284	1005	0.00031	1042	0.000299	1054	0.000303	929	0.000291	981
0.000285	1006	0.000312	1042	0.000301	1055	0.000305	928	0.000292	979
0.000286	1007	0.000314	1041	0.000302	1056	0.000306	927	0.000294	977
0.000288	1007	0.000315	1040	0.000304	1057	0.000308	925	0.000296	975
0.000289	1008	0.000317	1040	0.000306	1058	0.000309	924	0.000297	972
0.00029	1009	0.000319	1039	0.000307	1058	0.000311	924	0.000299	969
0.000292	1009	0.00032	1039	0.000309	1059	0.000313	923	0.000301	966
0.000293	1009	0.000322	1038	0.00031	1060	0.000314	923	0.000302	961
0.000294	1010	0.000324	1038	0.00031	1061	0.000316	922	0.000304	957
0.000296	1011	0.000325	1037	0.000312	1062	0.000318	922	0.000306	952
0.000297	1011	0.000327	1036	0.000313	1063	0.000319	923	0.000307	948
0.000298	1012	0.000327	1036	0.000313	1064	0.000321	923	0.000309	945
0.000299	1013	0.000329	1035	0.000315	1065	0.000322	923	0.000311	942
0.0003	1014	0.000331	1034	0.000317	1066	0.000323	923	0.000312	939
0.000301	1015	0.000332	1034	0.000317	1067	0.000325	924	0.000314	936
0.000303	1017	0.000334	1033	0.000318	1068	0.000327	924	0.000316	934
0.000303	1018	0.000336	1032	0.00032	1069	0.000328	925	0.000317	932
0.000304	1020	0.000337	1031	0.000322	1070	0.00033	926	0.000319	930
0.000305	1022	0.000339	1031	0.000322	1071	0.000332	927	0.000321	928
0.000306	1025	0.000341	1030	0.000323	1072	0.000332	928	0.000321	927
0.000308	1027	0.000342	1029	0.000325	1073	0.000333	930	0.000322	925
0.000308	1029	0.000344	1028	0.000327	1074	0.000335	931	0.000324	924

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.00031	1032	0.000346	1028	0.000328	1075	0.000337	933	0.000326	923
0.000311	1035	0.000347	1027	0.00033	1075	0.000338	935	0.000327	922
0.000312	1038	0.000349	1026	0.000332	1076	0.00034	938	0.000329	921
0.000313	1040	0.000351	1025	0.000333	1077	0.000342	940	0.000331	920
0.000314	1043	0.000352	1024	0.000335	1079	0.000343	943	0.000332	919
0.000314	1046	0.000354	1023	0.000337	1080	0.000345	945	0.000334	918
0.000316	1048	0.000356	1022	0.000338	1081	0.000347	948	0.000336	917
0.000317	1050	0.000357	1021	0.00034	1082	0.000348	951	0.000337	917
0.000318	1051	0.000359	1020	0.00034	1083	0.00035	953	0.000339	916
0.000319	1053	0.000361	1020	0.000342	1084	0.000351	955	0.000341	916
0.00032	1054	0.000362	1019	0.000343	1085	0.000353	957	0.000342	915
0.000321	1056	0.000364	1018	0.000345	1086	0.000355	959	0.000344	915
0.000322	1057	0.000366	1017	0.000347	1087	0.000356	961	0.000346	914
0.000323	1059	0.000367	1016	0.000348	1087	0.000358	963	0.000347	914
0.000324	1060	0.000369	1015	0.00035	1087	0.00036	964	0.000349	914
0.000325	1061	0.00037	1014	0.00035	1086	0.000361	966	0.000351	914
0.000325	1062	0.000372	1013	0.000351	1087	0.000363	967	0.000352	914
0.000326	1063	0.000374	1012	0.000352	1087	0.000365	968	0.000352	914
0.000327	1064	0.000375	1011	0.000354	1087	0.000366	968	0.000352	914
0.000328	1065	0.000377	1010	0.000355	1087	0.000368	968	0.000353	915
0.000329	1066	0.000379	1009	0.000357	1088	0.00037	967	0.000355	915
0.000331	1066	0.00038	1008	0.000359	1088	0.000371	966	0.000356	916
0.000332	1067	0.000382	1007	0.00036	1089	0.000373	964	0.000358	917

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000333	1067	0.000384	1006	0.000362	1089	0.000374	963	0.000358	918
0.000333	1068	0.000385	1006	0.000364	1089	0.000376	963	0.00036	919
0.000334	1068	0.000387	1005	0.000365	1090	0.000377	962	0.000361	921
0.000336	1069	0.000389	1004	0.000367	1090	0.000379	962	0.000362	922
0.000338	1069	0.000389	1003	0.000369	1091	0.000381	962	0.000364	924
0.000339	1069	0.00039	1002	0.00037	1092	0.000382	962	0.000365	926
0.000341	1070	0.000392	1001	0.00037	1092	0.000384	962	0.000367	928
0.000341	1070	0.000394	1001	0.000372	1093	0.000386	962	0.000369	931
0.000341	1070	0.000395	1000	0.000372	1093	0.000387	963	0.00037	933
0.000342	1070	0.000395	999	0.000374	1094	0.000389	964	0.000372	935
0.000344	1070	0.000396	998	0.000375	1095	0.000391	965	0.000374	936
0.000346	1070	0.000396	997	0.000375	1095	0.000392	966	0.000375	938
0.000347	1070	0.000397	997	0.000377	1096	0.000393	967	0.000377	940
0.000349	1070	0.000398	996	0.000379	1097	0.000394	969	0.000379	942
0.000351	1070	0.0004	995	0.00038	1097	0.000396	970	0.00038	943
0.000352	1070	0.000402	994	0.00038	1098	0.000398	972	0.000382	944
0.000353	1069	0.000403	994	0.00038	1098	0.000399	974	0.000382	945
0.000354	1069	0.000405	993	0.000382	1099	0.000401	976	0.000382	946
0.000356	1068	0.000405	992	0.000384	1099	0.000403	978	0.000383	946
0.000357	1067	0.000406	991	0.000385	1100	0.000404	980	0.000385	946
0.000359	1067	0.000408	991	0.000385	1101	0.000405	982	0.000386	946
0.000361	1066	0.000409	990	0.000387	1101	0.000407	984	0.000388	946
0.000362	1065	0.000411	989	0.000389	1102	0.000408	985	0.00039	945

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000364	1064	0.000412	988	0.00039	1102	0.00041	987	0.000391	943
0.000366	1063	0.000413	988	0.00039	1103	0.000412	988	0.000392	941
0.000367	1062	0.000413	987	0.000391	1103	0.000413	989	0.000394	939
0.000369	1060	0.000413	986	0.000391	1104	0.000415	989	0.000395	937
0.000371	1059	0.000415	985	0.000393	1104	0.000417	990	0.000397	936
0.000372	1058	0.000416	985	0.000394	1105	0.000418	990	0.000399	934
0.000374	1057	0.000418	984	0.000396	1105	0.00042	989	0.0004	933
0.000375	1055	0.00042	983	0.000398	1106	0.000422	988	0.000401	931
0.000377	1054	0.000421	982	0.000398	1106	0.000423	987	0.000402	930
0.000378	1052	0.000423	982	0.000399	1106	0.000425	986	0.000402	929
0.00038	1051	0.000425	981	0.000399	1107	0.000427	986	0.000404	928
0.000382	1049	0.000426	980	0.000401	1107	0.000428	985	0.000406	927
0.000383	1048	0.000428	979	0.000403	1107	0.000429	984	0.000407	926
0.000385	1046	0.000429	979	0.000404	1108	0.000431	984	0.000409	925
0.000387	1045	0.000431	978	0.000406	1108	0.000433	983	0.000411	924
0.000388	1043	0.000433	977	0.000408	1108	0.000434	982	0.000412	923
0.00039	1041	0.000434	977	0.000409	1109	0.000436	982	0.000414	922
0.000392	1040	0.000436	976	0.000411	1109	0.000438	981	0.000416	921
0.000393	1038	0.000438	976	0.000411	1109	0.000438	981	0.000417	920
0.000395	1036	0.000439	975	0.000413	1110	0.000439	980	0.000419	919
0.000397	1035	0.000441	974	0.000413	1110	0.000441	980	0.000421	919
0.000398	1033	0.000443	974	0.000414	1110	0.000442	979	0.000422	918
0.0004	1031	0.000444	973	0.000414	1110	0.000444	979	0.000424	917

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000402	1030	0.000446	973	0.000416	1111	0.000446	978	0.000424	917
0.000403	1028	0.000448	972	0.000418	1111	0.000447	978	0.000426	916
0.000405	1026	0.000449	972	0.000419	1111	0.000449	978	0.000428	916
0.000406	1025	0.000451	972	0.000421	1111	0.000451	977	0.000429	915
0.000408	1023	0.000452	971	0.000422	1112	0.000452	977	0.000431	915
0.00041	1022	0.000454	971	0.000424	1112	0.000454	976	0.000432	915
0.000411	1021	0.000454	970	0.000425	1112	0.000456	976	0.000434	914
0.000413	1019	0.000456	970	0.000426	1112	0.000457	975	0.000434	914
0.000415	1018	0.000457	970	0.000428	1112	0.000459	975	0.000436	913
0.000415	1017	0.000459	970	0.00043	1113	0.000461	974	0.000437	913
0.000417	1016	0.000461	970	0.000431	1113	0.000462	974	0.000438	912
0.000419	1015	0.000462	969	0.000433	1113	0.000464	974	0.00044	911
0.00042	1014	0.000463	969	0.000435	1113	0.000464	973	0.000442	911
0.000422	1013	0.000465	969	0.000435	1113	0.000466	973	0.000443	910
0.000422	1013	0.000467	969	0.000436	1114	0.000467	972	0.000445	910
0.000424	1012	0.000468	970	0.000436	1114	0.000468	972	0.000447	909
0.000426	1012	0.00047	970	0.000438	1114	0.00047	971	0.000448	908
0.000427	1012	0.000472	970	0.000439	1115	0.000472	971	0.00045	907
0.000429	1012	0.000473	971	0.000441	1115	0.000473	971	0.000452	907
0.000431	1012	0.000474	971	0.000443	1115	0.000475	970	0.000453	906
0.000432	1012	0.000476	972	0.000444	1116	0.000477	970	0.000455	905
0.000434	1012	0.000478	973	0.000446	1116	0.000478	969	0.000457	905
0.000436	1013	0.000479	974	0.000447	1116	0.00048	969	0.000458	904

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000436	1014	0.000481	976	0.000449	1117	0.000482	968	0.000459	903
0.000438	1014	0.000483	977	0.000451	1117	0.000483	968	0.00046	903
0.000439	1016	0.000484	979	0.000452	1118	0.000485	967	0.000462	902
0.000441	1017	0.000486	980	0.000454	1118	0.000487	967	0.000464	901
0.000442	1018	0.000487	982	0.000456	1118	0.000488	966	0.000465	901
0.000444	1020	0.000489	983	0.000457	1119	0.00049	966	0.000467	900
0.000446	1022	0.00049	984	0.000459	1119	0.000491	965	0.000469	900
0.000447	1024	0.000492	985	0.000461	1120	0.000492	965	0.000469	899
0.000449	1027	0.000493	986	0.000462	1120	0.000494	964	0.000469	899
0.00045	1029	0.000494	987	0.000464	1120	0.000494	964	0.000471	898
0.000452	1032	0.000496	989	0.000465	1121	0.000496	963	0.000471	898
0.000453	1034	0.000498	990	0.000467	1121	0.000497	963	0.000473	897
0.000454	1037	0.000499	991	0.000467	1121	0.000499	963	0.000475	897
0.000456	1039	0.000501	993	0.000469	1122	0.0005	962	0.000476	897
0.000456	1041	0.000503	995	0.000469	1122	0.000502	962	0.000477	897
0.000458	1043	0.000504	996	0.00047	1123	0.000504	962	0.000479	896
0.000459	1045	0.000506	998	0.000472	1123	0.000505	961	0.000481	896
0.00046	1046	0.000508	999	0.000474	1123	0.000505	961	0.000482	896
0.000461	1048	0.000508	1000	0.000475	1124	0.000507	961	0.000484	896
0.000463	1049	0.000509	1002	0.000477	1124	0.000509	961	0.000486	896
0.000465	1051	0.000511	1003	0.000479	1125	0.00051	960	0.000487	896
0.000465	1052	0.000513	1004	0.00048	1125	0.000512	960	0.000489	897
0.000467	1053	0.000514	1006	0.000482	1125	0.000514	960	0.000491	897

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000468	1054	0.000516	1007	0.000483	1126	0.000515	960	0.000492	897
0.00047	1056	0.000518	1008	0.000485	1126	0.000517	959	0.000494	898
0.000471	1057	0.000519	1009	0.000486	1127	0.000519	959	0.000496	899
0.000473	1058	0.000521	1009	0.000488	1127	0.00052	959	0.000497	899
0.000475	1059	0.000522	1010	0.00049	1127	0.000522	959	0.000499	899
0.000476	1060	0.000524	1010	0.00049	1128	0.000524	959	0.0005	899
0.000478	1061	0.000526	1009	0.000491	1128	0.000525	959	0.000502	899
0.00048	1063	0.000527	1008	0.000493	1128	0.000527	959	0.000504	899
0.000481	1064	0.000529	1008	0.000493	1129	0.000529	959	0.000505	899
0.000483	1065	0.000531	1008	0.000495	1129	0.00053	959	0.000506	898
0.000485	1066	0.000532	1007	0.000496	1129	0.000532	958	0.000506	898
0.000486	1067	0.000534	1007	0.000498	1130	0.000534	958	0.000507	898
0.000488	1067	0.000536	1006	0.0005	1130	0.000535	957	0.000508	898
0.00049	1068	0.000537	1006	0.000501	1131	0.000537	956	0.00051	899
0.000491	1069	0.000539	1005	0.000503	1131	0.000539	956	0.000512	899
0.000493	1069	0.00054	1005	0.000505	1131	0.00054	955	0.000512	899
0.000495	1070	0.000541	1005	0.000505	1132	0.000542	954	0.000514	899
0.000496	1070	0.000542	1005	0.000506	1132	0.000544	954	0.000516	900
0.000498	1070	0.000543	1004	0.000508	1133	0.000545	953	0.000517	900
0.0005	1070	0.000545	1004	0.000509	1133	0.000547	952	0.000519	901
0.0005	1070	0.000546	1004	0.000511	1133	0.000549	952	0.000521	901
0.000501	1069	0.000548	1004	0.000513	1134	0.00055	951	0.000522	902
0.000503	1069	0.000549	1004	0.000514	1134	0.000552	951	0.000524	902

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000505	1069	0.000551	1004	0.000514	1134	0.000554	950	0.000526	902
0.000506	1069	0.000553	1004	0.000516	1135	0.000555	950	0.000526	903
0.000508	1068	0.000554	1004	0.000516	1135	0.000557	949	0.000527	903
0.00051	1068	0.000556	1004	0.000517	1135	0.000558	949	0.000529	903
0.000511	1067	0.000558	1004	0.000519	1136	0.00056	948	0.000531	904
0.000513	1066	0.000558	1004	0.000519	1136	0.000562	947	0.000532	904
0.000514	1066	0.000559	1005	0.000521	1136	0.000563	947	0.000534	904
0.000516	1065	0.000561	1005	0.000522	1137	0.000565	947	0.000536	904
0.000518	1064	0.000562	1005	0.000524	1137	0.000567	946	0.000537	904
0.000519	1063	0.000564	1005	0.000524	1137	0.000568	946	0.000539	904
0.000521	1063	0.000565	1006	0.000526	1137	0.00057	945	0.000541	904
0.000523	1062	0.000567	1006	0.000527	1138	0.000572	945	0.000542	904
0.000524	1061	0.000569	1006	0.000527	1138	0.000573	944	0.000544	904
0.000526	1060	0.00057	1006	0.000529	1138	0.000575	944	0.000546	904
0.000528	1059	0.000571	1007	0.000531	1138	0.000577	943	0.000547	904
0.000529	1058	0.000573	1007	0.000532	1138	0.000578	943	0.000547	904
0.000531	1057	0.000575	1007	0.000534	1139	0.00058	943	0.000548	904
0.000533	1056	0.000576	1007	0.000536	1139	0.000582	942	0.000549	904
0.000534	1055	0.000578	1007	0.000537	1139	0.000583	942	0.000551	904
0.000536	1054	0.00058	1008	0.000537	1139	0.000585	942	0.000553	904
0.000537	1052	0.000581	1008	0.000537	1139	0.000587	941	0.000554	903
0.000539	1051	0.000583	1008	0.000537	1139	0.000588	941	0.000554	903
0.000541	1050	0.000585	1008	0.000539	1139	0.00059	941	0.000556	903

Глибина різ	ання 0.5 мм	Глибина рі	зання 1 мм	Глибина різ	ання 1.5 мм	Глибина різ	ання 2.5 мм	Глибина різ	ання 3.5 мм
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000542	1048	0.000586	1008	0.000539	1139	0.000592	940	0.000558	903
0.000544	1046	0.000588	1008	0.000541	1139	0.000593	940	0.000559	903
0.000546	1044	0.00059	1009	0.000542	1139	0.000595	939	0.000561	903
0.000547	1042	0.000591	1009	0.000542	1139	0.000597	939	0.000563	903
0.000549	1040	0.000593	1009	0.000544	1139	0.000598	939	0.000564	902
0.000551	1038	0.000595	1009	0.000546	1139	0.0006	938	0.000565	902
0.000552	1036	0.000596	1009	0.000546	1139	0.000602	938	0.000566	902
0.000554	1034	0.000598	1009	0.000547	1139	0.000603	938	0.000568	902
0.000556	1032	0.000599	1009	0.000549	1139	0.000604	937	0.00057	901
0.000557	1031	0.000601	1009	0.000551	1139	0.000605	937	0.000571	901

Додаток Г.

Результати моделювання сили різання від глибини різання

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0	572	0	799	0	989	0	1132	0	1060
0.000001	578	0.000001	807	0	999	0.000002	1143	0.000001	1071
0.000001	587	0.000001	821	0.000002	1018	0.000002	1162	0.000002	1091
0.000003	600	0.000003	841	0.000003	1043	0.000003	1190	0.000003	1118
0.000004	614	0.000003	864	0.000004	1073	0.000004	1224	0.000003	1152
0.000006	629	0.000005	889	0.000005	1108	0.000005	1263	0.000004	1192
0.000008	645	0.000006	916	0.000006	1146	0.000006	1305	0.000005	1238
0.000008	661	0.000007	945	0.000007	1186	0.000007	1352	0.000006	1287
0.000009	678	0.000009	975	0.000009	1226	0.000008	1401	0.000007	1341
0.000011	695	0.00001	1005	0.00001	1268	0.00001	1452	0.000008	1398
0.000013	711	0.000011	1035	0.000012	1310	0.00001	1505	0.000009	1457
0.000014	727	0.000013	1065	0.000012	1352	0.000012	1560	0.00001	1519
0.000014	743	0.000013	1095	0.000014	1395	0.000013	1613	0.00001	1583
0.000016	758	0.000015	1125	0.000015	1437	0.000014	1666	0.000012	1648
0.000018	772	0.000016	1154	0.000016	1479	0.000015	1719	0.000012	1714
0.000019	786	0.000018	1182	0.000017	1521	0.000017	1771	0.000014	1781
0.000021	799	0.000018	1209	0.000018	1563	0.000017	1822	0.000014	1849
0.000023	811	0.00002	1235	0.000019	1605	0.000019	1873	0.000016	1916
0.000024	822	0.000022	1261	0.000021	1645	0.000021	1923	0.000017	1983

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000025	833	0.000023	1285	0.000022	1685	0.000021	1972	0.000018	2050
0.000026	842	0.000025	1309	0.000023	1725	0.000023	2021	0.000019	2115
0.000028	852	0.000026	1332	0.000025	1763	0.000024	2068	0.000021	2179
0.00003	860	0.000028	1354	0.000025	1801	0.000026	2114	0.000022	2242
0.000031	869	0.000029	1375	0.000027	1839	0.000026	2160	0.000023	2302
0.000033	876	0.000031	1394	0.000029	1875	0.000028	2204	0.000025	2362
0.000035	883	0.000033	1413	0.000029	1910	0.000029	2248	0.000026	2420
0.000036	889	0.000033	1430	0.000031	1945	0.00003	2290	0.000026	2476
0.000038	894	0.000035	1447	0.000033	1979	0.000031	2332	0.000028	2531
0.00004	899	0.000037	1463	0.000034	2012	0.000033	2374	0.00003	2585
0.000041	903	0.000038	1477	0.000035	2044	0.000033	2414	0.00003	2637
0.000043	907	0.00004	1491	0.000037	2075	0.000035	2454	0.000031	2689
0.000045	910	0.000042	1504	0.000038	2106	0.000036	2493	0.000033	2739
0.000046	913	0.000043	1516	0.00004	2135	0.000037	2531	0.000033	2788
0.000048	915	0.000045	1527	0.000042	2163	0.000039	2569	0.000035	2836
0.00005	917	0.000045	1538	0.000042	2190	0.00004	2605	0.000035	2884
0.000051	919	0.000047	1548	0.000044	2216	0.000041	2641	0.000037	2930
0.000053	920	0.000049	1557	0.000045	2241	0.000042	2675	0.000039	2976
0.000054	921	0.00005	1565	0.000047	2265	0.000044	2710	0.000039	3020
0.000056	922	0.000052	1573	0.000048	2288	0.000045	2743	0.00004	3064
0.000058	922	0.000054	1581	0.000049	2311	0.000046	2776	0.000042	3107
0.000059	922	0.000055	1587	0.000051	2332	0.000048	2808	0.000043	3149
0.000061	921	0.000057	1593	0.000053	2353	0.000049	2840	0.000044	3191

Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000063	920	0.000059	1598	0.000053	2372	0.000051	2871	0.000046	3232
0.000064	919	0.00006	1603	0.000054	2392	0.000053	2901	0.000046	3273
0.000066	917	0.000062	1607	0.000056	2410	0.000054	2929	0.000048	3313
0.000068	915	0.000064	1611	0.000057	2428	0.000055	2957	0.00005	3352
0.000069	913	0.000065	1615	0.000059	2445	0.000057	2985	0.00005	3391
0.000071	910	0.000067	1618	0.000061	2462	0.000058	3011	0.000052	3429
0.000073	906	0.000069	1621	0.000061	2479	0.000059	3037	0.000053	3467
0.000074	902	0.00007	1623	0.000063	2495	0.000061	3061	0.000053	3504
0.000076	897	0.000072	1625	0.000064	2510	0.000063	3085	0.000055	3540
0.000078	892	0.000074	1626	0.000066	2524	0.000064	3109	0.000057	3576
0.000079	886	0.000075	1627	0.000068	2538	0.000065	3131	0.000057	3612
0.000081	880	0.000077	1628	0.000069	2550	0.000066	3153	0.000059	3646
0.000083	873	0.000079	1628	0.000069	2562	0.000068	3174	0.00006	3681
0.000084	865	0.00008	1628	0.000071	2574	0.00007	3195	0.000062	3715
0.000086	856	0.000082	1628	0.000073	2585	0.000071	3215	0.000063	3748
0.000088	846	0.000084	1627	0.000073	2596	0.000073	3234	0.000064	3780
0.000089	836	0.000085	1626	0.000075	2607	0.000074	3253	0.000066	3812
0.000091	825	0.000087	1624	0.000076	2617	0.000074	3271	0.000067	3844
0.000093	814	0.000088	1622	0.000078	2627	0.000076	3288	0.000068	3875
0.000094	802	0.00009	1620	0.00008	2637	0.000077	3304	0.00007	3905
0.000096	790	0.000092	1617	0.000081	2646	0.000079	3320	0.000071	3935
0.000098	778	0.000093	1614	0.000081	2655	0.00008	3336	0.000073	3965
0.000099	765	0.000095	1610	0.000083	2664	0.000082	3351	0.000074	3994

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000101	752	0.000097	1606	0.000085	2672	0.000084	3366	0.000075	4023
0.000103	741	0.000098	1602	0.000086	2680	0.000084	3380	0.000077	4051
0.000104	731	0.0001	1597	0.000088	2687	0.000085	3393	0.000078	4079
0.000106	722	0.000102	1591	0.00009	2695	0.000087	3407	0.00008	4106
0.000107	714	0.000103	1585	0.000091	2702	0.000089	3420	0.000082	4133
0.000109	705	0.000105	1579	0.000093	2709	0.00009	3432	0.000083	4159
0.000111	698	0.000107	1572	0.000094	2715	0.000091	3444	0.000085	4185
0.000112	691	0.000108	1564	0.000096	2722	0.000093	3456	0.000086	4209
0.000113	686	0.00011	1554	0.000098	2728	0.000095	3467	0.000088	4234
0.000115	680	0.000112	1544	0.000099	2733	0.000096	3478	0.00009	4257
0.000116	674	0.000113	1533	0.000101	2739	0.000098	3488	0.00009	4280
0.000117	668	0.000115	1521	0.000103	2744	0.0001	3498	0.000092	4302
0.000119	663	0.000117	1508	0.000103	2749	0.000101	3508	0.000093	4324
0.000121	658	0.000118	1493	0.000105	2754	0.000102	3517	0.000095	4346
0.000122	654	0.00012	1476	0.000106	2758	0.000104	3526	0.000096	4367
0.000123	649	0.000122	1458	0.000108	2763	0.000105	3534	0.000097	4387
0.000125	645	0.000123	1440	0.00011	2767	0.000107	3543	0.000099	4408
0.000126	640	0.000125	1420	0.000111	2771	0.000109	3551	0.000101	4427
0.000128	636	0.000127	1400	0.000113	2775	0.000109	3559	0.000101	4446
0.000128	633	0.000128	1379	0.000115	2779	0.000111	3566	0.000103	4465
0.000129	629	0.00013	1357	0.000116	2782	0.000112	3573	0.000105	4483
0.000131	625	0.000132	1335	0.000118	2785	0.000114	3580	0.000106	4500
0.000132	622	0.000133	1312	0.00012	2789	0.000116	3586	0.000108	4518

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000133	619	0.000135	1290	0.000121	2792	0.000117	3593	0.000109	4535
0.000134	617	0.000135	1269	0.000121	2795	0.000119	3599	0.000111	4551
0.000135	616	0.000137	1246	0.000123	2798	0.000121	3604	0.000112	4567
0.000136	615	0.000139	1222	0.000125	2801	0.000121	3610	0.000113	4583
0.000137	614	0.00014	1197	0.000126	2803	0.000123	3615	0.000114	4599
0.000138	613	0.000142	1172	0.000128	2806	0.000124	3620	0.000116	4614
0.000139	612	0.000144	1149	0.00013	2808	0.000126	3625	0.000118	4629
0.000139	611	0.000145	1127	0.000131	2809	0.000128	3630	0.000119	4643
0.00014	611	0.000147	1106	0.000133	2811	0.000129	3634	0.000121	4657
0.000141	611	0.000148	1086	0.000135	2813	0.000131	3638	0.000122	4671
0.000142	612	0.00015	1066	0.000136	2814	0.000133	3642	0.000124	4684
0.000142	612	0.000152	1047	0.000138	2815	0.000134	3646	0.000126	4697
0.000143	612	0.000153	1031	0.00014	2816	0.000136	3650	0.000127	4710
0.000144	612	0.000155	1017	0.000141	2817	0.000137	3654	0.000129	4722
0.000145	612	0.000155	1004	0.000143	2817	0.000138	3658	0.00013	4734
0.000146	612	0.000155	992	0.000145	2818	0.000139	3661	0.000132	4746
0.000146	613	0.000157	980	0.000146	2818	0.000141	3664	0.000133	4757
0.000147	614	0.000158	968	0.000148	2818	0.000143	3667	0.000135	4768
0.000148	615	0.00016	956	0.00015	2819	0.000144	3670	0.000137	4779
0.000149	617	0.000162	945	0.000151	2819	0.000146	3673	0.000138	4789
0.00015	619	0.000163	934	0.000153	2819	0.000148	3675	0.00014	4799
0.00015	623	0.000165	924	0.000154	2820	0.000149	3678	0.000142	4809
0.00015	627	0.000166	915	0.000156	2820	0.000151	3680	0.000143	4818

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000152	633	0.000167	907	0.000158	2820	0.000153	3683	0.000145	4827
0.000153	638	0.000169	901	0.000158	2820	0.000154	3685	0.000147	4836
0.000154	643	0.00017	894	0.00016	2820	0.000156	3687	0.000147	4844
0.000154	648	0.000171	889	0.000162	2821	0.000157	3688	0.000148	4852
0.000155	654	0.000172	885	0.000163	2821	0.000159	3690	0.00015	4860
0.000156	661	0.000173	881	0.000165	2821	0.00016	3691	0.000152	4867
0.000157	669	0.000175	878	0.000167	2820	0.000162	3693	0.000153	4875
0.000159	677	0.000177	876	0.000167	2820	0.000163	3694	0.000155	4882
0.00016	685	0.000178	873	0.000168	2819	0.000165	3696	0.000157	4889
0.000162	693	0.00018	871	0.00017	2818	0.000166	3697	0.000157	4895
0.000163	702	0.000181	869	0.000172	2817	0.000168	3697	0.000159	4902
0.000165	711	0.000182	868	0.000173	2816	0.00017	3698	0.000161	4908
0.000166	720	0.000184	867	0.000175	2815	0.000171	3699	0.000162	4914
0.000168	728	0.000185	867	0.000177	2813	0.000173	3699	0.000164	4920
0.00017	737	0.000187	868	0.000178	2812	0.000175	3699	0.000166	4925
0.000171	745	0.000188	869	0.00018	2810	0.000176	3700	0.000167	4931
0.000172	753	0.00019	872	0.000182	2809	0.000178	3700	0.000169	4936
0.000174	761	0.000192	874	0.000183	2807	0.00018	3699	0.000169	4941
0.000176	770	0.000193	878	0.000185	2805	0.000181	3699	0.000171	4946
0.000177	778	0.000195	882	0.000186	2803	0.000183	3698	0.000172	4951
0.000179	785	0.000196	888	0.000188	2801	0.000185	3697	0.000174	4955
0.00018	793	0.000198	895	0.00019	2799	0.000186	3696	0.000176	4960
0.000182	799	0.000199	902	0.000191	2797	0.000188	3695	0.000177	4964

-									
Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000184	806	0.000201	909	0.000193	2795	0.00019	3693	0.000179	4968
0.000185	812	0.000203	916	0.000195	2793	0.000191	3692	0.000181	4973
0.000187	818	0.000204	925	0.000196	2790	0.000193	3689	0.000182	4977
0.000189	824	0.000206	933	0.000198	2788	0.000195	3687	0.000183	4981
0.00019	829	0.000208	942	0.0002	2785	0.000196	3684	0.000184	4985
0.000192	833	0.000209	951	0.000201	2782	0.000198	3681	0.000186	4988
0.000194	837	0.000211	960	0.000203	2779	0.0002	3678	0.000188	4992
0.000195	841	0.000212	969	0.000205	2776	0.000201	3674	0.000189	4996
0.000197	845	0.000212	979	0.000206	2772	0.000203	3669	0.000191	4999
0.000199	848	0.000214	988	0.000208	2768	0.000205	3664	0.000193	5002
0.0002	852	0.000216	998	0.00021	2764	0.000206	3658	0.000194	5006
0.000202	855	0.000217	1008	0.000211	2760	0.000208	3652	0.000196	5009
0.000204	857	0.000217	1018	0.000213	2755	0.00021	3645	0.000198	5012
0.000205	859	0.000219	1027	0.000215	2750	0.000211	3638	0.000199	5014
0.000207	861	0.000221	1037	0.000216	2744	0.000213	3629	0.000201	5017
0.000209	862	0.000222	1046	0.000218	2739	0.000215	3620	0.000202	5019
0.00021	863	0.000224	1056	0.00022	2732	0.000216	3610	0.000204	5022
0.000212	863	0.000226	1065	0.000221	2725	0.000218	3598	0.000206	5024
0.000214	863	0.000227	1075	0.000223	2718	0.000219	3586	0.000206	5026
0.000215	863	0.000229	1084	0.000225	2709	0.000221	3572	0.000208	5028
0.000217	862	0.000231	1094	0.000226	2700	0.000223	3557	0.000209	5030
0.000219	860	0.000232	1103	0.000228	2690	0.000224	3540	0.000211	5032
0.00022	858	0.000234	1113	0.00023	2679	0.000226	3521	0.000213	5034

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000222	855	0.000236	1122	0.000231	2668	0.000228	3501	0.000214	5036
0.000224	852	0.000237	1132	0.000233	2655	0.000229	3478	0.000216	5038
0.000225	848	0.000239	1142	0.000235	2642	0.000231	3453	0.000217	5039
0.000227	843	0.00024	1152	0.000236	2627	0.000233	3426	0.000219	5041
0.000229	838	0.000242	1162	0.000238	2610	0.000234	3397	0.000221	5043
0.00023	831	0.000244	1172	0.00024	2593	0.000236	3365	0.000222	5044
0.000232	824	0.000245	1181	0.000241	2573	0.000238	3330	0.000224	5046
0.000233	816	0.000245	1191	0.000243	2553	0.000239	3293	0.000225	5047
0.000235	807	0.000247	1200	0.000244	2530	0.000241	3253	0.000227	5049
0.000237	797	0.000249	1210	0.000246	2505	0.000243	3211	0.000228	5050
0.000238	785	0.00025	1220	0.000248	2478	0.000244	3167	0.00023	5052
0.000239	773	0.000252	1231	0.000249	2449	0.000246	3120	0.000232	5053
0.000241	761	0.000254	1241	0.000251	2417	0.000248	3072	0.000233	5054
0.000243	750	0.000255	1252	0.000253	2383	0.000249	3022	0.000235	5055
0.000244	738	0.000257	1263	0.000254	2346	0.000251	2972	0.000237	5056
0.000244	728	0.000259	1274	0.000256	2307	0.000253	2923	0.000238	5057
0.000245	717	0.00026	1285	0.000258	2269	0.000254	2873	0.00024	5058
0.000246	704	0.000262	1295	0.000259	2231	0.000256	2824	0.000241	5059
0.000248	691	0.000264	1306	0.000261	2192	0.000258	2774	0.000243	5060
0.00025	677	0.000265	1317	0.000263	2152	0.000259	2726	0.000245	5060
0.000251	663	0.000267	1328	0.000264	2112	0.000261	2678	0.000246	5060
0.000253	650	0.000269	1339	0.000266	2073	0.000263	2630	0.000248	5061
0.000255	637	0.00027	1350	0.000268	2033	0.000264	2583	0.00025	5061

Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000256	623	0.000272	1360	0.000269	1995	0.000266	2537	0.000251	5061
0.000258	611	0.000274	1370	0.000269	1957	0.000268	2492	0.000253	5061
0.00026	600	0.000275	1380	0.000271	1921	0.000268	2448	0.000255	5061
0.000261	588	0.000277	1389	0.000273	1885	0.00027	2405	0.000256	5061
0.000263	577	0.000279	1398	0.000274	1851	0.000271	2362	0.000258	5061
0.000265	566	0.00028	1406	0.000276	1819	0.000273	2320	0.000259	5061
0.000266	556	0.000282	1415	0.000278	1788	0.000275	2278	0.000261	5060
0.000267	546	0.000283	1423	0.000279	1760	0.000276	2238	0.000263	5059
0.000268	536	0.000284	1430	0.000279	1731	0.000278	2200	0.000264	5058
0.000269	528	0.000286	1438	0.000281	1702	0.00028	2165	0.000266	5057
0.000269	521	0.000288	1445	0.000283	1675	0.000281	2129	0.000268	5056
0.00027	515	0.000289	1452	0.000284	1649	0.000283	2095	0.000269	5055
0.000271	510	0.000291	1459	0.000286	1625	0.000285	2062	0.000271	5053
0.000272	506	0.000293	1465	0.000288	1603	0.000286	2031	0.000273	5051
0.000273	503	0.000294	1472	0.000288	1584	0.000288	2001	0.000274	5049
0.000274	501	0.000296	1478	0.000288	1564	0.00029	1974	0.000276	5047
0.000276	499	0.000298	1484	0.00029	1544	0.00029	1948	0.000277	5044
0.000277	499	0.000299	1490	0.000292	1524	0.000292	1924	0.000279	5041
0.000278	499	0.000301	1495	0.000293	1503	0.000293	1902	0.000281	5038
0.000279	500	0.000302	1501	0.000293	1483	0.000295	1880	0.000282	5034
0.00028	501	0.000304	1506	0.000295	1465	0.000297	1858	0.000284	5030
0.000281	503	0.000306	1512	0.000296	1447	0.000298	1837	0.000286	5025
0.000282	505	0.000307	1517	0.000298	1431	0.0003	1817	0.000287	5019

Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000283	507	0.000309	1522	0.000298	1416	0.000302	1799	0.000289	5013
0.000284	510	0.00031	1527	0.000299	1402	0.000303	1782	0.000291	5006
0.000285	513	0.000312	1532	0.000301	1388	0.000305	1766	0.000292	4999
0.000286	517	0.000314	1537	0.000302	1373	0.000306	1750	0.000294	4991
0.000288	522	0.000315	1541	0.000304	1360	0.000308	1733	0.000296	4981
0.000289	526	0.000317	1545	0.000306	1347	0.000309	1715	0.000297	4971
0.00029	532	0.000319	1549	0.000307	1336	0.000311	1697	0.000299	4960
0.000292	538	0.00032	1553	0.000309	1325	0.000313	1679	0.000301	4947
0.000293	543	0.000322	1556	0.00031	1315	0.000314	1661	0.000302	4933
0.000294	546	0.000324	1558	0.00031	1306	0.000316	1645	0.000304	4918
0.000296	550	0.000325	1561	0.000312	1297	0.000318	1630	0.000306	4901
0.000297	555	0.000327	1563	0.000313	1288	0.000319	1617	0.000307	4882
0.000298	559	0.000327	1566	0.000313	1281	0.000321	1605	0.000309	4862
0.000299	563	0.000329	1568	0.000315	1274	0.000322	1595	0.000311	4839
0.0003	566	0.000331	1570	0.000317	1267	0.000323	1586	0.000312	4813
0.000301	570	0.000332	1572	0.000317	1261	0.000325	1576	0.000314	4786
0.000303	573	0.000334	1574	0.000318	1255	0.000327	1567	0.000316	4757
0.000303	576	0.000336	1575	0.00032	1250	0.000328	1559	0.000317	4726
0.000304	579	0.000337	1576	0.000322	1245	0.00033	1551	0.000319	4693
0.000305	583	0.000339	1577	0.000322	1240	0.000332	1546	0.000321	4658
0.000306	586	0.000341	1578	0.000323	1236	0.000332	1541	0.000321	4619
0.000308	590	0.000342	1579	0.000325	1231	0.000333	1537	0.000322	4580
0.000308	594	0.000344	1580	0.000327	1227	0.000335	1531	0.000324	4540

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.00031	597	0.000346	1580	0.000328	1222	0.000337	1525	0.000326	4498
0.000311	602	0.000347	1580	0.00033	1219	0.000338	1519	0.000327	4455
0.000312	607	0.000349	1579	0.000332	1215	0.00034	1513	0.000329	4411
0.000313	611	0.000351	1578	0.000333	1211	0.000342	1507	0.000331	4368
0.000314	616	0.000352	1576	0.000335	1207	0.000343	1502	0.000332	4323
0.000314	621	0.000354	1575	0.000337	1204	0.000345	1497	0.000334	4276
0.000316	627	0.000356	1572	0.000338	1202	0.000347	1492	0.000336	4228
0.000317	633	0.000357	1569	0.00034	1201	0.000348	1488	0.000337	4178
0.000318	641	0.000359	1565	0.00034	1200	0.00035	1484	0.000339	4127
0.000319	648	0.000361	1560	0.000342	1200	0.000351	1482	0.000341	4077
0.00032	656	0.000362	1555	0.000343	1200	0.000353	1480	0.000342	4028
0.000321	663	0.000364	1549	0.000345	1200	0.000355	1480	0.000344	3980
0.000322	669	0.000366	1542	0.000347	1201	0.000356	1480	0.000346	3933
0.000323	676	0.000367	1536	0.000348	1203	0.000358	1481	0.000347	3886
0.000324	683	0.000369	1528	0.00035	1206	0.00036	1483	0.000349	3840
0.000325	691	0.00037	1519	0.00035	1208	0.000361	1486	0.000351	3794
0.000325	698	0.000372	1509	0.000351	1211	0.000363	1491	0.000352	3749
0.000326	706	0.000374	1498	0.000352	1213	0.000365	1495	0.000352	3707
0.000327	714	0.000375	1485	0.000354	1215	0.000366	1500	0.000352	3662
0.000328	722	0.000377	1471	0.000355	1217	0.000368	1506	0.000353	3615
0.000329	730	0.000379	1456	0.000357	1219	0.00037	1512	0.000355	3567
0.000331	738	0.00038	1439	0.000359	1222	0.000371	1518	0.000356	3520
0.000332	745	0.000382	1422	0.00036	1225	0.000373	1525	0.000358	3474

Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5	
Time (sec)	Load (N)									
0.000333	753	0.000384	1405	0.000362	1229	0.000374	1532	0.000358	3429	
0.000333	760	0.000385	1388	0.000364	1233	0.000376	1539	0.00036	3388	
0.000334	767	0.000387	1370	0.000365	1236	0.000377	1545	0.000361	3349	
0.000336	774	0.000389	1352	0.000367	1240	0.000379	1551	0.000362	3312	
0.000338	781	0.000389	1333	0.000369	1244	0.000381	1558	0.000364	3273	
0.000339	787	0.00039	1316	0.00037	1247	0.000382	1565	0.000365	3231	
0.000341	794	0.000392	1299	0.00037	1251	0.000384	1572	0.000367	3188	
0.000341	800	0.000394	1284	0.000372	1255	0.000386	1579	0.000369	3145	
0.000341	806	0.000395	1269	0.000372	1259	0.000387	1586	0.00037	3102	
0.000342	812	0.000395	1256	0.000374	1262	0.000389	1593	0.000372	3060	
0.000344	817	0.000396	1242	0.000375	1265	0.000391	1600	0.000374	3019	
0.000346	822	0.000396	1227	0.000375	1269	0.000392	1607	0.000375	2978	
0.000347	828	0.000397	1212	0.000377	1273	0.000393	1614	0.000377	2940	
0.000349	833	0.000398	1195	0.000379	1277	0.000394	1621	0.000379	2905	
0.000351	837	0.0004	1178	0.00038	1281	0.000396	1627	0.00038	2873	
0.000352	842	0.000402	1161	0.00038	1286	0.000398	1633	0.000382	2844	
0.000353	846	0.000403	1145	0.00038	1291	0.000399	1640	0.000382	2818	
0.000354	850	0.000405	1129	0.000382	1297	0.000401	1647	0.000382	2793	
0.000356	854	0.000405	1115	0.000384	1301	0.000403	1655	0.000383	2767	
0.000357	857	0.000406	1101	0.000385	1307	0.000404	1662	0.000385	2742	
0.000359	859	0.000408	1087	0.000385	1312	0.000405	1670	0.000386	2716	
0.000361	862	0.000409	1073	0.000387	1317	0.000407	1677	0.000388	2692	
0.000362	864	0.000411	1059	0.000389	1323	0.000408	1685	0.00039	2670	
Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	Глибина різання 3.5	
------------	----------------	------------	----------------	------------	----------------	------------	----------------	------------	---------------------	--
Time (sec)	Load (N)									
0.000364	866	0.000412	1046	0.00039	1329	0.00041	1693	0.000391	2650	
0.000366	867	0.000413	1035	0.00039	1335	0.000412	1702	0.000392	2633	
0.000367	868	0.000413	1023	0.000391	1341	0.000413	1711	0.000394	2617	
0.000369	868	0.000413	1009	0.000391	1347	0.000415	1720	0.000395	2602	
0.000371	868	0.000415	995	0.000393	1353	0.000417	1730	0.000397	2586	
0.000372	868	0.000416	980	0.000394	1358	0.000418	1740	0.000399	2572	
0.000374	867	0.000418	964	0.000396	1364	0.00042	1750	0.0004	2559	
0.000375	866	0.00042	949	0.000398	1370	0.000422	1761	0.000401	2547	
0.000377	865	0.000421	934	0.000398	1376	0.000423	1772	0.000402	2537	
0.000378	863	0.000423	920	0.000399	1382	0.000425	1783	0.000402	2528	
0.00038	860	0.000425	907	0.000399	1388	0.000427	1794	0.000404	2520	
0.000382	856	0.000426	896	0.000401	1395	0.000428	1805	0.000406	2512	
0.000383	853	0.000428	886	0.000403	1400	0.000429	1816	0.000407	2506	
0.000385	848	0.000429	879	0.000404	1406	0.000431	1827	0.000409	2500	
0.000387	843	0.000431	871	0.000406	1412	0.000433	1838	0.000411	2493	
0.000388	837	0.000433	865	0.000408	1418	0.000434	1850	0.000412	2485	
0.00039	830	0.000434	859	0.000409	1424	0.000436	1861	0.000414	2474	
0.000392	823	0.000436	854	0.000411	1430	0.000438	1871	0.000416	2462	
0.000393	815	0.000438	850	0.000411	1435	0.000438	1881	0.000417	2448	
0.000395	807	0.000439	846	0.000413	1441	0.000439	1891	0.000419	2433	
0.000397	799	0.000441	844	0.000413	1446	0.000441	1902	0.000421	2417	
0.000398	791	0.000443	842	0.000414	1452	0.000442	1913	0.000422	2401	
0.0004	782	0.000444	842	0.000414	1459	0.000444	1925	0.000424	2388	

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000402	773	0.000446	842	0.000416	1465	0.000446	1936	0.000424	2377
0.000403	764	0.000448	844	0.000418	1471	0.000447	1948	0.000426	2366
0.000405	755	0.000449	846	0.000419	1478	0.000449	1959	0.000428	2355
0.000406	747	0.000451	848	0.000421	1485	0.000451	1972	0.000429	2343
0.000408	738	0.000452	851	0.000422	1493	0.000452	1985	0.000431	2332
0.00041	730	0.000454	854	0.000424	1500	0.000454	1998	0.000432	2323
0.000411	722	0.000454	859	0.000425	1508	0.000456	2011	0.000434	2315
0.000413	715	0.000456	863	0.000426	1515	0.000457	2024	0.000434	2310
0.000415	709	0.000457	868	0.000428	1522	0.000459	2037	0.000436	2305
0.000415	702	0.000459	872	0.00043	1529	0.000461	2050	0.000437	2301
0.000417	695	0.000461	876	0.000431	1536	0.000462	2063	0.000438	2296
0.000419	688	0.000462	881	0.000433	1543	0.000464	2076	0.00044	2292
0.00042	682	0.000463	886	0.000435	1550	0.000464	2091	0.000442	2288
0.000422	676	0.000465	891	0.000435	1556	0.000466	2105	0.000443	2284
0.000422	671	0.000467	896	0.000436	1563	0.000467	2119	0.000445	2281
0.000424	666	0.000468	900	0.000436	1569	0.000468	2132	0.000447	2279
0.000426	660	0.00047	904	0.000438	1576	0.00047	2145	0.000448	2277
0.000427	655	0.000472	908	0.000439	1582	0.000472	2158	0.00045	2277
0.000429	650	0.000473	912	0.000441	1589	0.000473	2171	0.000452	2277
0.000431	645	0.000474	916	0.000443	1597	0.000475	2183	0.000453	2277
0.000432	641	0.000476	921	0.000444	1604	0.000477	2195	0.000455	2277
0.000434	636	0.000478	926	0.000446	1612	0.000478	2208	0.000457	2277
0.000436	631	0.000479	930	0.000447	1619	0.00048	2220	0.000458	2277

Глиби	на різання 0.5	Гли6	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000436	626	0.000481	934	0.000449	1627	0.000482	2232	0.000459	2277
0.000438	621	0.000483	938	0.000451	1635	0.000483	2244	0.00046	2276
0.000439	617	0.000484	942	0.000452	1643	0.000485	2256	0.000462	2275
0.000441	614	0.000486	947	0.000454	1652	0.000487	2269	0.000464	2272
0.000442	611	0.000487	953	0.000456	1661	0.000488	2280	0.000465	2269
0.000444	609	0.000489	959	0.000457	1670	0.00049	2292	0.000467	2264
0.000446	608	0.00049	967	0.000459	1678	0.000491	2303	0.000469	2259
0.000447	607	0.000492	976	0.000461	1686	0.000492	2315	0.000469	2256
0.000449	607	0.000493	985	0.000462	1694	0.000494	2326	0.000469	2253
0.00045	607	0.000494	995	0.000464	1701	0.000494	2337	0.000471	2250
0.000452	608	0.000496	1005	0.000465	1709	0.000496	2348	0.000471	2248
0.000453	611	0.000498	1015	0.000467	1716	0.000497	2358	0.000473	2246
0.000454	615	0.000499	1027	0.000467	1723	0.000499	2368	0.000475	2243
0.000456	621	0.000501	1039	0.000469	1730	0.0005	2377	0.000476	2240
0.000456	628	0.000503	1051	0.000469	1736	0.000502	2387	0.000477	2234
0.000458	635	0.000504	1063	0.00047	1743	0.000504	2397	0.000479	2228
0.000459	642	0.000506	1074	0.000472	1749	0.000505	2407	0.000481	2222
0.00046	649	0.000508	1087	0.000474	1755	0.000505	2417	0.000482	2216
0.000461	655	0.000508	1098	0.000475	1762	0.000507	2427	0.000484	2211
0.000463	662	0.000509	1109	0.000477	1769	0.000509	2436	0.000486	2206
0.000465	668	0.000511	1120	0.000479	1777	0.00051	2446	0.000487	2202
0.000465	674	0.000513	1130	0.00048	1785	0.000512	2455	0.000489	2200
0.000467	681	0.000514	1141	0.000482	1793	0.000514	2464	0.000491	2199

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000468	688	0.000516	1151	0.000483	1801	0.000515	2473	0.000492	2200
0.00047	694	0.000518	1161	0.000485	1809	0.000517	2483	0.000494	2201
0.000471	701	0.000519	1171	0.000486	1816	0.000519	2493	0.000496	2204
0.000473	707	0.000521	1182	0.000488	1824	0.00052	2504	0.000497	2208
0.000475	714	0.000522	1192	0.00049	1831	0.000522	2515	0.000499	2214
0.000476	721	0.000524	1202	0.00049	1838	0.000524	2526	0.0005	2223
0.000478	727	0.000526	1213	0.000491	1845	0.000525	2539	0.000502	2233
0.00048	734	0.000527	1224	0.000493	1852	0.000527	2551	0.000504	2245
0.000481	740	0.000529	1234	0.000493	1859	0.000529	2563	0.000505	2257
0.000483	747	0.000531	1245	0.000495	1865	0.00053	2575	0.000506	2271
0.000485	754	0.000532	1255	0.000496	1872	0.000532	2586	0.000506	2285
0.000486	761	0.000534	1265	0.000498	1879	0.000534	2597	0.000507	2299
0.000488	768	0.000536	1275	0.0005	1885	0.000535	2609	0.000508	2313
0.00049	775	0.000537	1285	0.000501	1892	0.000537	2621	0.00051	2327
0.000491	781	0.000539	1294	0.000503	1899	0.000539	2633	0.000512	2340
0.000493	787	0.00054	1304	0.000505	1906	0.00054	2646	0.000512	2353
0.000495	793	0.000541	1314	0.000505	1913	0.000542	2658	0.000514	2365
0.000496	799	0.000542	1323	0.000506	1921	0.000544	2671	0.000516	2376
0.000498	805	0.000543	1332	0.000508	1928	0.000545	2683	0.000517	2385
0.0005	811	0.000545	1340	0.000509	1935	0.000547	2696	0.000519	2394
0.0005	817	0.000546	1348	0.000511	1941	0.000549	2708	0.000521	2402
0.000501	823	0.000548	1356	0.000513	1947	0.00055	2720	0.000522	2412
0.000503	828	0.000549	1364	0.000514	1954	0.000552	2732	0.000524	2420

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000505	833	0.000551	1373	0.000514	1960	0.000554	2743	0.000526	2429
0.000506	838	0.000553	1381	0.000516	1966	0.000555	2755	0.000526	2439
0.000508	842	0.000554	1389	0.000516	1973	0.000557	2766	0.000527	2447
0.00051	846	0.000556	1397	0.000517	1979	0.000558	2778	0.000529	2456
0.000511	850	0.000558	1405	0.000519	1986	0.00056	2790	0.000531	2466
0.000513	854	0.000558	1412	0.000519	1993	0.000562	2801	0.000532	2476
0.000514	857	0.000559	1419	0.000521	2000	0.000563	2813	0.000534	2487
0.000516	860	0.000561	1427	0.000522	2006	0.000565	2825	0.000536	2499
0.000518	863	0.000562	1433	0.000524	2012	0.000567	2837	0.000537	2512
0.000519	866	0.000564	1439	0.000524	2018	0.000568	2848	0.000539	2527
0.000521	868	0.000565	1445	0.000526	2024	0.00057	2860	0.000541	2540
0.000523	870	0.000567	1451	0.000527	2029	0.000572	2871	0.000542	2554
0.000524	872	0.000569	1457	0.000527	2034	0.000573	2884	0.000544	2568
0.000526	874	0.00057	1463	0.000529	2039	0.000575	2896	0.000546	2582
0.000528	875	0.000571	1469	0.000531	2044	0.000577	2910	0.000547	2597
0.000529	876	0.000573	1475	0.000532	2049	0.000578	2923	0.000547	2615
0.000531	877	0.000575	1481	0.000534	2054	0.00058	2936	0.000548	2630
0.000533	877	0.000576	1488	0.000536	2060	0.000582	2949	0.000549	2643
0.000534	878	0.000578	1494	0.000537	2065	0.000583	2962	0.000551	2653
0.000536	878	0.00058	1500	0.000537	2071	0.000585	2975	0.000553	2663
0.000537	877	0.000581	1505	0.000537	2077	0.000587	2987	0.000554	2671
0.000539	877	0.000583	1511	0.000537	2083	0.000588	3000	0.000554	2681
0.000541	876	0.000585	1516	0.000539	2089	0.00059	3014	0.000556	2689

Глиби	на різання 0.5	Глиб	бина різання 1	Глиби	на різання 1.5	Глиби	на різання 2.5	Глиби	на різання 3.5
Time (sec)	Load (N)								
0.000542	874	0.000586	1521	0.000539	2094	0.000592	3027	0.000558	2695
0.000544	872	0.000588	1526	0.000541	2100	0.000593	3041	0.000559	2698
0.000546	870	0.00059	1531	0.000542	2106	0.000595	3055	0.000561	2700
0.000547	868	0.000591	1536	0.000542	2111	0.000597	3069	0.000563	2700
0.000549	865	0.000593	1541	0.000544	2117	0.000598	3083	0.000564	2699
0.000551	862	0.000595	1546	0.000546	2124	0.0006	3096	0.000565	2700
0.000552	859	0.000596	1551	0.000546	2130	0.000602	3110	0.000566	2700
0.000554	856	0.000598	1555	0.000547	2136	0.000603	3123	0.000568	2701
0.000556	853	0.000599	1559	0.000549	2143	0.000604	3136	0.00057	2699
0.000557	852	0.000601	1562	0.000551	2150	0.000605	3149	0.000571	2699

Додаток Д.

Результати моделювання температури різання від переднього кута різального інструменту

γ=	:0°	γ=-	-5°	γ=	5°	γ=1	10°
Time (sec)	Temp (°C)						
0	0	0	0	0	0	0	0
0.000002	225	0.000002	384	0.000002	115	0.000002	309
0.000003	225	0.000003	384	0.000003	115	0.000003	310
0.000005	226	0.000005	385	0.000005	115	0.000005	311
0.000007	227	0.000005	387	0.000007	116	0.000007	312
0.000008	228	0.000005	389	0.000008	116	0.000008	314
0.00001	229	0.000006	391	0.000009	117	0.00001	315
0.000012	231	0.000007	393	0.00001	117	0.000012	317
0.000013	232	0.000008	396	0.000011	118	0.000013	320
0.000015	234	0.000008	400	0.000012	119	0.000014	322
0.000017	236	0.000009	403	0.000014	120	0.000016	325
0.000018	239	0.00001	407	0.000015	121	0.000016	328
0.00002	241	0.000011	411	0.000016	121	0.000018	332
0.000022	244	0.000013	415	0.000018	122	0.000018	336
0.000023	247	0.000015	419	0.000019	123	0.000018	340
0.000025	250	0.000015	424	0.000019	124	0.000019	344
0.000027	253	0.000016	429	0.00002	125	0.00002	348
0.000028	257	0.000016	434	0.000022	127	0.000021	353

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.00003	261	0.000018	439	0.000023	128	0.000021	358
0.00003	265	0.00002	444	0.000024	129	0.000023	362
0.000032	269	0.00002	449	0.000025	130	0.000023	368
0.000033	274	0.000021	455	0.000027	131	0.000025	373
0.000035	279	0.000021	460	0.000028	132	0.000025	378
0.000035	284	0.000023	466	0.000029	134	0.000026	383
0.000037	289	0.000023	472	0.000031	135	0.000028	389
0.000038	294	0.000025	478	0.000032	137	0.000029	394
0.00004	300	0.000025	483	0.000033	138	0.000031	400
0.000042	306	0.000027	489	0.000035	139	0.000032	406
0.000043	311	0.000027	495	0.000036	141	0.000034	412
0.000045	317	0.000029	501	0.000037	142	0.000034	417
0.000047	323	0.000029	507	0.000039	144	0.000036	423
0.000048	330	0.000031	513	0.00004	146	0.000037	430
0.00005	336	0.000031	519	0.000041	147	0.000039	436
0.000052	342	0.000033	525	0.000042	149	0.000041	442
0.000053	349	0.000033	531	0.000044	151	0.000042	448
0.000055	355	0.000035	537	0.000045	153	0.000044	454
0.000057	362	0.000036	543	0.000046	155	0.000044	461
0.000058	369	0.000038	549	0.000047	157	0.000046	467
0.00006	375	0.000039	555	0.000048	159	0.000047	473
0.000061	382	0.000041	561	0.000049	161	0.000049	480
0.000063	389	0.000042	567	0.00005	163	0.00005	486

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000065	396	0.000044	573	0.000052	165	0.000052	493
0.000066	403	0.000046	579	0.000053	167	0.000053	499
0.000068	410	0.000047	585	0.000054	170	0.000055	505
0.00007	417	0.000049	591	0.000056	172	0.000056	512
0.000071	424	0.00005	596	0.000057	174	0.000057	518
0.000073	431	0.000051	602	0.000058	177	0.000059	525
0.000075	438	0.000053	608	0.00006	179	0.00006	531
0.000076	445	0.000054	613	0.000061	182	0.000061	537
0.000078	453	0.000056	619	0.000062	185	0.000062	544
0.00008	460	0.000057	624	0.000064	188	0.000064	550
0.000081	467	0.000059	629	0.000064	190	0.000065	557
0.000083	473	0.000061	635	0.000065	193	0.000066	563
0.000085	480	0.000061	640	0.000066	196	0.000068	570
0.000086	487	0.000062	645	0.000068	200	0.000069	576
0.000088	494	0.000064	650	0.000069	203	0.00007	582
0.00009	501	0.000066	655	0.00007	206	0.000072	589
0.000091	508	0.000067	659	0.000071	210	0.000073	595
0.000093	514	0.000069	664	0.000072	213	0.000075	601
0.000095	521	0.00007	669	0.000073	217	0.000076	607
0.000096	527	0.000072	673	0.000074	220	0.000078	613
0.000098	533	0.000073	678	0.000076	224	0.000079	619
0.0001	540	0.000075	682	0.000077	228	0.000081	625
0.000101	546	0.000076	687	0.000077	232	0.000083	631

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000103	552	0.000078	691	0.000079	237	0.000084	637
0.000105	558	0.00008	695	0.000081	241	0.000086	642
0.000106	564	0.000081	699	0.000082	245	0.000088	648
0.000108	570	0.000082	704	0.000084	250	0.000089	653
0.00011	576	0.000084	708	0.000086	255	0.00009	658
0.000111	582	0.000086	712	0.000087	259	0.000092	663
0.000113	587	0.000087	716	0.000089	264	0.000094	669
0.000114	593	0.000089	720	0.00009	270	0.000095	674
0.000116	598	0.000091	723	0.000092	275	0.000096	679
0.000118	604	0.000092	727	0.000094	280	0.000098	684
0.000119	609	0.000094	731	0.000095	286	0.0001	689
0.000121	614	0.000095	735	0.000097	291	0.000101	693
0.000123	619	0.000097	738	0.000099	297	0.000103	698
0.000124	624	0.000099	742	0.0001	302	0.000105	703
0.000126	628	0.0001	746	0.000102	308	0.000106	707
0.000128	633	0.000101	749	0.000104	314	0.000108	712
0.000129	638	0.000102	752	0.000105	319	0.000109	716
0.000131	642	0.000104	756	0.000107	325	0.000111	721
0.000133	647	0.000106	759	0.000109	331	0.000113	725
0.000134	651	0.000107	762	0.00011	337	0.000114	729
0.000136	655	0.000109	766	0.000111	343	0.000116	733
0.000138	660	0.00011	769	0.000113	349	0.000118	737
0.000139	664	0.000112	772	0.000114	355	0.000118	741

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000141	667	0.000114	775	0.000116	361	0.000119	745
0.000143	671	0.000115	778	0.000118	367	0.000121	748
0.000144	675	0.000117	781	0.000119	373	0.000123	752
0.000146	678	0.000119	784	0.000121	379	0.000124	755
0.000148	682	0.00012	787	0.000123	385	0.000126	759
0.000149	685	0.000122	790	0.000124	391	0.000128	762
0.000151	689	0.000124	792	0.000126	397	0.000129	766
0.000153	692	0.000125	795	0.000128	403	0.000131	769
0.000154	695	0.000127	798	0.000129	409	0.000132	772
0.000156	698	0.000129	801	0.000131	415	0.000134	775
0.000158	701	0.00013	803	0.000133	421	0.000135	778
0.000159	704	0.000132	806	0.000134	427	0.000137	781
0.000161	707	0.000134	808	0.000136	433	0.000139	784
0.000163	710	0.000135	811	0.000138	439	0.00014	787
0.000164	713	0.000137	813	0.000139	444	0.000142	790
0.000166	715	0.000139	816	0.000141	450	0.000144	793
0.000167	718	0.00014	818	0.000143	456	0.000145	796
0.000169	720	0.000142	821	0.000144	462	0.000147	798
0.000171	723	0.000144	823	0.000146	467	0.000149	801
0.000172	725	0.000145	825	0.000148	473	0.00015	804
0.000174	727	0.000147	827	0.000149	479	0.000152	806
0.000176	730	0.000149	830	0.000151	484	0.000153	809
0.000177	732	0.00015	832	0.000153	490	0.000155	811

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000179	734	0.000152	834	0.000154	495	0.000157	814
0.000181	736	0.000154	836	0.000156	500	0.000158	816
0.000182	738	0.000155	839	0.000157	506	0.00016	818
0.000184	740	0.000157	841	0.000159	511	0.000162	820
0.000186	742	0.000159	843	0.000161	516	0.000163	823
0.000187	744	0.00016	845	0.000162	522	0.000165	825
0.000189	746	0.000162	847	0.000164	527	0.000167	827
0.000191	747	0.000163	849	0.000166	532	0.000167	829
0.000192	749	0.000165	851	0.000167	537	0.000168	831
0.000194	751	0.000167	853	0.000169	542	0.000169	832
0.000196	752	0.000168	855	0.000171	547	0.000171	834
0.000197	754	0.00017	857	0.000172	552	0.000172	836
0.000199	756	0.000172	859	0.000174	557	0.000174	838
0.000201	757	0.000173	861	0.000176	562	0.000176	839
0.000202	759	0.000175	863	0.000177	567	0.000177	841
0.000204	760	0.000177	865	0.000179	571	0.000179	842
0.000206	762	0.000178	867	0.000181	576	0.000181	843
0.000207	763	0.00018	869	0.000182	581	0.000182	845
0.000209	765	0.000182	870	0.000184	585	0.000184	846
0.000211	766	0.000183	872	0.000186	590	0.000186	847
0.000212	767	0.000185	874	0.000187	594	0.000187	848
0.000214	769	0.000187	876	0.000189	599	0.000189	849
0.000216	770	0.000188	878	0.000191	603	0.000191	851

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000217	771	0.00019	879	0.000192	607	0.000192	852
0.000219	773	0.000192	881	0.000194	612	0.000194	853
0.00022	774	0.000193	883	0.000196	616	0.000196	853
0.000222	775	0.000195	885	0.000197	620	0.000197	854
0.000224	777	0.000197	886	0.000199	624	0.000199	855
0.000225	778	0.000198	888	0.000201	628	0.0002	856
0.000227	779	0.0002	890	0.000202	632	0.000202	857
0.000229	780	0.000202	892	0.000204	636	0.000204	858
0.00023	781	0.000203	893	0.000206	640	0.000205	858
0.000232	783	0.000205	895	0.000207	643	0.000207	859
0.000234	784	0.000207	897	0.000209	647	0.000209	860
0.000235	785	0.000208	898	0.00021	651	0.00021	861
0.000237	786	0.00021	900	0.000212	654	0.000212	861
0.000239	787	0.000212	901	0.000214	658	0.000214	862
0.00024	788	0.000213	903	0.000215	661	0.000215	863
0.000242	789	0.000215	905	0.000217	665	0.000217	863
0.000244	790	0.000216	906	0.000219	668	0.000219	864
0.000245	791	0.000218	908	0.00022	672	0.000219	864
0.000247	792	0.00022	910	0.000222	675	0.00022	865
0.000249	793	0.000221	911	0.000224	678	0.000222	865
0.00025	794	0.000223	913	0.000225	681	0.000224	866
0.000252	795	0.000225	914	0.000227	684	0.000225	866
0.000254	796	0.000226	916	0.000229	687	0.000227	867

γ=	=0°	γ=-	-5°	γ=	$\gamma = 5^{\circ}$ $\gamma = 10^{\circ}$		10°
Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)	Time (sec)	Temp (°C)
0.000255	796	0.000228	918	0.00023	690	0.000229	867
0.000257	797	0.00023	919	0.000232	693	0.00023	868
0.000259	798	0.000231	921	0.000234	696	0.000232	868
0.00026	799	0.000233	922	0.000235	699	0.000232	869
0.000262	800	0.000233	924	0.000237	702	0.000233	869
0.000264	800	0.000235	926	0.000239	704	0.000235	869
0.000265	801	0.000236	927	0.00024	707	0.000236	870
0.000267	802	0.000238	929	0.000242	710	0.000238	870
0.000269	802	0.00024	931	0.000244	712	0.00024	870
0.00027	803	0.000241	932	0.000245	715	0.000241	870
0.000272	804	0.000243	934	0.000247	717	0.000243	871
0.000273	804	0.000245	936	0.000249	720	0.000243	871
0.000275	805	0.000246	937	0.00025	722	0.000245	871
0.000277	805	0.000248	939	0.000252	724	0.000246	871
0.000278	806	0.00025	941	0.000254	726	0.000248	871
0.00028	806	0.000251	942	0.000255	729	0.00025	871
0.000282	807	0.000253	944	0.000257	731	0.000251	871
0.000283	807	0.000255	946	0.000259	733	0.000253	871
0.000285	808	0.000256	947	0.00026	735	0.000253	871
0.000287	808	0.000258	949	0.000262	737	0.000253	871
0.000288	809	0.00026	950	0.000263	739	0.000254	871
0.00029	809	0.000261	952	0.000265	741	0.000256	871
0.000292	810	0.000263	954	0.000267	743	0.000257	871

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000293	810	0.000265	955	0.000268	745	0.000259	871
0.000295	810	0.000266	957	0.00027	746	0.00026	870
0.000297	811	0.000268	959	0.000272	748	0.000262	870
0.000298	811	0.00027	960	0.000273	750	0.000264	870
0.0003	812	0.000271	962	0.000275	751	0.000265	870
0.000302	812	0.000273	963	0.000277	753	0.000267	870
0.000303	812	0.000273	965	0.000278	755	0.000269	869
0.000305	813	0.000275	966	0.00028	756	0.00027	869
0.000307	813	0.000277	968	0.000282	758	0.000272	869
0.000308	813	0.000278	969	0.000283	759	0.000273	868
0.00031	814	0.00028	970	0.000285	760	0.000275	868
0.000312	814	0.000282	972	0.000287	762	0.000277	868
0.000313	814	0.000283	973	0.000288	763	0.000278	868
0.000315	815	0.000285	975	0.00029	765	0.000279	867
0.000317	815	0.000287	976	0.000292	766	0.00028	867
0.000318	815	0.000288	978	0.000293	767	0.00028	867
0.00032	815	0.00029	979	0.000295	768	0.000282	866
0.000322	816	0.000292	980	0.000297	769	0.000284	866
0.000323	816	0.000293	982	0.000298	771	0.000285	866
0.000325	816	0.000295	983	0.0003	772	0.000287	865
0.000327	817	0.000297	984	0.000302	773	0.000289	865
0.000328	817	0.000298	986	0.000303	774	0.000289	865
0.00033	817	0.0003	987	0.000305	775	0.000291	864

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000331	817	0.000302	989	0.000307	776	0.000293	864
0.000333	818	0.000303	990	0.000308	777	0.000294	864
0.000335	818	0.000305	991	0.00031	778	0.000296	863
0.000336	818	0.000307	993	0.000312	779	0.000298	863
0.000338	818	0.000308	994	0.000313	780	0.000299	863
0.00034	819	0.00031	996	0.000315	781	0.000301	862
0.000341	819	0.00031	997	0.000316	782	0.000302	862
0.000343	819	0.000312	999	0.000318	783	0.000304	862
0.000345	819	0.000314	1000	0.00032	784	0.000306	861
0.000346	820	0.000315	1002	0.000321	784	0.000306	861
0.000348	820	0.000317	1003	0.000323	785	0.000308	860
0.00035	820	0.000319	1005	0.000325	786	0.00031	860
0.000351	820	0.00032	1006	0.000326	787	0.000311	860
0.000353	821	0.000322	1008	0.000328	788	0.000313	859
0.000355	821	0.000324	1009	0.00033	789	0.000314	859
0.000356	821	0.000325	1011	0.000331	789	0.000315	859
0.000358	821	0.000327	1012	0.000333	790	0.000317	858
0.00036	822	0.000329	1014	0.000335	791	0.000318	858
0.000361	822	0.00033	1015	0.000336	792	0.00032	858
0.000363	822	0.000332	1017	0.000338	792	0.00032	857
0.000365	822	0.000333	1018	0.00034	793	0.000322	857
0.000366	822	0.000335	1020	0.000341	794	0.000324	856
0.000368	823	0.000336	1021	0.000343	794	0.000325	856

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.00037	823	0.000338	1022	0.000345	795	0.000327	856
0.000371	823	0.000339	1024	0.000346	796	0.000327	855
0.000373	823	0.00034	1025	0.000348	796	0.000329	855
0.000375	823	0.000342	1027	0.00035	797	0.00033	855
0.000376	823	0.000343	1028	0.000351	798	0.000332	854
0.000378	824	0.000345	1030	0.000353	798	0.000334	854
0.00038	824	0.000346	1031	0.000355	799	0.000335	854
0.000381	824	0.000347	1033	0.000356	799	0.000337	853
0.000383	824	0.000349	1034	0.000358	800	0.000338	853
0.000384	824	0.00035	1036	0.00036	801	0.00034	853
0.000386	824	0.000352	1037	0.000361	801	0.00034	853
0.000388	824	0.000354	1039	0.000363	802	0.000342	852
0.000389	824	0.000355	1040	0.000365	802	0.000344	852
0.000391	824	0.000357	1042	0.000366	803	0.000345	852
0.000393	825	0.000359	1043	0.000368	804	0.000347	851
0.000394	825	0.00036	1045	0.00037	804	0.000349	851
0.000396	825	0.000362	1047	0.000371	805	0.00035	851
0.000397	825	0.000364	1048	0.000373	805	0.000352	851
0.000398	825	0.000365	1049	0.000374	806	0.000353	850
0.0004	825	0.000367	1051	0.000376	806	0.000354	850
0.000402	825	0.000369	1052	0.000378	807	0.000355	850
0.000402	825	0.000369	1054	0.000379	808	0.000357	850
0.000403	825	0.000371	1055	0.000381	808	0.000359	850

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000405	825	0.000372	1056	0.000383	809	0.00036	849
0.000407	825	0.000374	1058	0.000384	809	0.000362	849
0.000408	825	0.000376	1059	0.000386	810	0.000364	849
0.00041	825	0.000377	1060	0.000388	810	0.000365	849
0.000412	825	0.000379	1061	0.000389	811	0.000367	849
0.000413	825	0.000381	1062	0.000391	811	0.000369	848
0.000415	825	0.000382	1063	0.000393	812	0.00037	848
0.000417	825	0.000384	1064	0.000394	812	0.000372	848
0.000418	825	0.000385	1066	0.000396	813	0.000373	848
0.00042	825	0.000387	1067	0.000398	813	0.000374	848
0.000422	825	0.000389	1068	0.000399	814	0.000375	848
0.000423	825	0.00039	1069	0.000401	814	0.000377	848
0.000424	825	0.000392	1070	0.000403	815	0.000379	848
0.000424	824	0.000394	1071	0.000404	815	0.000379	848
0.000426	824	0.000394	1072	0.000406	815	0.000381	847
0.000427	824	0.000395	1073	0.000408	816	0.000382	847
0.000429	824	0.000397	1074	0.000409	816	0.000382	847
0.000431	824	0.000399	1075	0.000411	817	0.000384	847
0.000432	824	0.0004	1075	0.000413	817	0.000386	847
0.000434	824	0.000402	1076	0.000414	817	0.000387	847
0.000436	824	0.000404	1077	0.000414	818	0.000389	847
0.000437	824	0.000405	1078	0.000416	818	0.00039	847
0.000439	823	0.000407	1079	0.000418	819	0.000392	847

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000441	823	0.000409	1079	0.000419	819	0.000394	847
0.000442	823	0.00041	1080	0.000421	819	0.000395	847
0.000444	823	0.00041	1081	0.000423	820	0.000397	847
0.000446	823	0.000412	1081	0.000424	820	0.000399	847
0.000447	823	0.000414	1082	0.000426	820	0.0004	847
0.000449	822	0.000415	1083	0.000428	821	0.000402	848
0.00045	822	0.000417	1083	0.000429	821	0.000403	848
0.000452	822	0.000419	1084	0.000431	821	0.000405	848
0.000454	822	0.00042	1085	0.000433	822	0.000407	848
0.000455	822	0.000422	1085	0.000434	822	0.000407	848
0.000457	822	0.000424	1086	0.000436	822	0.000409	848
0.000459	821	0.000425	1086	0.000438	823	0.00041	848
0.00046	821	0.000427	1087	0.000439	823	0.000412	848
0.000462	821	0.000428	1088	0.000441	823	0.000414	848
0.000463	821	0.00043	1088	0.000443	823	0.000415	848
0.000465	820	0.000432	1089	0.000444	824	0.000417	848
0.000467	820	0.000433	1090	0.000446	824	0.000417	849
0.000468	820	0.000435	1090	0.000447	824	0.000419	849
0.00047	820	0.000437	1091	0.000449	824	0.000421	849
0.000471	820	0.000438	1092	0.000451	824	0.000421	849
0.000473	819	0.00044	1092	0.000452	825	0.000421	849
0.000475	819	0.000442	1093	0.000454	825	0.000423	849
0.000476	819	0.000443	1094	0.000456	825	0.000425	849

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000478	819	0.000445	1094	0.000457	825	0.000426	849
0.00048	818	0.000447	1095	0.000459	825	0.000427	850
0.000481	818	0.000448	1096	0.00046	826	0.000429	850
0.000483	818	0.00045	1096	0.000461	826	0.00043	850
0.000485	818	0.000452	1097	0.000463	826	0.000432	850
0.000486	818	0.000453	1097	0.000465	826	0.000432	850
0.000488	817	0.000455	1098	0.000466	826	0.000433	850
0.00049	817	0.000457	1098	0.000468	826	0.000435	850
0.000491	817	0.000458	1099	0.000469	826	0.000436	851
0.000493	817	0.00046	1099	0.000471	827	0.000438	851
0.000495	816	0.000462	1099	0.000473	827	0.00044	851
0.000496	816	0.000463	1100	0.000474	827	0.000441	851
0.000498	816	0.000465	1100	0.000476	827	0.000443	851
0.0005	816	0.000467	1100	0.000478	827	0.000444	851
0.0005	816	0.000468	1101	0.000479	827	0.000446	852
0.000501	815	0.00047	1101	0.000481	827	0.000448	852
0.000503	815	0.000472	1101	0.000483	827	0.000449	852
0.000504	815	0.000473	1102	0.000484	827	0.00045	852
0.000506	815	0.000475	1102	0.000486	827	0.000452	852
0.000508	815	0.000477	1102	0.000487	827	0.000454	852
0.000509	815	0.000478	1102	0.000489	827	0.000455	853
0.000511	814	0.00048	1103	0.000491	827	0.000457	853
0.000513	814	0.000481	1103	0.000492	827	0.000458	853

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000514	814	0.000483	1103	0.000494	827	0.000459	853
0.000514	814	0.000485	1103	0.000496	827	0.000461	853
0.000516	814	0.000486	1103	0.000497	827	0.000462	854
0.000518	814	0.000488	1103	0.000499	827	0.000464	854
0.000519	814	0.00049	1103	0.000501	827	0.000466	854
0.000521	813	0.000491	1103	0.000502	827	0.000466	854
0.000523	813	0.000493	1103	0.000504	827	0.000467	855
0.000524	813	0.000495	1103	0.000506	827	0.000469	855
0.000525	813	0.000496	1102	0.000507	827	0.000471	855
0.000527	813	0.000498	1102	0.000509	827	0.000472	855
0.000528	813	0.0005	1102	0.00051	827	0.000474	856
0.00053	813	0.000501	1101	0.000512	827	0.000476	856
0.000532	813	0.000503	1101	0.000512	827	0.000477	856
0.000532	813	0.000505	1100	0.000514	827	0.000479	856
0.000534	813	0.000506	1100	0.000516	827	0.000481	857
0.000535	813	0.000508	1099	0.000517	826	0.000482	857
0.000537	813	0.00051	1099	0.000519	826	0.000483	857
0.000538	813	0.000511	1098	0.000521	826	0.000485	858
0.00054	813	0.000513	1097	0.000522	826	0.000487	858
0.000542	813	0.000515	1097	0.000524	826	0.000488	858
0.000543	813	0.000516	1096	0.000526	826	0.00049	859
0.000544	813	0.000518	1095	0.000527	826	0.00049	859
0.000545	813	0.00052	1095	0.000529	826	0.000492	859

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000547	813	0.00052	1094	0.00053	826	0.000493	860
0.000549	813	0.000521	1093	0.000532	825	0.000493	860
0.000549	813	0.000523	1092	0.000533	825	0.000495	860
0.000549	813	0.000525	1092	0.000535	825	0.000497	861
0.000551	814	0.000526	1091	0.000537	825	0.000498	861
0.000553	814	0.000528	1090	0.000538	825	0.0005	862
0.000554	814	0.00053	1089	0.00054	825	0.000502	862
0.000556	814	0.000531	1088	0.000542	825	0.000503	862
0.000558	814	0.000533	1087	0.000543	824	0.000504	863
0.000559	814	0.000535	1086	0.000544	824	0.000506	863
0.000561	815	0.000536	1085	0.000546	824	0.000508	864
0.000563	815	0.000538	1084	0.000547	824	0.000509	864
0.000564	815	0.000539	1083	0.000549	824	0.000511	865
0.000566	815	0.000541	1083	0.000551	824	0.000511	865
0.000566	816	0.000543	1082	0.000551	824	0.000513	866
0.000568	816	0.000544	1081	0.000553	823	0.000514	866
0.00057	816	0.000546	1080	0.000553	823	0.000516	867
0.000571	817	0.000548	1079	0.000555	823	0.000518	867
0.000573	817	0.000549	1078	0.000556	823	0.000519	868
0.000575	817	0.000551	1077	0.000558	823	0.000521	868
0.000575	818	0.000553	1076	0.000559	823	0.000523	869
0.000576	818	0.000554	1075	0.000561	823	0.000524	869
0.000578	819	0.000556	1074	0.000563	823	0.000525	869

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.00058	819	0.000558	1073	0.000564	822	0.000527	870
0.00058	820	0.000559	1072	0.000566	822	0.000529	870
0.000581	820	0.000561	1071	0.000568	822	0.00053	871
0.000582	821	0.000563	1071	0.000569	822	0.000532	871
0.000584	821	0.000564	1070	0.000571	822	0.000534	872
0.000586	822	0.000566	1069	0.000573	822	0.000535	872
0.000587	822	0.000568	1068	0.000574	822	0.000537	873
0.000589	823	0.000569	1067	0.000576	821	0.000539	873
0.000591	824	0.000571	1066	0.000578	821	0.00054	874
0.000592	824	0.000573	1065	0.000579	821	0.000542	874
0.000594	825	0.000574	1065	0.000581	821	0.000544	875
0.000596	825	0.000576	1064	0.000583	821	0.000545	875
0.000597	826	0.000578	1063	0.000584	821	0.000547	876
0.000599	827	0.000579	1062	0.000586	821	0.000548	876
0.000601	828	0.000581	1061	0.000588	821	0.00055	877
0.000602	828	0.000582	1061	0.000589	820	0.000552	877
0.000604	829	0.000584	1060	0.000591	820	0.000553	878
0.000605	830	0.000585	1059	0.000593	820	0.000555	878
0.000607	830	0.000587	1058	0.000594	820	0.000557	878
0.000609	831	0.000589	1058	0.000596	820	0.000558	879
0.00061	832	0.000589	1057	0.000598	820	0.00056	879
0.000612	833	0.00059	1056	0.000599	820	0.000562	880
0.000614	833	0.000592	1056	0.000601	820	0.000563	880

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000615	834	0.000594	1055	0.000603	820	0.000565	881
0.000617	835	0.000595	1055	0.000604	820	0.000567	881
0.000619	835	0.000597	1054	0.000606	820	0.000568	882
0.00062	836	0.000598	1054	0.000608	819	0.00057	882
0.00062	836	0.000599	1053	0.000609	819	0.000572	882
0.000622	837	0.0006	1053	0.000611	819	0.000573	883
0.000624	838	0.000602	1052	0.000612	819	0.000575	883
0.000625	838	0.000604	1052	0.000614	819	0.000577	884
0.000627	839	0.000605	1051	0.000616	819	0.000578	884
0.000629	839	0.000607	1051	0.000617	819	0.00058	885
0.000629	840	0.000609	1051	0.000619	819	0.000582	885
0.00063	840	0.00061	1050	0.000621	819	0.000583	885
0.000632	841	0.000611	1050	0.000622	819	0.000585	886
0.000634	841	0.000613	1050	0.000624	819	0.000587	886
0.000635	842	0.000614	1049	0.000626	819	0.000588	886
0.000637	842	0.000616	1049	0.000627	819	0.00059	887
0.000639	842	0.000618	1049	0.000629	819	0.000592	887
0.00064	843	0.000619	1049	0.00063	819	0.000593	888
0.000641	843	0.000621	1048	0.000632	819	0.000595	888
0.000642	844	0.000623	1048	0.000634	819	0.000596	888
0.000644	844	0.000624	1048	0.000635	819	0.000598	889
0.000646	844	0.000626	1048	0.000637	819	0.0006	889
0.000647	845	0.000628	1048	0.000639	819	0.000601	889

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000649	845	0.000629	1047	0.00064	819	0.000603	890
0.00065	846	0.000631	1047	0.000642	819	0.000605	890
0.000652	846	0.000633	1047	0.000644	819	0.000606	891
0.000654	846	0.000634	1047	0.000645	819	0.000608	891
0.000655	847	0.000636	1047	0.000647	819	0.00061	891
0.000657	847	0.000638	1047	0.000649	819	0.000611	892
0.000659	847	0.000639	1047	0.00065	819	0.000613	892
0.00066	848	0.000641	1047	0.000651	819	0.000615	892
0.000662	848	0.000643	1047	0.000653	819	0.000616	893
0.000664	848	0.000644	1047	0.000655	819	0.000618	893
0.000665	848	0.000646	1046	0.000656	819	0.00062	893
0.000667	849	0.000647	1046	0.000657	819	0.000621	894
0.000667	849	0.000649	1046	0.000659	819	0.000621	894
0.000669	849	0.000651	1046	0.00066	818	0.000623	894
0.000671	850	0.000652	1046	0.000662	818	0.000625	895
0.000672	850	0.000654	1046	0.000663	818	0.000626	895
0.000674	850	0.000656	1046	0.000664	818	0.000628	895
0.000675	850	0.000657	1046	0.000665	818	0.00063	896
0.000677	851	0.000659	1046	0.000667	818	0.000631	896
0.000678	851	0.000661	1046	0.000669	818	0.000633	896
0.00068	851	0.000662	1045	0.00067	818	0.000635	897
0.000682	851	0.000664	1045	0.000672	818	0.000636	897
0.000683	852	0.000666	1045	0.000674	818	0.000638	897

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000685	852	0.000667	1045	0.000675	818	0.00064	897
0.000687	852	0.000669	1045	0.000677	818	0.000641	898
0.000687	852	0.000671	1044	0.000679	818	0.000642	898
0.000689	853	0.000672	1044	0.00068	818	0.000644	898
0.00069	853	0.000674	1044	0.000682	818	0.000645	898
0.000692	853	0.000676	1043	0.000683	818	0.000646	899
0.000694	853	0.000677	1043	0.000685	818	0.000648	899
0.000694	853	0.000679	1043	0.000687	818	0.000649	899
0.000694	854	0.00068	1043	0.000688	817	0.000651	899
0.000696	854	0.000682	1042	0.000688	817	0.000653	900
0.000698	854	0.000684	1042	0.00069	817	0.000654	900
0.000699	854	0.000685	1042	0.000692	817	0.000656	900
0.000701	855	0.000687	1042	0.000693	817	0.000658	900
0.000703	855	0.000689	1041	0.000695	817	0.000659	901
0.000704	855	0.00069	1041	0.000697	817	0.000661	901
0.000706	855	0.000692	1041	0.000698	817	0.000662	901
0.000708	855	0.000694	1041	0.0007	817	0.000664	901
0.000709	856	0.000695	1040	0.000702	817	0.000666	901
0.000711	856	0.000697	1040	0.000703	817	0.000667	902
0.000713	856	0.000699	1040	0.000705	817	0.000669	902
0.000714	856	0.0007	1040	0.000707	817	0.000671	902
0.000716	856	0.000702	1040	0.000708	816	0.000672	902
0.000718	857	0.000704	1039	0.00071	816	0.000674	902

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000719	857	0.000704	1039	0.00071	816	0.000676	902
0.000721	857	0.000706	1039	0.000712	816	0.000677	903
0.000723	857	0.000708	1039	0.000714	816	0.000679	903
0.000724	857	0.000709	1039	0.000715	816	0.000681	903
0.000724	858	0.000711	1038	0.000717	816	0.000682	903
0.000726	858	0.000713	1038	0.000719	816	0.000683	903
0.000728	858	0.000714	1038	0.00072	816	0.000684	903
0.000729	858	0.000716	1038	0.000722	816	0.000686	903
0.000731	858	0.000718	1038	0.000723	816	0.000688	903
0.000732	858	0.000719	1037	0.000725	816	0.000689	903
0.000734	859	0.000721	1037	0.000726	816	0.000691	904
0.000735	859	0.000723	1037	0.000727	816	0.000693	904
0.000737	859	0.000724	1037	0.000729	816	0.000694	904
0.000737	859	0.000726	1037	0.000731	816	0.000696	904
0.000739	859	0.000728	1036	0.000732	816	0.000698	904
0.00074	860	0.000729	1036	0.000733	816	0.000699	904
0.000742	860	0.000731	1036	0.000735	815	0.000701	904
0.000743	860	0.000733	1036	0.000737	815	0.000703	904
0.000743	860	0.000734	1036	0.000738	815	0.000704	904
0.000745	860	0.000736	1036	0.00074	815	0.000706	904
0.000747	861	0.000738	1035	0.000742	815	0.000708	904
0.000748	861	0.000739	1035	0.000742	815	0.000709	904
0.00075	861	0.000741	1035	0.000743	815	0.000711	904

γ=	=0°	γ=-	-5°	γ=	=5°	γ=	10°
Time (sec)	Temp (°C)						
0.000752	861	0.000743	1035	0.000745	815	0.000713	904
0.000753	861	0.000744	1035	0.000745	815	0.000714	904
0.000755	862	0.000746	1035	0.000747	815	0.000716	904
0.000757	862	0.000748	1034	0.000749	815	0.000718	904
0.000758	862	0.000749	1034	0.00075	815	0.000719	904
0.00076	862	0.000751	1034	0.000752	815	0.000721	904
0.000762	862	0.000752	1034	0.000754	815	0.000723	904
0.000762	863	0.000754	1034	0.000755	815	0.000724	903
0.000763	863	0.000756	1033	0.000757	815	0.000726	903
0.000765	863	0.000757	1033	0.000758	815	0.000728	903
0.000765	863	0.000759	1033	0.00076	816	0.000729	903
0.000767	863	0.000761	1033	0.000762	816	0.000731	903
0.000768	864	0.000762	1032	0.000763	816	0.000732	903
0.00077	864	0.000764	1032	0.000765	816	0.000734	903
0.000772	864	0.000766	1032	0.000767	816	0.000736	903
0.000773	864	0.000767	1032	0.000768	816	0.000737	903
0.000775	864	0.000769	1032	0.00077	816	0.000739	902
0.000777	864	0.00077	1031	0.000772	816	0.000741	902
0.000778	865	0.000771	1031	0.000773	816	0.000742	902

Додаток Е.

Результати моделювання сили різання від переднього кута різального інструменту

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0	1843	0	1942	0	1773	0	1226
0.000002	1844	0.000002	1944	0.000002	1775	0.000002	1228
0.000003	1848	0.000003	1948	0.000003	1778	0.000003	1230
0.000005	1854	0.000005	1954	0.000005	1784	0.000005	1234
0.000007	1861	0.000005	1962	0.000007	1791	0.000007	1239
0.000008	1870	0.000005	1971	0.000008	1800	0.000008	1245
0.00001	1881	0.000006	1983	0.000009	1810	0.00001	1252
0.000012	1894	0.000007	1996	0.00001	1823	0.000012	1261
0.000013	1909	0.000008	2011	0.000011	1837	0.000013	1271
0.000015	1926	0.000008	2027	0.000012	1853	0.000014	1282
0.000017	1945	0.000009	2044	0.000014	1871	0.000016	1294
0.000018	1966	0.00001	2062	0.000015	1890	0.000016	1308
0.00002	1988	0.000011	2081	0.000016	1910	0.000018	1323
0.000022	2013	0.000013	2100	0.000018	1932	0.000018	1339
0.000023	2039	0.000015	2120	0.000019	1956	0.000018	1355
0.000025	2068	0.000015	2140	0.000019	1980	0.000019	1373
0.000027	2099	0.000016	2161	0.00002	2006	0.00002	1391
0.000028	2132	0.000016	2182	0.000022	2033	0.000021	1410

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.00003	2167	0.000018	2204	0.000023	2062	0.000021	1430
0.00003	2204	0.00002	2225	0.000024	2091	0.000023	1451
0.000032	2243	0.00002	2247	0.000025	2122	0.000023	1472
0.000033	2282	0.000021	2269	0.000027	2153	0.000025	1494
0.000035	2320	0.000021	2291	0.000028	2186	0.000025	1517
0.000035	2358	0.000023	2313	0.000029	2219	0.000026	1540
0.000037	2395	0.000023	2335	0.000031	2253	0.000028	1563
0.000038	2431	0.000025	2357	0.000032	2288	0.000029	1587
0.00004	2466	0.000025	2379	0.000033	2324	0.000031	1610
0.000042	2501	0.000027	2401	0.000035	2361	0.000032	1634
0.000043	2535	0.000027	2423	0.000036	2398	0.000034	1658
0.000045	2569	0.000029	2444	0.000037	2436	0.000034	1682
0.000047	2601	0.000029	2466	0.000039	2474	0.000036	1706
0.000048	2633	0.000031	2488	0.00004	2513	0.000037	1730
0.00005	2664	0.000031	2509	0.000041	2552	0.000039	1754
0.000052	2695	0.000033	2530	0.000042	2592	0.000041	1778
0.000053	2725	0.000033	2551	0.000044	2632	0.000042	1802
0.000055	2754	0.000035	2572	0.000045	2672	0.000044	1826
0.000057	2782	0.000036	2592	0.000046	2713	0.000044	1850
0.000058	2809	0.000038	2612	0.000047	2754	0.000046	1874
0.00006	2836	0.000039	2632	0.000048	2795	0.000047	1897
0.000061	2862	0.000041	2652	0.000049	2837	0.000049	1920
0.000063	2887	0.000042	2671	0.00005	2878	0.00005	1944

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000065	2912	0.000044	2690	0.000052	2920	0.000052	1967
0.000066	2936	0.000046	2709	0.000053	2962	0.000053	1989
0.000068	2959	0.000047	2727	0.000054	3004	0.000055	2012
0.00007	2982	0.000049	2745	0.000056	3046	0.000056	2034
0.000071	3004	0.00005	2763	0.000057	3088	0.000057	2056
0.000073	3025	0.000051	2780	0.000058	3130	0.000059	2078
0.000075	3046	0.000053	2797	0.00006	3171	0.00006	2100
0.000076	3066	0.000054	2814	0.000061	3213	0.000061	2121
0.000078	3085	0.000056	2830	0.000062	3254	0.000062	2142
0.00008	3104	0.000057	2846	0.000064	3296	0.000064	2162
0.000081	3123	0.000059	2861	0.000064	3337	0.000065	2183
0.000083	3141	0.000061	2876	0.000065	3377	0.000066	2203
0.000085	3158	0.000061	2891	0.000066	3418	0.000068	2223
0.000086	3175	0.000062	2905	0.000068	3458	0.000069	2242
0.000088	3192	0.000064	2919	0.000069	3497	0.00007	2261
0.00009	3207	0.000066	2933	0.00007	3536	0.000072	2280
0.000091	3223	0.000067	2947	0.000071	3575	0.000073	2298
0.000093	3238	0.000069	2960	0.000072	3614	0.000075	2316
0.000095	3253	0.00007	2972	0.000073	3651	0.000076	2334
0.000096	3267	0.000072	2984	0.000074	3688	0.000078	2351
0.000098	3281	0.000073	2996	0.000076	3725	0.000079	2369
0.0001	3294	0.000075	3008	0.000077	3761	0.000081	2385
0.000101	3307	0.000076	3019	0.000077	3796	0.000083	2402

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000103	3320	0.000078	3030	0.000079	3831	0.000084	2418
0.000105	3332	0.00008	3041	0.000081	3865	0.000086	2433
0.000106	3344	0.000081	3051	0.000082	3898	0.000088	2449
0.000108	3356	0.000082	3061	0.000084	3931	0.000089	2464
0.00011	3367	0.000084	3071	0.000086	3963	0.00009	2478
0.000111	3378	0.000086	3080	0.000087	3994	0.000092	2493
0.000113	3388	0.000087	3089	0.000089	4024	0.000094	2507
0.000114	3399	0.000089	3098	0.00009	4054	0.000095	2520
0.000116	3409	0.000091	3106	0.000092	4083	0.000096	2533
0.000118	3419	0.000092	3114	0.000094	4111	0.000098	2546
0.000119	3428	0.000094	3122	0.000095	4138	0.0001	2559
0.000121	3437	0.000095	3130	0.000097	4165	0.000101	2571
0.000123	3446	0.000097	3137	0.000099	4192	0.000103	2583
0.000124	3455	0.000099	3144	0.0001	4217	0.000105	2594
0.000126	3464	0.0001	3151	0.000102	4242	0.000106	2605
0.000128	3472	0.000101	3157	0.000104	4266	0.000108	2616
0.000129	3480	0.000102	3163	0.000105	4290	0.000109	2627
0.000131	3488	0.000104	3169	0.000107	4313	0.000111	2637
0.000133	3495	0.000106	3175	0.000109	4335	0.000113	2647
0.000134	3503	0.000107	3180	0.00011	4357	0.000114	2656
0.000136	3510	0.000109	3186	0.000111	4378	0.000116	2665
0.000138	3517	0.00011	3191	0.000113	4399	0.000118	2674
0.000139	3524	0.000112	3195	0.000114	4419	0.000118	2683

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000141	3530	0.000114	3200	0.000116	4439	0.000119	2691
0.000143	3537	0.000115	3204	0.000118	4458	0.000121	2699
0.000144	3543	0.000117	3208	0.000119	4476	0.000123	2707
0.000146	3549	0.000119	3212	0.000121	4494	0.000124	2714
0.000148	3555	0.00012	3215	0.000123	4512	0.000126	2721
0.000149	3561	0.000122	3219	0.000124	4529	0.000128	2728
0.000151	3567	0.000124	3222	0.000126	4546	0.000129	2735
0.000153	3572	0.000125	3225	0.000128	4562	0.000131	2741
0.000154	3578	0.000127	3227	0.000129	4578	0.000132	2747
0.000156	3583	0.000129	3230	0.000131	4593	0.000134	2752
0.000158	3588	0.00013	3232	0.000133	4608	0.000135	2758
0.000159	3593	0.000132	3234	0.000134	4623	0.000137	2763
0.000161	3598	0.000134	3236	0.000136	4637	0.000139	2768
0.000163	3603	0.000135	3237	0.000138	4651	0.00014	2772
0.000164	3607	0.000137	3239	0.000139	4665	0.000142	2776
0.000166	3612	0.000139	3240	0.000141	4678	0.000144	2780
0.000167	3616	0.00014	3241	0.000143	4691	0.000145	2784
0.000169	3621	0.000142	3242	0.000144	4703	0.000147	2787
0.000171	3625	0.000144	3243	0.000146	4715	0.000149	2790
0.000172	3629	0.000145	3243	0.000148	4727	0.00015	2793
0.000174	3633	0.000147	3243	0.000149	4738	0.000152	2796
0.000176	3637	0.000149	3243	0.000151	4750	0.000153	2798
0.000177	3641	0.00015	3243	0.000153	4760	0.000155	2800

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000179	3645	0.000152	3243	0.000154	4771	0.000157	2801
0.000181	3649	0.000154	3242	0.000156	4781	0.000158	2803
0.000182	3652	0.000155	3242	0.000157	4791	0.00016	2804
0.000184	3656	0.000157	3241	0.000159	4801	0.000162	2805
0.000186	3659	0.000159	3240	0.000161	4811	0.000163	2806
0.000187	3663	0.00016	3238	0.000162	4820	0.000165	2806
0.000189	3666	0.000162	3237	0.000164	4829	0.000167	2806
0.000191	3669	0.000163	3235	0.000166	4838	0.000167	2806
0.000192	3672	0.000165	3233	0.000167	4846	0.000168	2805
0.000194	3675	0.000167	3231	0.000169	4854	0.000169	2804
0.000196	3678	0.000168	3229	0.000171	4863	0.000171	2803
0.000197	3681	0.00017	3226	0.000172	4870	0.000172	2802
0.000199	3684	0.000172	3224	0.000174	4878	0.000174	2800
0.000201	3687	0.000173	3221	0.000176	4886	0.000176	2798
0.000202	3690	0.000175	3218	0.000177	4893	0.000177	2796
0.000204	3693	0.000177	3214	0.000179	4900	0.000179	2794
0.000206	3695	0.000178	3211	0.000181	4907	0.000181	2791
0.000207	3698	0.00018	3207	0.000182	4914	0.000182	2788
0.000209	3700	0.000182	3203	0.000184	4920	0.000184	2785
0.000211	3703	0.000183	3199	0.000186	4926	0.000186	2781
0.000212	3705	0.000185	3194	0.000187	4933	0.000187	2777
0.000214	3708	0.000187	3190	0.000189	4939	0.000189	2773
0.000216	3710	0.000188	3185	0.000191	4944	0.000191	2768

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000217	3712	0.00019	3180	0.000192	4950	0.000192	2763
0.000219	3714	0.000192	3175	0.000194	4956	0.000194	2758
0.00022	3717	0.000193	3169	0.000196	4961	0.000196	2752
0.000222	3719	0.000195	3163	0.000197	4966	0.000197	2746
0.000224	3721	0.000197	3157	0.000199	4971	0.000199	2740
0.000225	3723	0.000198	3151	0.000201	4976	0.0002	2733
0.000227	3725	0.0002	3144	0.000202	4981	0.000202	2726
0.000229	3727	0.000202	3137	0.000204	4986	0.000204	2718
0.00023	3729	0.000203	3130	0.000206	4990	0.000205	2711
0.000232	3730	0.000205	3122	0.000207	4995	0.000207	2702
0.000234	3732	0.000207	3115	0.000209	4999	0.000209	2694
0.000235	3734	0.000208	3107	0.00021	5004	0.00021	2685
0.000237	3736	0.00021	3098	0.000212	5008	0.000212	2675
0.000239	3738	0.000212	3090	0.000214	5012	0.000214	2665
0.00024	3739	0.000213	3081	0.000215	5016	0.000215	2655
0.000242	3741	0.000215	3071	0.000217	5020	0.000217	2644
0.000244	3743	0.000216	3062	0.000219	5023	0.000219	2633
0.000245	3744	0.000218	3052	0.00022	5027	0.000219	2621
0.000247	3746	0.00022	3041	0.000222	5031	0.00022	2609
0.000249	3747	0.000221	3030	0.000224	5034	0.000222	2596
0.00025	3749	0.000223	3019	0.000225	5037	0.000224	2583
0.000252	3750	0.000225	3008	0.000227	5041	0.000225	2569
0.000254	3751	0.000226	2996	0.000229	5044	0.000227	2555

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000255	3753	0.000228	2983	0.00023	5047	0.000229	2540
0.000257	3754	0.00023	2971	0.000232	5050	0.00023	2525
0.000259	3756	0.000231	2957	0.000234	5053	0.000232	2510
0.00026	3757	0.000233	2944	0.000235	5056	0.000232	2494
0.000262	3758	0.000233	2930	0.000237	5059	0.000233	2478
0.000264	3760	0.000235	2915	0.000239	5062	0.000235	2461
0.000265	3761	0.000236	2900	0.00024	5064	0.000236	2444
0.000267	3762	0.000238	2885	0.000242	5067	0.000238	2427
0.000269	3764	0.00024	2869	0.000244	5070	0.00024	2410
0.00027	3765	0.000241	2852	0.000245	5072	0.000241	2392
0.000272	3766	0.000243	2835	0.000247	5075	0.000243	2374
0.000273	3767	0.000245	2817	0.000249	5077	0.000243	2356
0.000275	3768	0.000246	2799	0.00025	5080	0.000245	2338
0.000277	3770	0.000248	2780	0.000252	5082	0.000246	2320
0.000278	3771	0.00025	2761	0.000254	5084	0.000248	2302
0.00028	3772	0.000251	2741	0.000255	5086	0.00025	2284
0.000282	3773	0.000253	2721	0.000257	5089	0.000251	2265
0.000283	3774	0.000255	2700	0.000259	5091	0.000253	2247
0.000285	3775	0.000256	2680	0.00026	5093	0.000253	2229
0.000287	3776	0.000258	2660	0.000262	5095	0.000253	2211
0.000288	3777	0.00026	2639	0.000263	5097	0.000254	2193
0.00029	3777	0.000261	2618	0.000265	5099	0.000256	2175
0.000292	3778	0.000263	2598	0.000267	5101	0.000257	2157
γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
------------	----------	------------	----------	------------	----------	------------	----------
Time (sec)	Load (N)						
0.000293	3779	0.000265	2577	0.000268	5103	0.000259	2139
0.000295	3780	0.000266	2557	0.00027	5105	0.00026	2121
0.000297	3781	0.000268	2536	0.000272	5107	0.000262	2104
0.000298	3781	0.00027	2516	0.000273	5109	0.000264	2086
0.0003	3782	0.000271	2496	0.000275	5110	0.000265	2069
0.000302	3783	0.000273	2476	0.000277	5112	0.000267	2052
0.000303	3783	0.000273	2456	0.000278	5114	0.000269	2035
0.000305	3784	0.000275	2437	0.00028	5116	0.00027	2018
0.000307	3784	0.000277	2417	0.000282	5117	0.000272	2002
0.000308	3785	0.000278	2398	0.000283	5119	0.000273	1986
0.00031	3786	0.00028	2379	0.000285	5121	0.000275	1970
0.000312	3786	0.000282	2360	0.000287	5122	0.000277	1955
0.000313	3786	0.000283	2342	0.000288	5124	0.000278	1940
0.000315	3787	0.000285	2324	0.00029	5125	0.000279	1926
0.000317	3787	0.000287	2306	0.000292	5127	0.00028	1912
0.000318	3788	0.000288	2288	0.000293	5128	0.00028	1898
0.00032	3788	0.00029	2271	0.000295	5130	0.000282	1884
0.000322	3788	0.000292	2255	0.000297	5131	0.000284	1870
0.000323	3788	0.000293	2238	0.000298	5133	0.000285	1857
0.000325	3788	0.000295	2222	0.0003	5134	0.000287	1843
0.000327	3788	0.000297	2206	0.000302	5136	0.000289	1830
0.000328	3789	0.000298	2191	0.000303	5137	0.000289	1818
0.00033	3789	0.0003	2177	0.000305	5138	0.000291	1805

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000331	3789	0.000302	2162	0.000307	5140	0.000293	1793
0.000333	3788	0.000303	2149	0.000308	5141	0.000294	1781
0.000335	3788	0.000305	2136	0.00031	5142	0.000296	1769
0.000336	3788	0.000307	2123	0.000312	5144	0.000298	1757
0.000338	3788	0.000308	2111	0.000313	5145	0.000299	1745
0.00034	3788	0.00031	2099	0.000315	5146	0.000301	1734
0.000341	3787	0.00031	2088	0.000316	5147	0.000302	1723
0.000343	3787	0.000312	2078	0.000318	5149	0.000304	1712
0.000345	3787	0.000314	2067	0.00032	5150	0.000306	1701
0.000346	3786	0.000315	2058	0.000321	5151	0.000306	1691
0.000348	3786	0.000317	2048	0.000323	5152	0.000308	1682
0.00035	3785	0.000319	2039	0.000325	5153	0.00031	1673
0.000351	3784	0.00032	2030	0.000326	5155	0.000311	1664
0.000353	3783	0.000322	2022	0.000328	5156	0.000313	1656
0.000355	3783	0.000324	2014	0.00033	5157	0.000314	1648
0.000356	3782	0.000325	2007	0.000331	5158	0.000315	1641
0.000358	3781	0.000327	2000	0.000333	5159	0.000317	1634
0.00036	3780	0.000329	1994	0.000335	5160	0.000318	1628
0.000361	3779	0.00033	1988	0.000336	5162	0.00032	1622
0.000363	3777	0.000332	1982	0.000338	5163	0.00032	1616
0.000365	3776	0.000333	1977	0.00034	5164	0.000322	1611
0.000366	3775	0.000335	1973	0.000341	5165	0.000324	1606
0.000368	3773	0.000336	1968	0.000343	5166	0.000325	1602

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.00037	3772	0.000338	1964	0.000345	5167	0.000327	1598
0.000371	3770	0.000339	1961	0.000346	5169	0.000327	1595
0.000373	3769	0.00034	1958	0.000348	5170	0.000329	1591
0.000375	3767	0.000342	1955	0.00035	5171	0.00033	1589
0.000376	3765	0.000343	1952	0.000351	5172	0.000332	1586
0.000378	3763	0.000345	1950	0.000353	5173	0.000334	1584
0.00038	3761	0.000346	1948	0.000355	5174	0.000335	1582
0.000381	3758	0.000347	1947	0.000356	5175	0.000337	1581
0.000383	3756	0.000349	1945	0.000358	5177	0.000338	1580
0.000384	3753	0.00035	1945	0.00036	5178	0.00034	1579
0.000386	3751	0.000352	1944	0.000361	5179	0.00034	1578
0.000388	3748	0.000354	1944	0.000363	5180	0.000342	1578
0.000389	3745	0.000355	1944	0.000365	5181	0.000344	1578
0.000391	3742	0.000357	1945	0.000366	5182	0.000345	1578
0.000393	3738	0.000359	1945	0.000368	5183	0.000347	1579
0.000394	3735	0.00036	1946	0.00037	5185	0.000349	1580
0.000396	3731	0.000362	1948	0.000371	5186	0.00035	1581
0.000397	3728	0.000364	1949	0.000373	5187	0.000352	1582
0.000398	3724	0.000365	1952	0.000374	5188	0.000353	1584
0.0004	3720	0.000367	1954	0.000376	5189	0.000354	1586
0.000402	3716	0.000369	1956	0.000378	5190	0.000355	1588
0.000402	3711	0.000369	1959	0.000379	5191	0.000357	1590
0.000403	3707	0.000371	1963	0.000381	5193	0.000359	1593

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000405	3702	0.000372	1966	0.000383	5194	0.00036	1595
0.000407	3697	0.000374	1970	0.000384	5195	0.000362	1598
0.000408	3692	0.000376	1974	0.000386	5196	0.000364	1601
0.00041	3686	0.000377	1979	0.000388	5197	0.000365	1604
0.000412	3681	0.000379	1983	0.000389	5198	0.000367	1607
0.000413	3675	0.000381	1988	0.000391	5199	0.000369	1611
0.000415	3669	0.000382	1994	0.000393	5200	0.00037	1614
0.000417	3663	0.000384	1999	0.000394	5201	0.000372	1618
0.000418	3657	0.000385	2005	0.000396	5202	0.000373	1622
0.00042	3650	0.000387	2010	0.000398	5203	0.000374	1626
0.000422	3643	0.000389	2016	0.000399	5204	0.000375	1630
0.000423	3636	0.00039	2022	0.000401	5205	0.000377	1634
0.000424	3628	0.000392	2029	0.000403	5207	0.000379	1639
0.000424	3620	0.000394	2035	0.000404	5208	0.000379	1644
0.000426	3612	0.000394	2042	0.000406	5209	0.000381	1648
0.000427	3604	0.000395	2048	0.000408	5210	0.000382	1653
0.000429	3595	0.000397	2055	0.000409	5211	0.000382	1658
0.000431	3586	0.000399	2062	0.000411	5212	0.000384	1664
0.000432	3577	0.0004	2068	0.000413	5213	0.000386	1669
0.000434	3567	0.000402	2075	0.000414	5214	0.000387	1675
0.000436	3557	0.000404	2082	0.000414	5215	0.000389	1680
0.000437	3547	0.000405	2089	0.000416	5216	0.00039	1686
0.000439	3536	0.000407	2096	0.000418	5217	0.000392	1692

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000441	3525	0.000409	2103	0.000419	5218	0.000394	1698
0.000442	3514	0.00041	2111	0.000421	5219	0.000395	1703
0.000444	3502	0.00041	2118	0.000423	5220	0.000397	1709
0.000446	3489	0.000412	2125	0.000424	5221	0.000399	1715
0.000447	3476	0.000414	2133	0.000426	5222	0.0004	1721
0.000449	3463	0.000415	2140	0.000428	5223	0.000402	1727
0.00045	3449	0.000417	2148	0.000429	5224	0.000403	1733
0.000452	3435	0.000419	2156	0.000431	5225	0.000405	1739
0.000454	3420	0.00042	2163	0.000433	5226	0.000407	1745
0.000455	3405	0.000422	2171	0.000434	5227	0.000407	1751
0.000457	3389	0.000424	2179	0.000436	5228	0.000409	1757
0.000459	3373	0.000425	2187	0.000438	5228	0.00041	1764
0.00046	3356	0.000427	2195	0.000439	5229	0.000412	1770
0.000462	3339	0.000428	2203	0.000441	5230	0.000414	1776
0.000463	3321	0.00043	2212	0.000443	5231	0.000415	1783
0.000465	3303	0.000432	2220	0.000444	5232	0.000417	1789
0.000467	3284	0.000433	2228	0.000446	5233	0.000417	1796
0.000468	3265	0.000435	2236	0.000447	5234	0.000419	1802
0.00047	3246	0.000437	2245	0.000449	5235	0.000421	1809
0.000471	3226	0.000438	2253	0.000451	5235	0.000421	1815
0.000473	3207	0.00044	2262	0.000452	5236	0.000421	1822
0.000475	3187	0.000442	2270	0.000454	5237	0.000423	1829
0.000476	3168	0.000443	2279	0.000456	5238	0.000425	1836

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000478	3149	0.000445	2287	0.000457	5239	0.000426	1842
0.00048	3130	0.000447	2296	0.000459	5240	0.000427	1849
0.000481	3110	0.000448	2305	0.00046	5241	0.000429	1856
0.000483	3092	0.00045	2313	0.000461	5241	0.00043	1863
0.000485	3073	0.000452	2322	0.000463	5242	0.000432	1870
0.000486	3054	0.000453	2331	0.000465	5243	0.000432	1877
0.000488	3036	0.000455	2340	0.000466	5244	0.000433	1884
0.00049	3017	0.000457	2349	0.000468	5245	0.000435	1891
0.000491	2998	0.000458	2357	0.000469	5246	0.000436	1899
0.000493	2980	0.00046	2366	0.000471	5247	0.000438	1906
0.000495	2962	0.000462	2375	0.000473	5248	0.00044	1913
0.000496	2944	0.000463	2384	0.000474	5249	0.000441	1920
0.000498	2926	0.000465	2393	0.000476	5249	0.000443	1928
0.0005	2908	0.000467	2402	0.000478	5250	0.000444	1935
0.0005	2890	0.000468	2411	0.000479	5251	0.000446	1943
0.000501	2872	0.00047	2420	0.000481	5252	0.000448	1950
0.000503	2855	0.000472	2429	0.000483	5253	0.000449	1958
0.000504	2837	0.000473	2438	0.000484	5254	0.00045	1965
0.000506	2819	0.000475	2447	0.000486	5255	0.000452	1973
0.000508	2802	0.000477	2456	0.000487	5256	0.000454	1981
0.000509	2784	0.000478	2465	0.000489	5257	0.000455	1989
0.000511	2767	0.00048	2475	0.000491	5258	0.000457	1997
0.000513	2750	0.000481	2484	0.000492	5258	0.000458	2005

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000514	2732	0.000483	2493	0.000494	5259	0.000459	2013
0.000514	2715	0.000485	2502	0.000496	5260	0.000461	2021
0.000516	2698	0.000486	2511	0.000497	5261	0.000462	2029
0.000518	2680	0.000488	2520	0.000499	5262	0.000464	2037
0.000519	2663	0.00049	2529	0.000501	5263	0.000466	2046
0.000521	2646	0.000491	2538	0.000502	5264	0.000466	2054
0.000523	2629	0.000493	2547	0.000504	5264	0.000467	2062
0.000524	2612	0.000495	2556	0.000506	5265	0.000469	2071
0.000525	2596	0.000496	2565	0.000507	5266	0.000471	2079
0.000527	2579	0.000498	2574	0.000509	5267	0.000472	2087
0.000528	2562	0.0005	2583	0.00051	5268	0.000474	2096
0.00053	2546	0.000501	2592	0.000512	5269	0.000476	2104
0.000532	2529	0.000503	2600	0.000512	5269	0.000477	2113
0.000532	2513	0.000505	2609	0.000514	5270	0.000479	2121
0.000534	2496	0.000506	2617	0.000516	5271	0.000481	2130
0.000535	2480	0.000508	2626	0.000517	5272	0.000482	2138
0.000537	2463	0.00051	2635	0.000519	5272	0.000483	2147
0.000538	2446	0.000511	2643	0.000521	5273	0.000485	2156
0.00054	2429	0.000513	2651	0.000522	5274	0.000487	2164
0.000542	2413	0.000515	2660	0.000524	5275	0.000488	2173
0.000543	2397	0.000516	2668	0.000526	5275	0.00049	2181
0.000544	2382	0.000518	2676	0.000527	5276	0.00049	2190
0.000545	2367	0.00052	2685	0.000529	5277	0.000492	2198

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000547	2352	0.00052	2693	0.00053	5277	0.000493	2207
0.000549	2338	0.000521	2701	0.000532	5278	0.000493	2215
0.000549	2325	0.000523	2709	0.000533	5279	0.000495	2224
0.000549	2312	0.000525	2717	0.000535	5279	0.000497	2232
0.000551	2299	0.000526	2725	0.000537	5280	0.000498	2240
0.000553	2286	0.000528	2732	0.000538	5281	0.0005	2249
0.000554	2274	0.00053	2740	0.00054	5281	0.000502	2257
0.000556	2262	0.000531	2748	0.000542	5282	0.000503	2266
0.000558	2250	0.000533	2756	0.000543	5282	0.000504	2274
0.000559	2239	0.000535	2763	0.000544	5283	0.000506	2283
0.000561	2228	0.000536	2771	0.000546	5284	0.000508	2291
0.000563	2217	0.000538	2778	0.000547	5284	0.000509	2299
0.000564	2207	0.000539	2786	0.000549	5285	0.000511	2307
0.000566	2197	0.000541	2793	0.000551	5285	0.000511	2316
0.000566	2187	0.000543	2800	0.000551	5286	0.000513	2324
0.000568	2178	0.000544	2807	0.000553	5286	0.000514	2332
0.00057	2169	0.000546	2815	0.000553	5287	0.000516	2341
0.000571	2160	0.000548	2822	0.000555	5287	0.000518	2349
0.000573	2152	0.000549	2829	0.000556	5288	0.000519	2357
0.000575	2143	0.000551	2836	0.000558	5288	0.000521	2365
0.000575	2135	0.000553	2842	0.000559	5289	0.000523	2373
0.000576	2128	0.000554	2849	0.000561	5289	0.000524	2381
0.000578	2120	0.000556	2856	0.000563	5289	0.000525	2390

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.00058	2113	0.000558	2862	0.000564	5290	0.000527	2398
0.00058	2106	0.000559	2869	0.000566	5290	0.000529	2406
0.000581	2099	0.000561	2876	0.000568	5290	0.00053	2414
0.000582	2093	0.000563	2882	0.000569	5290	0.000532	2422
0.000584	2086	0.000564	2888	0.000571	5291	0.000534	2430
0.000586	2080	0.000566	2895	0.000573	5291	0.000535	2438
0.000587	2073	0.000568	2901	0.000574	5291	0.000537	2446
0.000589	2067	0.000569	2907	0.000576	5291	0.000539	2454
0.000591	2061	0.000571	2913	0.000578	5291	0.00054	2461
0.000592	2055	0.000573	2919	0.000579	5292	0.000542	2469
0.000594	2050	0.000574	2925	0.000581	5292	0.000544	2477
0.000596	2044	0.000576	2931	0.000583	5292	0.000545	2484
0.000597	2039	0.000578	2937	0.000584	5292	0.000547	2492
0.000599	2033	0.000579	2942	0.000586	5292	0.000548	2499
0.000601	2028	0.000581	2948	0.000588	5292	0.00055	2507
0.000602	2023	0.000582	2954	0.000589	5292	0.000552	2514
0.000604	2018	0.000584	2959	0.000591	5292	0.000553	2522
0.000605	2014	0.000585	2964	0.000593	5291	0.000555	2529
0.000607	2010	0.000587	2969	0.000594	5291	0.000557	2536
0.000609	2006	0.000589	2975	0.000596	5291	0.000558	2543
0.00061	2003	0.000589	2980	0.000598	5291	0.00056	2550
0.000612	2000	0.00059	2984	0.000599	5291	0.000562	2557
0.000614	1997	0.000592	2989	0.000601	5290	0.000563	2564

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000615	1995	0.000594	2994	0.000603	5290	0.000565	2571
0.000617	1993	0.000595	2998	0.000604	5290	0.000567	2577
0.000619	1991	0.000597	3003	0.000606	5289	0.000568	2584
0.00062	1989	0.000598	3007	0.000608	5289	0.00057	2591
0.00062	1988	0.000599	3011	0.000609	5288	0.000572	2597
0.000622	1987	0.0006	3016	0.000611	5288	0.000573	2604
0.000624	1986	0.000602	3020	0.000612	5287	0.000575	2610
0.000625	1985	0.000604	3024	0.000614	5287	0.000577	2616
0.000627	1984	0.000605	3027	0.000616	5286	0.000578	2623
0.000629	1983	0.000607	3031	0.000617	5286	0.00058	2629
0.000629	1983	0.000609	3035	0.000619	5285	0.000582	2635
0.00063	1983	0.00061	3038	0.000621	5285	0.000583	2641
0.000632	1982	0.000611	3042	0.000622	5284	0.000585	2647
0.000634	1982	0.000613	3045	0.000624	5283	0.000587	2653
0.000635	1982	0.000614	3048	0.000626	5282	0.000588	2658
0.000637	1983	0.000616	3051	0.000627	5282	0.00059	2664
0.000639	1983	0.000618	3054	0.000629	5281	0.000592	2669
0.00064	1983	0.000619	3057	0.00063	5280	0.000593	2675
0.000641	1984	0.000621	3060	0.000632	5279	0.000595	2680
0.000642	1984	0.000623	3063	0.000634	5278	0.000596	2686
0.000644	1985	0.000624	3065	0.000635	5277	0.000598	2691
0.000646	1986	0.000626	3068	0.000637	5276	0.0006	2696
0.000647	1986	0.000628	3070	0.000639	5275	0.000601	2700

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000649	1987	0.000629	3073	0.00064	5274	0.000603	2705
0.00065	1988	0.000631	3075	0.000642	5272	0.000605	2710
0.000652	1988	0.000633	3077	0.000644	5271	0.000606	2714
0.000654	1989	0.000634	3079	0.000645	5269	0.000608	2719
0.000655	1990	0.000636	3081	0.000647	5268	0.00061	2723
0.000657	1991	0.000638	3082	0.000649	5266	0.000611	2727
0.000659	1992	0.000639	3084	0.00065	5265	0.000613	2731
0.00066	1993	0.000641	3085	0.000651	5263	0.000615	2734
0.000662	1994	0.000643	3087	0.000653	5261	0.000616	2738
0.000664	1995	0.000644	3088	0.000655	5259	0.000618	2742
0.000665	1997	0.000646	3089	0.000656	5257	0.00062	2745
0.000667	1998	0.000647	3090	0.000657	5255	0.000621	2748
0.000667	2000	0.000649	3091	0.000659	5253	0.000621	2751
0.000669	2001	0.000651	3092	0.00066	5251	0.000623	2754
0.000671	2002	0.000652	3093	0.000662	5248	0.000625	2757
0.000672	2003	0.000654	3093	0.000663	5246	0.000626	2759
0.000674	2005	0.000656	3094	0.000664	5243	0.000628	2762
0.000675	2006	0.000657	3094	0.000665	5241	0.00063	2764
0.000677	2008	0.000659	3094	0.000667	5238	0.000631	2767
0.000678	2010	0.000661	3094	0.000669	5235	0.000633	2769
0.00068	2011	0.000662	3094	0.00067	5232	0.000635	2771
0.000682	2013	0.000664	3094	0.000672	5229	0.000636	2772
0.000683	2015	0.000666	3094	0.000674	5226	0.000638	2774

γ=	=0°	γ=	=5°	γ=	-5°	γ=	10°
Time (sec)	Load (N)						
0.000685	2017	0.000667	3093	0.000675	5222	0.00064	2776
0.000687	2019	0.000669	3093	0.000677	5219	0.000641	2777
0.000687	2022	0.000671	3092	0.000679	5215	0.000642	2779
0.000689	2024	0.000672	3091	0.00068	5212	0.000644	2780
0.00069	2026	0.000674	3090	0.000682	5208	0.000645	2781
0.000692	2028	0.000676	3089	0.000683	5204	0.000646	2782
0.000694	2031	0.000677	3087	0.000685	5200	0.000648	2782
0.000694	2033	0.000679	3086	0.000687	5195	0.000649	2783
0.000694	2036	0.00068	3084	0.000688	5191	0.000651	2784
0.000696	2039	0.000682	3082	0.000688	5186	0.000653	2784
0.000698	2041	0.000684	3080	0.00069	5181	0.000654	2784
0.000699	2044	0.000685	3078	0.000692	5177	0.000656	2784
0.000701	2047	0.000687	3076	0.000693	5171	0.000658	2784
0.000703	2050	0.000689	3073	0.000695	5166	0.000659	2784
0.000704	2053	0.00069	3071	0.000697	5160	0.000661	2783
0.000706	2056	0.000692	3068	0.000698	5155	0.000662	2783
0.000708	2059	0.000694	3065	0.0007	5149	0.000664	2782
0.000709	2063	0.000695	3061	0.000702	5143	0.000666	2781
0.000711	2067	0.000697	3058	0.000703	5136	0.000667	2780
0.000713	2070	0.000699	3054	0.000705	5130	0.000669	2778
0.000714	2074	0.0007	3050	0.000707	5123	0.000671	2777
0.000716	2078	0.000702	3046	0.000708	5116	0.000672	2775
0.000718	2082	0.000704	3042	0.00071	5108	0.000674	2773

γ=0°		γ=5°		γ=-5°		γ=10°	
Time (sec)	Load (N)						
0.000719	2085	0.000704	3038	0.00071	5101	0.000676	2771
0.000721	2089	0.000706	3033	0.000712	5093	0.000677	2769
0.000723	2094	0.000708	3028	0.000714	5084	0.000679	2766
0.000724	2097	0.000709	3023	0.000715	5076	0.000681	2763
0.000724	2102	0.000711	3017	0.000717	5067	0.000682	2760
0.000726	2106	0.000713	3012	0.000719	5058	0.000683	2757
0.000728	2109	0.000714	3006	0.00072	5049	0.000684	2754
0.000729	2113	0.000716	3000	0.000722	5039	0.000686	2750
0.000731	2117	0.000718	2994	0.000723	5029	0.000688	2746
0.000732	2121	0.000719	2987	0.000725	5018	0.000689	2742
0.000734	2125	0.000721	2980	0.000726	5007	0.000691	2738
0.000735	2129	0.000723	2973	0.000727	4996	0.000693	2733
0.000737	2133	0.000724	2965	0.000729	4984	0.000694	2728
0.000737	2137	0.000726	2958	0.000731	4972	0.000696	2723
0.000739	2141	0.000728	2950	0.000732	4960	0.000698	2717
0.00074	2145	0.000729	2941	0.000733	4947	0.000699	2711
0.000742	2149	0.000731	2932	0.000735	4933	0.000701	2705
0.000743	2154	0.000733	2923	0.000737	4920	0.000703	2699
0.000743	2158	0.000734	2914	0.000738	4905	0.000704	2692
0.000745	2163	0.000736	2904	0.00074	4890	0.000706	2685
0.000747	2168	0.000738	2894	0.000742	4875	0.000708	2677
0.000748	2172	0.000739	2883	0.000742	4859	0.000709	2669
0.00075	2177	0.000741	2872	0.000743	4843	0.000711	2661

γ=0°		γ=5°		γ=-5°		$\gamma = 10^{\circ}$	
Time (sec)	Load (N)	Time (sec)	Load (N)	Time (sec)	Load (N)	Time (sec)	Load (N)
0.000752	2182	0.000743	2861	0.000745	4826	0.000713	2653
0.000753	2187	0.000744	2849	0.000745	4808	0.000714	2644
0.000755	2192	0.000746	2837	0.000747	4790	0.000716	2634
0.000757	2197	0.000748	2824	0.000749	4771	0.000718	2624
0.000758	2202	0.000749	2811	0.00075	4752	0.000719	2614
0.00076	2207	0.000751	2797	0.000752	4732	0.000721	2603
0.000762	2213	0.000752	2783	0.000754	4711	0.000723	2592
0.000762	2218	0.000754	2768	0.000755	4690	0.000724	2581
0.000763	2224	0.000756	2753	0.000757	4668	0.000726	2569
0.000765	2229	0.000757	2737	0.000758	4646	0.000728	2556
0.000765	2235	0.000759	2720	0.00076	4623	0.000729	2543
0.000767	2241	0.000761	2703	0.000762	4599	0.000731	2529
0.000768	2246	0.000762	2686	0.000763	4575	0.000732	2515
0.00077	2252	0.000764	2668	0.000765	4551	0.000734	2501
0.000772	2258	0.000766	2650	0.000767	4527	0.000736	2485
0.000773	2264	0.000767	2631	0.000768	4502	0.000737	2470
0.000775	2270	0.000769	2613	0.00077	4477	0.000739	2454
0.000777	2276	0.00077	2593	0.000772	4452	0.000741	2437
0.000778	2283	0.000771	2574	0.000773	4427	0.000742	2421

Додаток Ж. Програма опрацювання результатів експериментальних досліджень моделювання динамічних процесів різання титанових сплавів в системі MATLAB/SIMULINK

```
%OCHOBHИЙ ФАЙЛ
% 1м/c^2 = 8.25 mV Ціна поділки акселерометра
%Режими обробки(n=400 об/хв,s= 0.118 мм/об, t=0.5 мм)
%Часова розгортка 5е-3c/1клітку
%tt=5e-3;
tt=2e-3;
x01=CH5;
t=[0:(20*tt)/length(x01):(20*tt)-((20*tt)/length(x01))];
x0=x01/8.25;
```

```
zoom on;grid on;
figure(1);
plot(t,x)
xlabel('Час, с')
ylabel('Прискорення вершини різця,м/с^2')
%hold on;
```

y = fft(x); fs = 1/((20*tt)/5000); f = (0:length(y)-1)*fs/length(y);

```
zoom on;grid on;
figure(2);
plot(f,abs(2*y/length(x)))
xlabel('Частота, Гц')
ylabel('Прискорення вершини різця,м/с^2')
```

n = length(x); fshift = (-n/2:n/2-1)*(fs/n); yshift = fftshift(y);

```
zoom on;grid on;
figure(3);
plot(fshift,abs(2*yshift/length(x)))
xlabel('Частота, Гц')
ylabel('Прискорення вершини різця,м/с^2')
```

```
%xlim([0 fshift(length(x))]);
xlim([0 3000]);
%xlim([0 2.5e3]);
%xlim([0 1e3]);
%hold on;grid on;
```

```
phaseY = unwrap(angle(y)); % Phase of the FFT
```

zoom on;grid on; figure(4); plot(f,phaseY) xlabel('Частота, Гц') ylabel('Фазовий кут, рад') xlim([0 3000]);

A = cumtrapz(t,x);

Q=A-mean(A);

zoom on;grid on;

figure(5); plot(t,Q) xlabel('Час, c') ylabel('Швидкість вершини різця,м/с') %hold on;

y = fft(Q); fs = 1/((20*tt)/5000); f = (0:length(y)-1)*fs/length(y);

```
zoom on;grid on;
figure(6);
plot(f,abs(2*y/length(x)))
xlabel('Частота, Гц')
ylabel('Швидкість вершини різця,м/с')
```

```
n = length(x);
fshift = (-n/2:n/2-1)*(fs/n);
yshift = fftshift(y);
```

```
zoom on;grid on;
figure(7);
plot(fshift,abs(2*yshift/length(x)))
xlabel('Частота, Гц')
ylabel('Швидкість вершини різця,м/с')
```

```
%xlim([0 fshift(length(x))]);
xlim([0 3000]);
%xlim([0 2.5e3]);
%xlim([0 1e3]);
%hold on;grid on;
```

phaseY = unwrap(angle(y)); % Phase of the FFT

```
zoom on;grid on;
figure(8);
```

```
plot(f,phaseY)
xlabel('Частота, Гц')
ylabel('Фазовий кут, рад')
xlim([0 3000]);
```

B = cumtrapz(t,Q);QQ=B-mean(B);

zoom on;grid on; figure(9); plot(t,QQ*1000) xlabel('Час, с') ylabel('Переміщення вершини різця,мм') hold on;

y = fft(QQ);fs = 1/((20*tt)/5000);

```
f = (0:length(y)-1)*fs/length(y);
```

zoom on;grid on; figure(10); plot(f,abs(2*y/length(x))) xlabel('Частота, Гц') ylabel('Переміщення вершини різця,м')

n = length(x); fshift = (-n/2:n/2-1)*(fs/n); yshift = fftshift(y);

```
zoom on;grid on;
figure(11);
plot(fshift,abs(2*yshift/length(x))*1000)
xlabel('Частота, Гц')
ylabel('Переміщення вершини різця,мм')
```

%xlim([0 fshift(length(x))]); xlim([0 3000]); %xlim([0 2.5e3]); %xlim([0 1e3]); hold on;grid on;

phaseY = unwrap(angle(y)); % Phase of the FFT

zoom on;grid on; figure(12); plot(f,phaseY) xlabel('Частота, Гц') ylabel('Фазовий кут, рад') % xlim([0 fshift(length(x))]); xlim([0 3000]); %hold on;