ПЕРСПЕКТИВНІ КРИПТОПЕРЕТВОРЕННЯ

ОЦІНКА ШВИДКОДІЇ ПРОГРАМНИХ ФУНКЦІЙ СКАЛЯРНОГО МНОЖЕННЯ ТА ПОШУК КОЕФІЦІЄНТІВ РІВНЯННЯ ІЗОГЕННИХ КРИВИХ З ВИКОРИСТАННЯМ MIRACL CRYPTOGRAPHIC SDK

Київ 2021

АНОТАЦІЯ

ШИФР РОБОТИ

ПЕРСПЕКТИВНІ КРИПТОПЕРЕТВОРЕННЯ НАЗВА РОБОТИ

ОЦІНКА ШВИДКОДІЇ ПРОГРАМНИХ ФУНКЦІЙ СКАЛЯРНОГО МНОЖЕННЯ ТА ПОШУК КОЕФІЦІЄНТІВ РІВНЯННЯ ІЗОГЕННИХ КРИВИХ З ВИКОРИСТАННЯМ MIRACL CRYPTOGRAPHIC SDK

Володіючи рядом чудових властивостей, криві Едвардса над скінченними полями займають особливе місце серед різних форм представлення еліптичних кривих. Скалярний добуток для точок кривої Едвардса обчислюється мінімальним числом операцій, тому криві Едвардса викликають інтерес при проектуванні криптографічних протоколів і стандартів асиметричного шифрування.

Метою роботи є оцінка швидкодії програмних функцій скалярного множення та реалізація пошуку коефіцієнтів ізогенної кривої за допомогою алгоритму Велю з використанням MIRACL Cryptographic SDK.

Для досягнення даної мети слід виконати наступні завдання:

• проведення аналізу відомих підходів до реалізації додавання та подвоєння точок еліптичної кривої в різних базисах;

• реалізація операції скалярного множення точок кривої Едвардса;

• реалізація пошуку коефіцієнтів ізогенної кривої за допомогою алгоритму Велю.

У роботі було розглянуто форми представлення ЕК та необхідні властивості для використання кривих Едвардса в криптографії. Проведено аналіз швидкодії операцій над точками ЕК у формі Едвардса в різних базисах. Програмно реалізована функція скалярного множення точок ЕК та пошук коефіцієнтів ізогенних кривих за алгоритмом Велю з використанням MIRACL Сгурtographic SDK.

2

Результатом роботи є нові оцінки швидкодії операцій скалярного множення точок еліптичних кривих в формі Вейєрштрасса, нові параметри часткового випадку еліптичних кривих, а саме скручених кривих Едвардса в інвертованих координатах, що надають можливість отримати максимальну швидкодію операцій над точками еліптичної кривої, які дозволені міжнародними стандартами для криптографічного застосування. Також вперше вдосконалено бібліотеку програмних функцій MIRACL, яка дозволяє реалізовувати операції над точками кривих з довжиною характеристики 384 біт.

Дана наукова робота складається з двох розділів, загальний обсяг: 69 сторінок, 6 рисунків, 12 таблиць, 6 діаграм, 5 додатків та 17 використаних джерел.

Ключові слова: еліптична криптографія, еліптичні криві Едвардса, скалярне множення, ізогенії, MIRACL Cryptographic SDK.

3

3MICT

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ
ВСТУП 6
РОЗДІЛ 1. АНАЛІЗ ВІДОМИХ ПІДХОДІВ ДО РЕАЛІЗАЦІЇ ДОДАВАННЯ
ТОЧОК ЕЛІПТИЧНОЇ КРИВОЇ В РІЗНИХ БАЗИСАХ ТА ПОШУШКУ
ІЗОГЕННИХ КРИВИХ
1.1.Базові поняття7
1.2.Аналіз математичних виразів додавання та подвоєння точок еліптичної
кривої Едвардса
1.3.Ізогенії еліптичних кривих13
РОЗДІЛ 2. РЕАЛІЗАЦІЯ ОПЕРАЦІЙ СКАЛЯРНОГО МНОЖЕННЯ ТОЧОК
КРИВОЇ ЕДВАРДСА ТА ПОШУКУ КОЕФІЦІЄНТІВ РІВНЯННЯ ІЗОГЕННОЇ
КРИВОЇ ЗА АЛГОРИТМОМ ВЕЛЮ17
2.1. Скалярне множення точок еліптичної кривої 17
2.2. Опис MIRACL Cryptographic SDK 19
2.3. Оцінка швидкодії програмної функції скалярного множення точок
еліптичної кривої Едвардса з використанням MIRACL Cryptographic SDK 21
2.4.Програмна реалізація пошуку коефіцієнтів рівняння ізогенної кривої за
алгоритмом Велю
ВИСНОВКИ
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ДОДАТКИ

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

AES	_	Advanced Encryption Standard	
API	_	Application Programming Interface	
DSA	_	Digital Signature Algorithm	
ECC	_	Elliptic Curve Cryptography	
КСМ	_	Karatsuba-Comba-Montgomery	
Ltd.	_	Limited definition	
MIRACL	_	Multiprecision Integer and Rational Arithmetic	
		Cryptographic Library	
MOV	_	Menezes, Okamoto, Vanstone	
RSA	_	Rivest, Shamir i Adleman	
SDK	_	Software Development Kit	
ЕК	_	Еліптична крива	

ВСТУП

Серед різних форм представлення еліптичних кривих особливе місце займають криві у формі Едвардса, що з'явилася в сучасній науковій літературі порівняно нещодавно [1,2], вони є найшвидшими й найперспективнішими для використання в асиметричних криптосистемах на даний момент. Особливістю таких кривих є можливість подання нейтрального елемента в афінних координатах, універсальність закону додавання та рекордна швидкість операції додавання точок еліптичної кривої, що забезпечує незаперечні переваги для використання кривих Едвардса в криптографії.

При застосуванні криптографічних алгоритмів з використанням еліптичних кривих важливим чинником є час їхньої роботи. Найбільш ресурсота часовитратною є операція скалярного множення точок еліптичної кривої на число. Таким чином, актуальними є дослідження способів та методів даного обчислення. Скалярний добуток для точок кривої Едвардса обчислюється мінімальним числом операцій у порівнянні з іншими відомими представленнями еліптичних кривих [2, 4]. Безсумнівно, що криві Едвардса викликають інтерес при проектуванні криптографічних протоколів і майбутніх стандартів асиметричного шифрування.

З появою потужних квантових комп'ютерів сучасні алгоритми шифрування втратять свою актуальність, так як не зможуть забезпечити конфіденційність інформації. Одним зі способів вирішення даної проблеми є використання ізогеніїв. Тому їхнє дослідження є дуже важливими.

6

РОЗДІЛ 1

АНАЛІЗ ВІДОМИХ ПІДХОДІВ ДО РЕАЛІЗАЦІЇ ДОДАВАННЯ ТОЧОК ЕЛІПТИЧНОЇ КРИВОЇ В РІЗНИХ БАЗИСАХ ТА ПОШУШКУ ІЗОГЕННИХ КРИВИХ

У даному розділі проведено огляд базових понять про ЕК. Розглянуто алгоритми додавання та подвоєння точок еліптичних кривих у різних базисах, поняття ізогеніїв та алгоритм їх пошуку.

1.1. Базові поняття

Еліптичні криві є джерелом кінцевих абелевих груп та володіють корисними структурними властивостями. Вони забезпечують ті ж самі показники стійкості, якими володіють числові й поліноміальні криптосистеми, але відповідні показники перших вдалося отримати при істотно меншому розмірі ключа. Тому їх використовують для побудови криптографічних протоколів [1, 2].

Еліптична крива *E* над скінченним полем *F*_p називається крива, що задається рівнянням Вейєрштрасса (1.1)

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
 (1.1) де $\{a_1, a_2, a_3, a_4, a_5, a_6\} \in F_p$.

Якщо $p \neq 2$, то лінійною заміною змінних $y \rightarrow \frac{a_1 x + a_3}{2}$ крива 1.1 переходить у криву виду

$$y^2 = x^3 + a_2 x^2 + a_4 x + a_6 \tag{1.2}$$

Еліптичною кривою *E* над скінченним простим полем F = GF(p), де $p \neq 2,3$, змінну a_2 (з рівняння 1.2) можна прирівняти нулю. Так рівняння ЕК приймає вигляд

$$y^2 = x^3 + ax + b$$
, де $a, b \in F_p$. (1.3)
Якщо $F = GF(2^m)$, то крива E описується рівнянням:

$$2 + xy = x^3 + ax + b$$
, ge $a, b \in F$.

Дані асиметричні криптосистеми, засновані на еліптичних кривих над кінцевими полями. Еліптичні криві можна поділити на сингулярні і не сингулярні відповіно до рівності чи не рівності нулю дискримінанта кривої $A = -16(4a^3 + 27b^2)$. Сингулярні криві містять самоперетин, тому з точки зору алгебри та криптографії вони не відіграють важливу теоретичну роль і не мають практичного застосування. Тому в теорії еліптичних кривих прийнято вважати, що A = 0.

Еліптичні криві у формі Вейєрштрасса

Еліптичною кривою у формі Вейєрштрасса [13] над полем F_p , де $p \neq 2,3$, називають криву, яка в афінних координатах задається рівнянням:

$$y^2 = x^3 + Ax + B, (1.5)$$

де $A, B \in F_p$.

Закон додавання точок

$$\begin{cases} x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2 \\ y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1 \end{cases}$$
(1.6)

Закон подвоєння точки

$$\begin{cases} x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1 \\ y_3 = -\left(\frac{3x_1^2 - a}{2y_1}\right)x_3 + \frac{x_1^3 - ax_1 - 2b}{2y_1} \end{cases}$$
(1.7)

Еліптичні криві в оригінальній формі Едвардса[1]

$$x^{2} + y^{2} = e^{2}(1 + x^{2}y^{2})$$
(1.8)

Закон додавання точок

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + y_1 x_2}{e(1 + x_1 x_2 y_1 y_2)}, \frac{y_1 y_2 - x_1 x_2}{e(1 - x_1 x_2 y_1 y_2)}\right)$$
(1.9)

Закон подвоєння точки

$$2(x_1, y_1) = \left(\frac{2x_1y_1}{e(1+x_1^2y_1^2)}, \frac{y_1^2 - x_1^2}{e(1-x_1^2y_1^2)}\right)$$
(1.10)

Еліптичні криві у формі Едвардса з модифікацією Бернштейна-Ланге [4]

$$x^2 + y^2 = 1 + dx^2 y^2, (1.11)$$

де
$$d(1-de^4) \neq 0$$
, $\left(\frac{d}{p}\right) = -1$.

Закон додавання точок

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 x_2 - y_1 y_2}{1 - dx_1 x_2 y_1 y_2}, \frac{x_1 y_2 + x_2 y_1}{1 + dx_1 x_2 y_1 y_2}\right)$$
(1.12)

Закон подвоєння точки

$$2(x_1, y_1) = \left(\frac{x_1^2 - y_1^2}{1 - dx_1^2 y_1^2}, \frac{2x_1 y_1}{1 + dx_1^2 y_1^2}\right)$$
(1.13)

При обчисленні закон подвоєння точки працює швидше ніж закон додавання.

1.2. Аналіз математичних виразів додавання та подвоєння точок еліптичної кривої Едвардса

При роботі з точками ЕК Едвардса використовують афінні, проективні та інверсні координати. В різних координатних площинах діють свої закони алгебраїчних операцій.

Базиси подання точок еліптичної кривої Едвардса[5]

В афінних координатах точки ЕК виражається двома координатами x та y, де множина значень $x, y \in F_p$, що задовольняють рівняння 1.17.

Щодо проективних координат, то $\{(X,Y,Z) : X,Y,Z \in F_q, (X,Y,Z) \neq (0,0,0)\}$. Так як між проективними та афінними координатами існує зв'язок: x = X/Z, y = Y/Z, то заміною можна привести рівняння кривої Е з афінних координат в проективні:

E:
$$(X^2 + Y^2)Z^2 = Z^4 + dX^2Y^2$$
,
де $X = xZ$, $Y = yZ$.

Введення проективних координат є досить корисним з точки зору криптографії, оскільки воно також дозволяє більш ефективно застосовувати закони додавання та подвоєння точок без використання інверсій у базовому полі, оскільки кожна інверсія є досить складною операцією.

Використання інвертованих проективних координат пришвидшує обчислення, тому обчислення виконуються в них. Якщо ввести формальну заміну координат $x = \frac{z}{x}$, $y = \frac{z}{y}$, тоді рівняння (1.10) матиме вигляд:

$$\frac{Z^2}{X^2} + \frac{Z^2}{Y^2} = 1 + \frac{dZ^4}{X^2 Y^2}$$

Можна переписати у формі проективної кривої з інверсією координат:

$$Z^{2}(X^{2} + Y^{2}) = X^{2}Y^{2} + dZ^{4},$$

 $ge XYZ \neq 0.$

Складність групових операцій для точок повної кривої Едвардса [14]

В роботі [2] вперше було дано аналіз складності виконання групових операцій на кривій у формі Едвардса в проективних координатах і доведена суттєва перевага у порівнянні з аналогічними операціями на кривій у формі Вейєрштрасса. Слідуючи цій роботі, позначено складності виконання операцій в полі $F_q: M$ - множення, S- піднесення до квадрату, I- інверсія, U- множення на параметр кривої. Інверсія елементів [6] є трудомісткою операцією арифметики еліптичних кривих, що оцінюється порядком $I \cong (10 - 50M)$. Щоб позбутися від інверсії, при виконанні криптопротоколів переходять від двовимірних афінних координат до проективних координат [2]. Такий перехід забезпечує значну перевагу в продуктивності обчислень [7].

Визначення та властивості скручених кривих Едвардса

В роботі [9] скручені криві Едвардса (twisted Edwards curves) були визначені як узагальнення кривих Едвардса $x^2 + y^2 = 1 + dx^2y^2$ шляхом введення нового параметра *a* в рівняння

 $ax^2 + y^2 = 1 + dx^2y^2,$ де $a \neq d, a, d \in F_p^*, d \neq 1, p \neq 2.$

Використовуються модифіковані закони додавання і подвоєння точок [3].

$$E_a, d: x^2 + ay^2 = 1 + dx^2y^2,$$

ge $a, d \in F_p^*, d \neq 1, a \neq d, p \neq 2.$

Одиничним класом кривих в узагальненій формі Едвардса є скручена крива Едвардса з обмеженнями на параметри *a* і *d*

$$E_{a,d}: x^2 + ay^2 = (1 + dx^2y^2),$$
(1.15)
 $\exists e \ a, d \in F_p^*, d \neq 1, a \neq d, \left(\frac{a}{p}\right) = \left(\frac{d}{p}\right) = -1.$

Модифіковані закони додавання і подвоєння точок кривої (1.15) мають вигляд:

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 x_2 - a y_1 y_2}{1 - d x_1 x_2 y_1 y_2}, \frac{x_1 y_2 + x_2 y_1}{1 + d x_1 x_2 y_1 y_2}\right)$$
(1.16)

$$2(x_1, y_1) = \left(\frac{x_1^2 - ay_1^2}{(1 - dx_1^2 y_1^2)}, \frac{2x_1 y_1}{(1 + dx_1^2 y_1^2)}\right)$$
(1.17)

Альтернативний закон додавання точок [11]

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_1 + x_2 y_2}{y_1 y_2 + a x_1 x_2}, \frac{x_1 y_1 - x_2 y_2}{x_1 y_2 - x_2 y_1}\right) = (x_3, y_3).$$
(1.18)

Додавання точок (закон додавання (1.16))

Нехай $x = \frac{x}{z}, y = \frac{y}{z}$, тоді рівняння кривої (1.15) в проективних

координатах має вигляд

$$(X^2 + aY^2)Z^2 = Z^4 + dX^2Y^2, X = xZ, Y = yZ.$$

Сума двох точок тепер записується як $(X_1: Y_1: Z_1) + (X_2: Y_2: Z_2) = (X_3: Y_3: Z_3)$. З урахуванням підстановок визначено координати точки згідно (1.16):

$$x_{3} = \frac{X_{3}}{Z_{3}} = \frac{Z_{1}Z_{2}(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(X_{1}X_{2} - aY_{1}Y_{2})}{(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2})},$$

$$y_{3} = \frac{Y_{3}}{Z_{3}} = \frac{Z_{1}Z_{2}(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2})(X_{1}X_{2} - aY_{1}Y_{2})}{(Z_{1}^{2}Z_{2}^{2} + dX_{1}X_{2}Y_{1}Y_{2})(Z_{1}^{2}Z_{2}^{2} - dX_{1}X_{2}Y_{1}Y_{2})}.$$

Позначення:

 $A = Z_1 Z_2$; $B = A^2$; $C = X_1 X_2$; $D = a Y_1 Y_2$; E = dCD; F = B - E; G = B + EТоді

$$Y_3 = A \cdot F \cdot ((X_1 + Y_1) \cdot (X_2 + Y_2) - C - D),$$

$$X_3 = A \cdot G \cdot (D - C),$$

$$Z_3 = F \cdot G.$$

Підрахунок числа елементарних операцій тут дає 10 операцій множення M, одне піднесення до квадрату S і 2 множення на параметри а і d кривої. Отже, знаходимо складність обчислення суми різних точок, виражену через число множень і піднесень до квадрату в полі $V_E = 10M + 1S + 2U$ [9].

Подвоєння точок

Використовуючи рівняння кривої (1.15), закон подвоєння (1.17) можна записати у формі, що не залежить від параметра *d*

$$2(x_1, y_1) = \left(\frac{x_1^2 - ay_1^2}{2 - x_1^2 - ay_1^2}, \frac{2x_1y_1}{x_1^2 + ay_1^2}\right)$$

Тоді координати точки подвоєння згідно (3.3)

$$x_{3} = X_{3}Z_{3} = \left(\frac{\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)}{\left(\left(2 - \left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)\right)} = \frac{(X_{1}^{2} - aY_{1}^{2})(X_{1}^{2} + aY_{1}^{2})}{(2Z_{1}^{2} - X_{1}^{2} - aY_{1}^{2})(X_{1}^{2} + aY_{1}^{2})}$$

$$y_{3} = \frac{Y_{3}}{Z_{3}} = \frac{2\frac{X_{1}}{Z_{1}}\frac{Y_{1}}{Z_{1}}\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)}{\left(2 - \left(\frac{X_{1}}{Z_{1}}\right)^{2} - a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)\left(\left(\frac{X_{1}}{Z_{1}}\right)^{2} + a\left(\frac{Y_{1}}{Z_{1}}\right)^{2}\right)} = \frac{2X_{1}Y_{1}(2Z_{1}^{2} - X_{1}^{2} - aY_{1}^{2})}{(2Z_{1}^{2} - X_{1}^{2} - aY_{1}^{2})(X_{1}^{2} + aY_{1}^{2})}$$

Позначення:

$$\begin{aligned} A &= X_1^2, B = Y_1^2, C = aY_1^2, D = Z_1^2, E = (A + C), F = (A - C), \\ G &= 2D - A - C, H = (X_1 + Y_1)^2 \Rightarrow 2X_1 \cdot Y_1 = H - A - B. \end{aligned}$$

Тоді

$$X_3 = E \cdot F,$$

$$Y_3 = 2X_1Y_1 \cdot G,$$

$$Z_3 = E \cdot G.$$

Підрахунок числа операцій піднесення до квадрату і множення в полі дає сумарну складність групового подвоєння $T_E = 3M + 4S + 1U$ [9].

Складність додавання (альтернативний закон (1.18))

Вводячи розширені проектні координати (X:Y:T:Z), авторам [11] вдалося скоротити число польових операцій при додаванні 2-х різних точок до 9М + 1U в порівнянні зі складністю 10М + 1S + 2U при реалізації додавання за формулою (4.2) [9].

При $Z \neq 0$ задано чотиривимірні проективні координати (X:Y:T:Z), підстановкою в (1.18). Тоді

$$\frac{X_3}{Z_3} = \frac{(T_1Z_2 + Z_1T_2)}{(Y_1Y_2 + aX_1X_2)}, \qquad \frac{Y_3}{Z_3} = \frac{(T_1Z_2 - Z_1T_2)}{(X_1Y_2 - Y_1X_2)}.$$

Звідси

$$\begin{aligned} X_3 &= (X_1Y_2 - Y_1X_2)((T_1Z_2 + Z_1T_2), \\ Y_3 &= (Y_1Y_2 + aX_1X_2)((T_1Z_2 - Z_1T_2), \\ T_3 &= (T_1Z_2 + Z_1T_2)((T_1Z_2 - Z_1T_2), \\ Z_3 &= (Y_1Y_2 + aX_1X_2)((X_1Y_2 - Y_1X_2). \end{aligned}$$

Нехай

$$A = X_1 X_2, B = Y_1 Y_2, C = T_1 Z_2, D = Z_1 T_2, E = C + D, F = C - D,$$

$$G = B + aA, H = (X_1 - Y_1)(X_2 + Y_2) - A + B.$$

Тоді

$$X_3 = EH, Y_3 = GF, T_3 = EF, Z_3 = GH$$

Тому складність групової операції додавання різних точок становить $V_E^* =$ 9М + 1*U*. Якщо параметр а = ±1 або менше, складність оцінюється як 9М. При подвоєнні точки кривої Едвардса в тривимірних проективних координатах складність мінімальна і становить $T_E = 3M + 4S + 1U$ [9]. В роботі [11]

показано, що в розширених проективних координатах складність подвоєння зростає на одну операцію множення $T_E^* = 4M + 4S + 1U$.

Таблиця 1.1

Клас кривих, координати	Складність групової операції	
	Додавання точок	Подвоєння точок
Повні криві Едвардса,	10M + 1S + 1U	3M + 4 <i>U</i>
проективні координати		
Скручені криві Едвардса,	10M + 1S + 2U	3M + 4S + 1U
проективні координати		
Скручені криві Едвардса,	9M + 1 <i>U</i>	4M + 4S + 1U
розширені проективні		
координати		

Складність групових операцій класів кривих в різних координатах

Найменших обчислювальних витрат вимагають операції на повних кривих Едвардса. Особливо вони виграють при подвоєнні, яке обходиться без операції множення на параметр кривої 1*U*.

1.3. Ізогенії еліптичних кривих

Криптографія з використанням ізогеніїв вважається стійкою до атак квантових комп'ютерів. Квантовий комп'ютер, який зможе утримати в зв'язаному стані декілька тисяч кубіт, дозволить знаходити закриті ключі по відкритих ключах у всіх асиметричних криптосистемах, які зараз використовуються. Число кубіт для злому RSA дорівнює подвоєному числу біт в модулі, тобто для розкладання на множники модуля RSA довжиною 2048 біт потрібно 4096 кубіт. Для злому еліптичних кривих необхідні більш скромні потужності «квантового заліза»: для вирішення завдання ECDLP для кривих над простим полем з модулем кривої довжиною n біт потрібно 6n кубіт, тобто для модуля в 256 біт потрібно 1536 кубіт, а для 512 біт – 3072 кубіт [10].

Ізогенія – це раціональне відображення, яке переводить точки однієї кривої E_1 в точки інший кривої E_2 , або в саму себе, наступним чином: якщо на кривій E_1 обрати будь-які дві точки A_1 і B_1 і відобразити їх в точки A_2 і B_2 на кривій E_2 , тоді те ж саме відображення обов'язково переведе їх суму – точку $C_1 = A_1 + B_1$ в точку $C_2 = A_2 + B_2$ – суму їх відображень. Ця властивість називається збереженням операції, а таке відображення є гомоморфізмом. Ізогенію можна

виразити за допомогою раціональної функції: точка (x, y) відображається в точку з координатами $\left(\frac{f_1(x,y)}{f_2(x,y)}, \frac{g_1(x,y)}{g_2(x,y)}\right)$, де f_1, f_2, g_1, g_2 – поліноми. Якщо між двома кривими існує таке відображення, то вони є ізогенними. Окремий випадок ізогенії, ендоморфізм – це ізогенія кривої на саму себе [16].

Теорема Тейта

Дві криві над одним кінцевим полем ізогенні тоді і тільки тоді, коли порядки їх груп рівні.

Приклад 1 (ендоморфізм):

Скалярне множення точки на число: n * P на кривій $y^2 = x^3 + Ax + B$ для n = 2 та P = (x, y):

$$2 * P = \left(\frac{x^4 - 2Ax^2 - 8Bx - A^2}{4(x^3 + Ax + B)}, \frac{(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B - A)y}{8(x^3 + Ax + B)^2}\right)$$

Для довільного n аналогічна, але довша, формула може бути отримана рекуррентно за допомогою поліномів ділення (division polynomials).

Приклад 2 (ізогенія між різними кривими):

Нехай є крива $E_1: y^2 = x^3 + x + 1$ над полем GF(19) і крива $E_2: y^2 = x^3 + 4x + 13$ над тим же полем. Порядки їхніх груп, тобто число точок на кривій, у E_1 і E_2 рівні: $\#E_1 = \#E_2 = 21$.

По теоремі Тейта рівність $#E_1 = #E_2$ означає, що між E_1 та E_2 існує ізогенія. Групи точок кривих не ізоморфні тому, що ј-інваріант $E_1 = 6$, а јінваріант $E_2 = 4$. Ізогенія, яка відображає точки з E_1 на E_2 може бути представлена за допомогою наступного раціонального відображення:

$$\varphi:(x,y) \to \left(\frac{x^3 - 4x^2 - 8x - 8}{x^2 - 4x + 4}, \frac{x^3y - 6x^3y + 5xy - 6y}{x^3 - 6x^2 - 7x - 8}\right)$$

Наприклад, точки A_1 (9, 6) і B_1 (14, 2) кривої E_1 та їх сума – точка C_1 з координатами (5, 6), якщо підставити їх в формулу вище, то буде отримано їх відображення на криву E_2 , відповідні їм точки на $E_2 - A_2, B_2, C_2$. Обрахунок проведено за допомогою програми написаної на мові програмування Руthon (додаток А). Результати проведених обрахунків відображені на рис. 1.3.1.

```
E:\Program-work\CALC_ECC\venv\Scripts\python.exe E:/Program-work/CALC_ECC/main.py
A1(9,6)->A2(14,1)
B1(14,2)->B2(17,4)
C1(5,6)->C2(8,5)
```

Рис. 1.3.1. Результати відображення точок кривої E_1 на криву E_2

 $C_2 = A_2 + B_2$, тобто точка $C_1 = A_1 + B_1$ переходит в точку $C_2 = A_2 + B_2$, звідси: $\varphi(A + B) = \varphi(A) + \varphi(B)$.

Число можливих ізогеніїв для конкретної кривої дорівнює кількості підгруп в групі її точок. Існує детермінований алгоритм який придумав математик Велю (Velu') в 1971 році.

Загальна схема алгоритму Велю:

1. На вхід подається крива $E_1: y^2 = x^3 + Ax + B$ і одна з її підгруп *С* (*isogeny kernel*).

2. На виході отримується крива $E_1: y^2 = x^3 + A'x + B'$, яка ізогенна кривій E_1 та раціональне відображення $\left(\frac{f_1(x,y)}{f_2(x,y)}, \frac{g_1(x,y)}{g_2(x,y)}\right)$.

В результаті отримуються коефіцієнти і для ізогенної кривої і формули з дробом. Підгрупа С – будь-яка з підгруп кривої. С – ядро ізогенія: всі її елементи переходять в точку на нескінченності. Якщо крива E_1 ізогенна до кривої E_2 , то вірно і зворотне: E_2 ізогенна до E_1 . Складність алгоритму: O(#C) кроків, де #C – порядок.

Так як і для мультиплікативних груп кінцевого поля і еліптичних кривих, для ізогеніїв існує своя складна задача, яка підвищує криптостійкість криптографічних алгоритмів заснованих на ізогеніях еліптичних кривих [16].

Складне завдання для ізогеніїв

Дано дві ізогенні криві E_1 і E_2 з різними j-інваріантами, про які відомо, що вони є ізогенними, але не відомо за допомогою якої підгрупи було отримано цю ізогенію. Число підгруп має бути великим настільки, щоб було обчислювально складно знайти ізогенію простим перебором, підставляючи підгрупи в алгоритм Велю.

Висновки. Все більшої популярності набувають криптосистеми побудовані на еліптичних кривих через те, що на основі їх застосування вдалося забезпечити ті ж показники стійкості, якими володіють числові і поліноміальні

криптосистеми, але відповідні показники перших вдалося отримати при істотно меншому розмірі ключа. Так, наприклад 160-бітний ключ криптосистеми побудованої на еліптичних кривих Едвардса забезпечує таку ж крипостійкість як і 1024-бітний ключ RSA.

Володіючи рядом чудових властивостей, криві Едвардса над скінченними полями дуже перспективні для використання в асиметричних криптосистемах. Закон додавання для точок кривої Едвардса має властивості універсальності і повноти [2], що робить їх лідерами в швидкості обчислення групових операцій.

Аналіз показав, що найменших обчислювальних витрат при додаванні точок ЕК вимагають скручені криві Едвардса над розширеними проективними координатами, а при подвоєнні точок ЕК – повні криві Едвардса над проективними координатами.

З появою потужних квантових комп'ютерів сучасні алгоритми шифрування втратять свою актуальність, так як не зможуть забезпечити конфіденційність інформації. Одним зі способів вирішення даної проблеми є використання ізогеніїв. Тому їхнє дослідження є дуже важливими.

РОЗДІЛ 2

РЕАЛІЗАЦІЯ ОПЕРАЦІЙ СКАЛЯРНОГО МНОЖЕННЯ ТОЧОК КРИВОЇ ЕДВАРДСА ТА ПОШУКУ КОЕФІЦІЄНТІВ РІВНЯННЯ ІЗОГЕННОЇ КРИВОЇ ЗА АЛГОРИТМОМ ВЕЛЮ

2.1. Скалярне множення точок еліптичної кривої [18]

Операція скалярного множення являє собою множення цілого числа n на точку P еліптичної кривої, яке можна представити наступним чином: $nP = \underbrace{P + P + \dots + P}_{n \text{ раз}}$. Обчислення nP вимагає n додавань, що є найбільш

ресурсо- та часовитратною операцією, тому актуальними є дослідження способів та методів даного обчислення.

Порівняльний аналіз швидкодії скалярного множення точки для кривих у формі Едвардса і Вейєрштрасса [8]

Всі оцінки складності для додавання та подвоєння точок ЕК Едвардса наведено в таблиці 1.1.

Наведено складності всіх польових операцій до складності множення М. Беручи обчислювальну складність зведення в квадрат 1S = 0.67M [2], а множення на параметр кривої 1U = 0.5M, отримано оцінки складності додавання і Едвардса $V_p = 10M + 1S + 1U = 11,17M$, подвоєння кривій на $T_W = 3M + 4S = 5.67M$. Подвоєння в проективних координатах майже в два швидше додавання. При використанні інвертованих проективних рази координат отримано $V_{EI} = 9M + 1S + 1U = 10,17M$, $T_{EI} = 3M + 4S + 4S$ 1U = 6.17M. Для еліптичної кривої у формі Вейєрштрасса відповідно, $V_W =$ 12M + 2S = 13.33M, $T_W = 7M + 5S = 10.33M$. Нехай v_1 - відносна частота знаків «1» в двійковій послідовності числа k. Тоді в загальній формі перевага в продуктивності обчислення скалярного множення на кривій Едвардса в порівнянні з тим же обчисленням на кривій у формі Вейсрштрасса дорівнює

$$\gamma(v_1) = \frac{T_W + v_1 V_W}{T_E + v_1 V_E} = \frac{10.33 + 13.33 v_1}{5.67 + 11.17 v_1}.$$
(2.1)

Для обчислень в інвертованих проективних координатах отримано

$$\gamma(\nu_1) = \frac{T_W + \nu_1 V_W}{T_{EI} + \nu_1 V_{EI}} = \frac{10.33 + 13.33\nu_1}{6.17 + 10.17\nu_1}.$$
(2.2)

Використання повних кривих Едвардса дозволяє в 1.5 – 1.6 рази прискорити виконання криптопротоколів в порівнянні з іншими формами кривих [6].

Продуктивність скалярного множення точки в розширених проективних координатах [12]

Скручена крива Едвардса E в розширених проективних координатах має відповідні показники складності $V_E^* = 9M + 1U$, $T_E^* = 4M + 4S + 1U$, звідси $V_E^* = 9.5M$, $T_E^* = 7.17M$.

$$\gamma(v) = \frac{10.33 + v13.33}{7.17 + v9.5}.$$

Продуктивність скалярного множення точки в проективних координатах

Показники складності в проективних координатах: $V_E = 11.67M$, $T_E = 6.17M$. Звідси:

$$\gamma(v) = \frac{10.33 + v13.33}{6.17 + v11.67}.$$

Для порівняння виграшу продуктивності скалярного множення точок кривих Едвардса в порівнянні з кривими в канонічній формі Вейєрштрасса результати розрахунків коефіцієнтів $\gamma(v)$ занесено в таблицю 2.1.

Таблиця 2.1

Клас кривих, координати	Виграш ү(v)	
	(v = 0.5)-подвійне k	(v = 0.33)-потрійне k
Повні криві Едвардса,	1.51	1.574
проективні координати		
Скручені криві Едвардса,	1.416	1.47
проективні координати		
Скручені криві Едвардса,	1.426	1.429
розширені проективні		
координати		

Результати розрахунків коефіцієнтів $\gamma(v)$

Отже, використання закону додавання в розширених проективних координат дає дуже незначний приріст продуктивності обчислень на кривій

Едвардса в порівнянні з повним універсальним законом додавання (2.2). При потрійному скалярному множенні точки скрученої кривої Едвардса класичний закон додавання (2.2) в проективних координатах дає невеликий виграш в порівнянні з альтернативним законом додавання в розширених координатах. Найкращі результати у швидкодії скалярного множення, забезпечують повні криві Едвардса, що не мають надмірного параметра *a*. Слід підкреслити, що в порівнянні з канонічними кривими обидві арифметичні дії дають приріст швидкості скалярного множення приблизно в 1.5 рази.

2.2. Опис MIRACL Cryptographic SDK [15]

MIRACL Crypto SDK – високоточна цілочисельна та раціональна арифметична криптографічна бібліотека програмного забезпечення написана на мовах програмування C та C++, яка широко розглядається розробниками як золотий стандарт SDK з відкритим кодом для криптографії еліптичної кривої (ECC).

Можливості MIRACL:

- Скорочення коду програми;

- Значне спрощення розробки програми;

- Продуманий API;

- Швидка реалізація, використання вбудованого коду, прикладів програм та інших нововведень.

Ці унікальні якості MIRACL використання програмних рішень побудованих на ній в сотнях організацій по всьому світу, включаючи ВАЕ Systems, Hitachi, Intel, Panasonic, Toyota та багато інших.

Особливості та переваги MIRACL

MIRACL [15] надає широкий та унікальний спектр переваг, що дозволяє розробникам безпечно та легко забезпечити швидку роботу програми в різних середовищах. В порівнянні з іншими подібними SDK він має:

- Вбудована С ++ обгортка системного виклику, що значно спрощує розробку програми;

19

- Більше 25-ти прикладних програм на C і C ++, що охоплюють широкий спектр застосувань, дають можливість почати розробку на їхній базі;

- Оптимізація вбудованих процесорів і оперативної пам'яті, щоб допомогти розробникам подолати обмеження пристрою та пам'яті;

- Сумісність з технологіями безпеки, включаючи шифрування AES, криптографія відкритого ключа RSA, обмін ключами Diffie-Hellman, цифровий підпис DSA та інші;

- Набір інструментів, які дозволяють швидко реалізувати будь-яку нову теоретико-числову функцію.

Бібліотека MIRACL складається з понад 100 процедур, які охоплюють усі аспекти високоточної арифметики. Визначено два нових типи даних - big для великих цілих чисел та flash для великих раціональних чисел. Великі цілі підпрограми засновані на алгоритмах Кнута, описаних у 4 розділі його класичної праці «Мистецтво комп'ютерного програмування». Арифметика з плаваючою косою рисою, яка працює з округлими дробами, спочатку була запропонована Д. Матулою та П. Корнеруп. Усі програми були ретельно оптимізовані для швидкості та ефективності, в той же час залишаючись стандартними, портативними *С*. Однак додаткові альтернативи швидкомовної мови монтажу для певних критичних для часу процедур також включені, особливо для популярних моделей процесорів Intel 80х86. Також надається інтерфейс C++ з включеним вихідним кодом.

Прослідковування помилок

MIRACL Ltd. використовує JIRA для взаємодії з користувачами та відстеження помилок. Якщо користувачем було знайдено помилку, то він повинен повідомити про помилки в трекері помилок MIRACL. Якщо користувач знайшов помилку, про яку вже повідомлялося, він можете додати власний коментар про неї або змінити її статус на "Підтверджено".

Співтовариство MIRACL Ltd.

MIRACL Ltd. - це найбільше співтовариство однодумців, що займаються інформаційною безпекою, які вважають, що криптографічний захист є

20

необхідним інструментом для захисту конфіденційності. ТОВ MIRACL надає інструменти, які можна використовувати для захисту інформації та захисту конфіденційності. Кожен, хто використовує код або послуги MIRACL Ltd., є частиною цієї глобальної спільноти.

2.3. Оцінка швидкодії програмної функції скалярного множення точок еліптичної кривої Едвардса з використанням MIRACL Cryptographic SDK

В роботі використовувались нові параметри скручених кривих Едвардса в нормальній формі [1], а також в інверсних координатах точок кривої Едвардса [4]. Варіанти кривих, які були згенеровані під час досліджень наведено в додатку В. Для визначених кривих було перевірено виконання вимог щодо стійкості до відомих методів криптоаналізу, а саме MOV-умова [6, 11], стійкість до атак ρ -Поларда і λ -Поларда та вимог до коефіцієнтів кривої Едвардса. В роботі використовувались скручені еліптичні криві у формі Едвардса над скінченним полем F_p , для простого числа $p \equiv 5mod$ 8 та з порядком групи точок еліптичної кривої $N_E = 4/n$, тобто з мінімальним кофактором 4 та простим числом n.

Під час розробки алгоритму програмного додатку було визначено ряд необхідних програмних функцій криптографічної бібліотеки MIRACL (табл. 2.2). Використання даних функцій значно пришвидшує реалізацію та час роботи програми. Докладний опис цих функцій відображено в додатку Б.

Таблиця 2.2

Функція	Виконувана дія
bigbits	Генерує big число заданої бітової довжини.
cinnum	Зчитує big/flash значення з файлу та присвоює
	його змінній.
cotnum	Вивід big/flash числа на екран або у файл.
divide	Ділить одне big число на інше.
ecurve_mult	Множить точку на еліптичній кривій $GP(p)$ на
	ціле число.
epoint_free	Звільняє пам'ять від точки ЕК.
epoint_get	Повертає значення координат точки ЕК.
epoint_init	Виділяє пам'ять точці на еліптичній кривій та
	ініціалізує її як точку на нескінченності.
epoint_set	Задає координати точці еліптичної кривої.
mirkill	Знищує big/flash – число прирівнюючи його до
	нуля та звільняє пам'ять від нього.
multi_inverse	Знаходить модульну інверсію багатьох чисел
	одночасно.

Рекомендовані функції MIRACL для роботи з ЕК

Програма надає можливість зчитувати з файлу координати як в нормальній формі так і в інвертованій (рис.2.1).

```
Read from file parameters in normal form - 1
Read from file parameters in inverted form - 2
Enter your choise:
```

Рис.2.1. Меню вибору форми зчитуваних з файлу координат

Точка ЕК множиться на задану кількість скалярів, що дає змогу встановлювати необхідну кількість виконання скалярного множення (рис.2.2).

Enter how many times do calculations:

Рис.2.2. Меню вводу кількості виконуваних операцій скалярного множення

Скаляром при множенні виступає випадково згенероване за допомогою функції bigbits big-число, бітовий розмір якого дорівнює бітовому розміру характеристики поля.

Швидкість роботи програмної функції скалярного множення знаходиться для кожного випадку окремо, після чого обраховується їхнє середнє арифметичне значення. Це робить оцінку швидкості роботи програми більш точною. Результати скалярного множення точки ЕК на ці скаляри відображено на рис.2.3.

Quitant data		
output data:		
Scalar multir	lication 0=k1*P	
k1 -> BD1254C45461	7C8FD1C098078900011	137F4615B16484201C3066A87BD261CB62673C03DD3564C91195F2076AC358FBAE
O(x, y)		
X: 2F3C6F1948EBA2D	0598F61EBBC2A27B5B46	2687A36A8F79A59B6153CAD15EB5D9D15F121653E8022394FD3405106D0C4B9
Y: 170237DC41F44AA	DCC6FF85B6F1536005D	D5FAC801E46B6FC62E8FA18F5A2032A4D5F96722BC34C6AE6A3E121A965C52B
	Timer	: 0.018
Scalar multip	lication Q=k2*P	
k2 -> 367E79341D96 O(x, y)	067CA3B8E014279691F4	4BB5CC05CF353358156A9A9F455BD727465428BC6C9D713AF6F261D231D2678CCD
X: 75B3C96E69E9D20	6320375BAEC1CE6D5A1	1F709860F4F3436188CFF0FF04D4CC33C8DF3DF54F81078F404F824F08F0F63
Y: DFBEA06BC9AD299	00A8EDCA807800BACC46	6436E3D755C5E446639AC4C2E41B5EAFF16DF934CD4E6CC980BAB81827A5957
	Timer	: 0.02
Scalar multip	lication Q=k3*P	
k3 -> 3596B73F2F27	C5D11EE4AEE6AEAB3A6	6C9E94EB86AB285EC464FD2AC87C95FCEB92217699C96027C817574D563BAC18CE
Q(x, y)		
X: 3BAB4DF5C91328F	AAE12502BCC2B67158A	ABA3438F6CC0683E56CAE394221DFEE80EBCDD81FCAA00F0BCA86E47C897DA2
Y: 9A821EADA040F28	39EBDC5DD44824C03202	21B14C8CEC7BC69AA3E86DØA1287DC77BEBE2568398467F4765D765649A2223
	Timer	
Scalar multip	lication Q=k4*P	
k4 -> 2CCF717F1834	24184192EC0177357FE	3A8189BE35D52F0B9A87C4160D95BD98B4700636954C08DAC448CE3DC6B3C58355
Q(x, y)		
X: C140A42C7A703FA	406933C98E5D0AE05098	\$DA72943695A8D30C27661C630E8CB795D1BCC2D52ED269DBD522D7697CDCE1
Y: DBD2234F63C5F3	SF30BF7B8DB923FAF1AE	81E9F828CE40E08/42FFA4A56CB4E613CF58/346B62983394AC0D6D3A8E4/B
	_limer	
	listing o lest	
Scalar Mullip		
K5 -> 58131958F055	34ADD51C359F6989E1B6	228F5FCFC3A3CF0C135A70978719B2D9848141750DD1AB38E2812B9FB9A291FEA
Q(X, Y)	8035570538546600776	
X: E78A922C90ED0BE		
1. 079849010303323	Timer	• 0 018
		0.010
Average time: 0.01	98	
cime: 0:01		

Рис.2.3. Результат роботи програми

Скалярне множення реалізовано в інвертованих координатах ЕК Едвардса з бітовими величинами характеристики поля 256, 384 та 512 біт. За результатами оцінки швидкодії побудовано діаграму часу виконання програмної функції скалярного множення. Результати цих обрахунків відображено в додатку Г.

3 діаграми 2.1 можна зробити висновок, що $t_{cep} \approx 0,004$ (*c*).

3 діаграми 2.2 можна зробити висновок, що $t_{cep} \approx 0,011$ (*c*).

3 діаграми 2.3 можна зробити висновок, що $t_{\rm cep} \approx 0,047~(c)$.

2.4. Програмна реалізація пошуку коефіцієнтів рівняння ізогенної кривої за алгоритмом Велю

На вхід алгоритму Велю подається крива $E_1: x^3 + Ax + B$ та одна з її підгруп C (ядро ізогенії).

Епатпи алгоритма Велю:

- 1. Відкидання точки на нескінченності.
- 2. Пошук C_2 безліч точок парного порядку з C. R всі інші.
- 3. Розбиття R на дві частини $-R_+$ та R_- , якщо точка P в R_+ , то обернена

їй в *R*_.

4. Множина $S = C_2 \cup R_+$.

Для кожної точки $Q = (x_Q, y_Q)$ з S:

- 1) $g_Q^x = 3x_Q^2 + A$
- $2) \qquad g_Q^{\tilde{y}} = -2y_Q$
- 3) $if(Q = -Q)\{v_Q = g_Q^x\}else\{v_Q = 2g_Q^x\}$

4)
$$u_q = \left(g_Q^{\gamma}\right)^2$$

5)
$$v = \sum_{Q \in S} (v_Q)$$

 $w = \sum_{Q \in S} (u_Q + x_Q y_Q)$ 6) Коефіцієнти А' і В'для рівняння кривої Е':

$$A' = A - 5v$$

 $B' = B - 7w$
Обрахунок відображення $(x, y) \rightarrow (\alpha, \beta)$:

$$\alpha = x + \sum_{Q \in S} \left(\frac{v_Q}{(x - x_Q)} + \frac{u_Q}{(x - x_Q)^2} \right)$$

$$\beta = y - \sum_{Q \in S} \left(u_Q \frac{2y}{(x - x_Q)^3} + v_Q \frac{y - y_Q}{(x - x_Q)^2} - \frac{g_Q^x g_Q^y}{(x - x_Q)^2} \right)$$

Вихідні дані алгоритму Велю:

- Коефіцієнти А' і В'ізогенної кривої;
- Формула для відображення точок $(x, y) \rightarrow (\alpha, \beta)$.

Даний алгоритм для пошуку коефіцієнтів ізогенної кривої реалізовано програмно на мові C++ з використанням MIRACL Cryptographic SDK.

Приклад розрахунку ізогенії описаної в розділі 1.3:

Вхідні дані алгоритму Велю:

 $y^2 = x^3 + x + 1$ над полем *GF*(19) і підгрупа *C*: {0, (2,7), (2,12)}.

1. Відкидання точки на нескінченності.

2. Точок парного порядку в С немає.

3. Обрання для R₊ точки (2,7). Точка (2,12) – обернена їй. Так як 7 = -12mod19.

4. Множина $S = \{(2,7)\}.$

Наступний пункт це виконання циклу з одним повторенням, так як множина *S* містить одну точку:

$$Q = (2,7)$$
, її координати $x_Q = 2$, $y_Q = 7$
 $g_Q^x = 3 * 2^2 + 1 = 13$
 $g_Q^y = -2 * 7 = -14 \mod 19 = 5$
 $v_Q = 2 * 13 = 26 \mod 19 = 7$
 $u_Q = 5^2 \mod 19 = 6$
 $v = 7$
 $w = 6 + 2 * 7 = 20 \mod 19 = 1$
 $A' = A - 5v = 1 - 5 * 7 = -34 \mod 19 = 4$
 $B' = B - 7w = 1 - 7 * 1 = -6 \mod 19 = 13$

Результат роботи програми для обрахунку коефіцієнтів ізогенної кривої зображено на рис. 2.4.1. Вхідна параметри можна змінити в файлі "*parameters.ecs*".

A->1 buffinnes = minvar(0); B->1 min = 108ASE = 10; x->2 foden_s(&f, four undlersters), frt"); printf(Incoming data(\n'); Calculation results: (A, f); printf(A->*); cotrum(A, stdbut); Gq^x -> 13 Clinum(B, f); printf(A->*); cotrum(B, stdbut); Gq^y -> 5 Clinum(P, f); printf(A->*); cotrum(B, stdbut); Clinum(P, f); printf(A->*); cotrum(N, stdbut); Vq -> 7 Clinum(Y, f); printf(A->*); cotrum(Y, stdbut); Vq -> 7 fillost(f); W -> 1 prepare monty(a); (All operation Di mes form daing by bod[s)	Incoming data:			
<pre>B->1 m->19 x->2 y->7 fopen_s(&f, 'perumeterstees', 'rt'); printf('Incoming data(a'); Calculation Gq^x -> 13 Gq^y -> 5 Vq -> 7 Uq -> 6 v -> 7 W -> 1 Teceptic curve coefficients; </pre>	A->1			
<pre>m->19 x->2 y->7 fupth_s(bf, 'purumeterstecs', 'rt"); printf('incoming data(\n"); Calculation Gq^x -> 13 Gq^y -> 5 Vq -> 7 Uq -> 6 v -> 7 W -> 1 fupth_s(bf, 'purumeterstecs', 'rt"); printf('incoming data(\n"); Calculation (x, f); printf('incoming data(\n"); Cancum(x, f); print</pre>	B->1			
<pre>x->2 y->7 foptm_s(&f, "portmetterstect", "rt"); printf("Incoming data:\o"); Calculation Gq^x -> 13 Gq^y -> 5 Vq -> 7 Uq -> 6 v -> 7 W -> 1 Foptme_monty(m);//all optration_is_steps (close by selfs) Foptme_monty(m);/all optme_monty(m);/all optma_monty(m);/all optma_monty(m);/all optma_monty(m);/all optma_monty(m);/all optma_monty(m);/all optma_monty(m);/all optma_monty(m);</pre>	m->19			
<pre>y->7 printf("Incoming data(of)) Calculation results: (A, f); printf("A-s"); cothum(A, stdout); Gq^x -> 13 Gq^y -> 5 Cinnum(a, f); printf("A-s"); cothum(a, stdout); Cinnum(a, f); printf("a-s"); cothum(a, stdout); Cinnum(a, f); printf("a-s"); cothum(y, stdout); Cinnum(y, f); printf("y-s"); cothum(y, stdout); Uq -> 6 v -> 7 prepare monty(e); //sll operation is ness (or a data by scdie) Trooponic surve coefficients;</pre>	x->2			
Calculation results: (A, f); printf("A-3"); cotrum(A, ktdout); Gq^x -> 13 Gq^y -> 5 Vq -> 7 Uq -> 6 v -> 7 W -> 1 Drepare_Monty(e); /oll optication is need formulate by solie) Traggorie surve coefficients:	y->7			
Gq^x -> 13 clinium(8, f); prlittf("8->"); cotrium(8, stdbut); Gq^y -> 5 clinium(e, f); prlittf("e->"); cotrium(e, stdbut); Vq -> 7 clinium(x, f); prlittf("y->"); cotrium(y, stdbut); Uq -> 6 clinium(y, f); prlittf("y->"); cotrium(y, stdbut); v -> 7 fill055(fi); w -> 1 prepare_monty(e);//sll operation is area form during by scdim)	Calculation re	sults:=(A, f); printf("A->");		
Gq^y -> 5 clinium(m, f); prlittf("m->"); cotrum(m, stdout); Vq -> 7 clinium(x, f); prlittf("m->"); cotrum(x, stdout); Uq -> 6 clinium(y, f); prlittf("y->"); cotrum(y, stdout); v -> 7 fclose(f); w -> 1 prepare_monty(m);//all opditation is nees form during by scdim)	Ga^x -> 13			
<pre>Vq -> 7 clinium(x, f); prlntf("x->"); cothum(x, itdout); Uq -> 6 clinium(y, f); prlntf("y->"); cothum(y, itdout); v -> 7 fclose(f); w -> 1 prepare monty(s);//sll operation is area (crisiing by scdim)</pre>	Ga^v -> 5			
Uq -> 6 v -> 7 w -> 1 Troppone_monty(n);//All opdiation is uses form during by moden) Troppone_monty(n);//All opdiation is uses form during by moden)	Vg -> 7			
<pre>v -> 7 fclose(f): W -> 1 /prepare_Monty(a);//all operation in area (can during by bod(e) Transmis_curve_coefficients:</pre>	Uq -> 6			
<pre>w -> 1</pre>	v -> 7			
E prepare monty (a) ; // all queration in ones form during by adding. Transmis survey coefficients:	w -> 1			
Tragonic curve coefficients:				
A' -> 4	Isogenic curve A' -> 4	coefficients:		

Рис. 2.4.1. Результати обрахунків коефіцієнтів ізогенної кривої Обрахунок відображення $(x, y) \rightarrow (\alpha, \beta)$:

$$\alpha = x + \frac{7}{x-2} + \frac{6}{(x-2)^2} = \frac{x^3 - 4x^2 - 8x - 8}{x^2 - 4x + 4}$$
$$\beta = \frac{x^3y - 6x^2y + 5xy - 6y}{x^3 - 6x^2 - 7x - 8}$$

Дані коефіцієнти було знайдено для всіх кривих описаних в додатку В. Пошук коефіцієнтів ізогенної кривої реалізовано в інвертованих координатах ЕК Едвардса з бітовими величинами характеристики поля 256, 384 та 512 біт. За результатами оцінки швидкодії побудовано діаграму часу виконання програмного пошуку коефіцієнтів ізогенної кривої за алгоритмом Велю (рис.2.4.2). Результати цих обрахунків відображено в додатку Д.

Рис. 2.4.2. Результати обрахунків коефіцієнтів ізогенної кривої з характеристикою поля *p* = 256 біт.

Діаграма 2.4.1. Час виконання програмної функції пошуку коефіцієнтів ізогенної кривої з бітовою величию характеристики поля 256 біт

3 діаграми 2.4.1 можна зробити висновок, що $t_{\rm cep} \approx 0,014~(c)$.

3 діаграми 2.4.2 можна зробити висновок, що $t_{\rm cep} \approx 0,024~(c).$

3 діаграми 2.4.3 можна зробити висновок, що $t_{cep} \approx 0,031$ (*c*).

Висновки. В даному розділі було розглянуто операцію скалярного множення точок ЕК Вейєрштрасса та Едвардса та проведено їхній порівняльний аналіз. Було описано MIRACL Cryptographic SDK. Визначено необхідні для обрахунку скалярного множення функції криптографічної бібліотеки MIRACL. Проведено оцінку швидкодії програмної функції скалярного множення для точок ЕК та функції пошуку коефіцієнтів ізогенної кривої з характеристиками поля 256, 384 та 512 біт. Перспективою подальших досліджень є операції на ізогенних кривих, які забезпечують стійкість операцій на еліптичних кривих до квантового криптоаналіза Шора.

ВИСНОВКИ

Під час виконання роботи було досліджено форми та властивості деяких форм представлення еліптичних кривих. Проведено аналіз відомих базисів подання точок ЕК Едвардса. Розглянуто основні арифметичні дії на еліптичних кривих над скінченними полями. Порівняльний аналіз групових операцій показав, що найменших обчислювальних витрат при додаванні точок ЕК вимагають скручені криві Едвардса над розширеними проективними координатами, а при подвоєнні точок ЕК – повні криві Едвардса над проективними координатами.

У другому розділі було розкрито важливість швидкості виконання скалярного множення точок ЕК та проведено порівняння цієї операції на ЕК Едвардса та Вейєрштрасса, який показав, що криві Едвардса є лідером в швидкості обчислення. Описано золотий стандарт SDK з відкритим кодом для криптографії еліптичної кривої. Визначено необхідні для обрахунку скалярного множення функції криптографічної бібліотеки MIRACL. Проведено оцінку швидкодії програмної функції скалярного множення для точок ЕК з характеристиками поля 256, 384 та 512 біт. Розкрито питання ізогенії та необхідність дослідження в даному напрямку.

Результатом роботи є нові оцінки швидкодії операцій скалярного множення точок еліптичних кривих в формі Вейєрштрасса, нові параметри часткового випадку еліптичних кривих, а саме скручених кривих Едвардса в інвертованих координатах, що надають можливість отримати максимальну швидкодію операцій над точками еліптичної кривої, які дозволені міжнародними стандартами для криптографічного застосування, а також програмна реалізація пошуку коефіцієнтів ізогенних кривих за алгоритмом Велю. Також вперше вдосконалено бібліотеку програмних функцій MIRACL, яка дозволяє реалізовувати операції над точками кривих над полем з довжиною характеристики 384 біт. Результати досліджень були враховані розробниками ДСТУ 9041:2020 [17].

30

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Edwards H.M. A normal form for elliptic curves. Bulletin of the American Mathematical Society, Volume 44, Number 3, July 2007, PP. 393-422.

Bernstein D.J. Faster addition and doubling on elliptic curves. — 3 edition.
 — 2007. — P. 29–50.

3. Bernstein D.J., Lange T. Faster Addition and Doubling on Elliptic Curves // Advancesin Cryptology—ASIACRYPT'2007 (Proc. 13th Int. Conf. On the Theory and Applicationof Cryptology and Information Security. Kuching, Malaysia. December 2–6, 2007). Lect. Notes Comp. Sci. V. 4833. Berlin: Springer, 2007. PP. 29–50.

4. Bernstein D.J., Lange T. Inverted Edwards coordinates. National Science Foundation under grant ITR–0716498, 2007, 331 – 8 and in part by the European Commission through the IST Programme under Contract IST–2002–507932 ECRYPT.

5. C. Washington. Elliptic Curves. Number Theory and Cryptography. Second Edition. CRC Press, 2008.

6. Koblitz N., Menezes A.J., A Riddle Wrapped in an Enigma. Technical Reports CACR-2015-14. Available: www.cacr.math.uwaterloo.ca.

7. Бессалов А.В., Телиженко А.Б. Криптосистемы на эллиптических кривых: Учеб. пособие. – К.: IBЦ «Політехніка», 2004. – 224с.

8. Бессалов А.В. Число изоморфизмов и пар кручения кривых Эдвардса над простым полем. Радиотехника, вып. 167, 2011. С. 203-208.

9. Bernstein Daniel J., Birkner Peter, Joye Marc, Lange Tanja, Peters Christiane. Twisted Edwards Curves. //IST Programme under Contract IST–2002–507932 ECRYPT, and in part by the National Science Foundation under grant ITR–0716498, 2008, PP. 1-17.

10. Горбенко І.Д., Горбенко Ю.І. Прикладна криптологія. Теорія, практика, застосування: монографія. – Харків: Видавництво «Форт», 2012. – 870с.

31

Hisil Huseyin, Koon-Ho Wong Kenneth, Carter Gary, Dawson Ed. Twisted
 Edwards Curves Revisited // ASIACRYPT. – 5350. – New York: Springer, 2008. –
 PP. 326-343.

12. Miller V.S. Use of Elliptic Curves in Cryptography. Advances in Cryptology – Proceedings of CRYPTO"85, Springer Verlag Lecture in Computer Science 218, 1986. – PP. 417-726.

13. W. P. Reinhardt and P. L. Walker, Weierstrass Ellipticand Modular Functions, in NIST Handbook of Mathemat-ical Functions (Cambridge University Press, Cambridge, 2010), Chap. 23.

14. Silverman J.H. The arifmetic of Elliptic Curve / J.H. Silverman. – GTM 106, Springer – Verlag, New York, 1986. – 868 p

15. MIRACL [Електронний ресурс]: https://github.com/miracl/MIRACL.

16. Craig Costello, "Supersingular isogeny key exchange for beginners".

17. ДСТУ 9041:2020 Інформаційні технології. Криптографічний захист інформації. Алгоритм шифрування коротких повідомлень, що грунтується на скручених еліптичних кривих Едвардса.

18. Прийма О.О., Чевардін В.Є., Пономарьов О.А. «Оцінка швидкодії програмних функцій скалярного множення з використанням MIRACL CRYPTOGRAPHIC SDK».

ДОДАТКИ

Додаток А

1. Програмний код обчислення перетворення точок за теоремою Тейта на мові програмування Python.

```
def invert num(num, mod):
    i = 1
    while True:
        if (num * i) % mod == 1:
            return i
        else:
            i = i + 1
def calc izo coordinate(x, y, mod):
    # X
    numerator1 = (pow(x, 3, mod) - 4 * pow(x, 2) - 8 * x - 8) % mod
    denominator1 = (pow(x, 2) - 4 * x + 4) \% \mod 100
    x iz = (numerator1 * invert num(denominator1, mod)) % mod
    # Y
    numerator2 = (pow(x, 3) * y - 6 * pow(x, 2) * y + 5 * x * y - 6 * y)
% mod
    denominator2 = (pow(x, 3) - 6 * pow(x, 2) - 7 * x - 8) % mod
    y iz = (numerator2 * invert num(denominator2, mod)) % mod
    return x iz, y iz
# test
print("A1(9,6)->A2"+str(calc izo coordinate(9, 6, 19)).replace(" ", ""))
print("B1(14,2)->B2"+str(calc izo coordinate(14, 2, 19)).replace(" ",
""))
print("C1(5,6)->C2"+str(calc izo coordinate(5, 6, 19)).replace(" ", ""))
```

2. Програмний код оцінки швидкодії програмної функції скалярного множення на мові програмування С++.

```
#include "stdio.h"
#include "iostream"
#include <ctime>
#include <windows.h>
using namespace std;
extern "C" {
#include "miracl.h"
#include "mirdef.h"
}
void funckInvers(big& x_inv, big& y_inv, big& n, big x, big y)
{
    big xtemp, ytemp;
    xtemp = mirvar(0);
    ytemp = mirvar(0);
    if (multi_inverse(1, &y, n, &xtemp))
    {
```

```
divide(xtemp, n, n);
        if (epoint_x(xtemp) == FALSE) { printf("It`s not curve point \n");}
    }
    if (multi_inverse(1, &x, n, &ytemp)) { divide(ytemp, n, n); }
    x inv = xtemp;
   y_inv = ytemp;
}
int main(void)
{
    FILE *f;
    int bit, choose, q;
    double t = 0, duration;
    clock t startEnc;
    big p, n, a, b, x, y, Qx, Qy, k;
    epoint *Q, *P;
    miracl *mip = mirsys(500, 10);
    p = mirvar(0);
    n = mirvar(0);
    a = mirvar(0);
    b = mirvar(0);
    x = mirvar(0);
    y = mirvar(0);
    Qx = mirvar(0);
    Qy = mirvar(0);
    k = mirvar(0);
    P = epoint init();
    Q = epoint_init();
    f = fopen("ProgDate384_1.ecs", "rt");
    fscanf(f, "%i\n", &bit);
    printf("Read from file parameters in normal form - 1\nRead from file
parameters in inverted form - 2\nEnter your choose: ");
    cin >> choose;
    system("CLS");
    printf("Enter how many times do calculations: ");
    cin >> q;
    system("CLS");
    mip->IOBASE = 16;
    cinnum(p, f);
    cinnum(a, f);
    cinnum(b, f);
    cinnum(n, f);
    cinnum(x, f);
    cinnum(y, f);
    fclose(f);
    printf("Input data:\n");
    printf("p -> ");
    cotnum(p, stdout);
    printf("A -> ");
    cotnum(a, stdout);
    printf("B -> ");
                                        33
```

```
cotnum(b, stdout);
   printf("n -> ");
   cotnum(n, stdout);
   printf("X -> ");
   cotnum(x, stdout);
   printf("Y -> ");
   cotnum(y, stdout);
   ecurve_init(a, b, p, MR_AFFINE);
   if(choose==1){funckInvers(x, y, p, x, y);}
   epoint_set(x, y, 0, P);
   if (choose == 1) {
      epoint_get(P, x, y);
      printf("P_inv(x, y)\n");
      printf("X -> "); cotnum(x, stdout);
      printf("Y -> "); cotnum(y, stdout);
   }
   mirkill(p);
   mirkill(a);
   mirkill(b);
   mirkill(n);
   mirkill(x);
   mirkill(y);
   printf("\nOutput data:\n");
   for (int i = 0; i < q; i++) {</pre>
      if(i>=1){
          epoint_free(Q);
          Q = epoint_init();
      }
      bigbits(bit, k);
      startEnc = clock();
      ecurve_mult(k, P, Q);
      duration = (clock() - startEnc) / (double)CLOCKS_PER_SEC;
      t += duration;
      printf("\n----Scalar multiplication Q=k%i*P-----\n", i + 1);
      printf("k%i -> ", i + 1);
      cotnum(k, stdout);
      epoint_get(Q, Qx, Qy);
      printf("Q(x, y) \nX: ");
      cotnum(Qx, stdout);
      printf("Y: ");
      cotnum(Qy, stdout);
      cout << "_____Timer _____: " << duration <<</pre>
'\n':
   }
   cout << "-----\nAverage time:</pre>
" << t/q << "\n------":
   epoint_free(P);
   epoint_free(Q);
   mirkill(Qx);
   mirkill(Qy);
   mirkill(k);
   return 0;
```

}

3. Програмний код обчислення коефіцієнтів ізогенної кривої за теоремою Велю на мові програмування С++.

```
#include "stdio.h"
#include "iostream"
#include <ctime>
#include <windows.h>
using namespace std;
extern "C" {
#include "miracl.h"
#include "mirdef.h"
}
big inverse_nres(big x)
{
   big buff, buff_nres;
    buff = mirvar(0);
    buff_nres = mirvar(0);
    nres(x, buff_nres);
    redc(buff_nres, buff);
    return buff;
}
int main()
{
    FILE *f;
    double duration;
    clock_t startEnc;
    miracl *mip = mirsys(500, 10);
    big A, B, A_i, B_i, x, y, m, Vq, Uq, Gx, Gy, buff, pow2, buff_nres, v, w;
    A = mirvar(0);
    B = mirvar(0);
   A_i = mirvar(0);
    B_i = mirvar(0);
   x = mirvar(0);
    y = mirvar(0);
    pow2 = mirvar(2);
    m = mirvar(0);
   Vq = mirvar(0);
   Uq = mirvar(0);
   Gx = mirvar(0);
   Gy = mirvar(0);
   v = mirvar(0);
   w = mirvar(0);
    buff = mirvar(0);
    buff_nres = mirvar(0);
    mip->IOBASE = 16;
    fopen_s(&f, "param\\parameters_512_5.ecs", "rt");
    printf("Incoming data:\n");
    cinnum(A, f); printf("A-> "); cotnum(A, stdout);
   cinnum(B, f); printf("B-> "); cotnum(B, stdout);
    cinnum(m, f); printf("m-> "); cotnum(m, stdout);
    cinnum(x, f); printf("x-> "); cotnum(x, stdout);
    cinnum(y, f); printf("y-> "); cotnum(y, stdout);
```

```
fclose(f);
```

```
prepare_monty(m);//all operation in nres form doing by mod(m)
```

```
printf("\nCalculation results:\n");
```

```
//Gq^x=3x^2+A
powmod(x, pow2, m, buff);
premult(buff, 3, buff);
add(buff, A, buff);
Gx=inverse_nres(buff);
printf("Gq^x -> "); cotnum(Gx, stdout);
//Gq^y=-2Yq
buff = mirvar(-2);
multiply(buff, y, buff);
Gy=inverse_nres(buff);
printf("Gq^y -> "); cotnum(Gy, stdout);
//if(Q=-Q)
//(x1,y1)=(x2,-y1)
nres(y, buff_nres);//buff_nres = -y mod m
if(!mr_compare(y, buff_nres)){ //return 0 if y == buff_nres
    //Vq=Gx
   Vq = Gx;
    printf("Vq -> "); cotnum(Vq, stdout);
}
else{
    //Vq=2Gx
    premult(Gx, 2, buff);
   Vq = inverse_nres(buff);
    printf("Vq -> "); cotnum(Vq, stdout);
}
//Uq=Gy^2
powmod(Gy, pow2, m, Uq);
printf("Uq -> "); cotnum(Uq, stdout);
//v=Vq
v = Vq;
printf("v -> "); cotnum(v, stdout);
//w=Uq+x*Vq
multiply(x, Vq, buff);
add(Uq, buff, buff);
w = inverse_nres(buff);
printf("w -> "); cotnum(w, stdout);
printf("\nIsogenic curve coefficients:\n");
//A'=A-5v
premult(v, 5, buff);
subtract(A, buff, buff);
A_i = inverse_nres(buff);
printf("A' -> "); cotnum(A_i, stdout);
//B'=B-7w
premult(w, 7, buff);
subtract(B, buff, buff);
B_i = inverse_nres(buff);
printf("B' -> "); cotnum(B_i, stdout);
```

37

}

multi	inverse
	-

Функція:	BOOL multi_inverse (m,x,n,w)
	int m;
	big n;
	big *x,*w.
Файл:	mrxgcd.c
Опис:	Знаходить модульну інверсію багатьох чисел одночасно, використовуючи
	спостереження Монтгомері, що $x^{-1} = v$, $(xv)^{-1}$, $v^{-1} = x$, $(xv)^{-1}$. Оскільки
	модульна інверсія повільно обчислюється, то для підвищення швидкодії
	використовується дана операція.
	Параметри: кількість потрібних обертів m , масив x [.] M чисел, інверсне
	значення яких шукається, молуль <i>п</i> та отриманий масив обертів <i>w</i> [.].
Повернене	
значення:	TRUE, якщо операція успішна, в іншому випалку FALSE.
Обмеження:	Параметри х і и повинні бути чіткими.
	divide
	urviue
Функція:	void divide (x,y,z)
	big x,y,z;
Файл :	mrarth2.c
Опис:	Ділить одне велике число на інше.
Параметри:	Три великі числа x, y і z . На виході $z = x / y$; $x = x \mod y$. Показник
	повертається лише тоді, коли x і z однакові, а решта лише якщо у і z
	однакові.
Повернене	
значення:	Жодне
Обмеження:	Параметри x і y повинні бути різними, а y повинен бути ненульовим.
Приклад:	divide(x, y, y);
	Ця функція присвоює значенню х залишок, від ділення х на у. Частка не
	повертається.
	epoint_init
Функція:	epoint* epoint_init()
Файл :	mrcore.c
Опис:	Виділяє пам'ять точці на еліптичній кривій GF(p) і ініціалізує її до "точки
	на нескінченності".
Параметри:	Немає.
Повернене	
значення:	Точка <i>р</i> .
Обмеження:	Всі точки еліптичної кривої, ініціалізовані викликом цієї функції, в
	кінцевому рахунку звільняються від виклику на <i>epoint_free</i> .
	cinnum
Функція:	int cinnum (x,f)
-	flash x;
	FILE *f;
Файл :	mrio2.c

Опис:	Інформація на вході flash-число з клавіатури або файлу, використовуючи як число поточне значення змінної екземпляра IOBASE. Флеш-число можна вводити за допомогою косої риски "/" для позначення чисельника та риомачиних або тонкою		
Параметри:	знаменника, або точкою. Big/flash x та дескриптор файлу f. Для введення з клавіатури f вказується як stdin, або значення з відкритого файлу. Щоб примусити ввести фіксовану кількість байтів, встановіть змінну екземпляра INPLEN на потрібне число, безпосередньо перед викликом cinnum.		
Повернене	Кількість введених символів.		
значення:			
Обмеження:	Немає.		
Приклад:	mip->IOBASE=256;		
	mip->INPLEN=14; */ Вводить 14 байт з fp i		
	cinnum(x,fp); перетворює їх у велике число х $*/$		
	epoint_get		
Функція:	int epoint_get (p,x,y)		
	epoint *p;		
	big x,y;		
Файл :	mrcurve.c		
Опис:	Нормалізує точку і повертає значення її (x, y) координат на активній		
	еліптичній кривій GF(p).		
Параметри:	ри: Точка p і два великі цілі числа x і y . Якщо x і y однакові при введенні		
	повертається лише значення х.		
Повернене	Найменше значущий біт у. Можна реконструювати точку з її координати х і		
значення:	лише найменшого значущого біта у. Часто такий «стислий» опис точки ϵ		
	корисним.		
Обмеження:	Точка <i>р</i> повинна бути на використовуваній кривій.		
Приклад:	<i>i = epoint_get(p, x, x); /*</i> витяг <i>x</i> координата i найменшого значущого бiта <i>y</i> */		
	ecurve_mult		
Функція:	void ecurve mult (k,p,pa)		
	big k;		
	epoint *p,*pa;		
Файл :	mrcurve.c		
Опис:	Множить точку на еліптичній кривій $GP(p)$ на ціле число.		
	Використовується метод додавання/віднімання.		
Параметри:	Велике число k, дві точки p і pa.		
	На виході $pa = k * p$.		
Повернене	Жодне.		
значення:			
Обмеження:	Точка <i>р</i> повинна бути на використовуваній кривій.		
	cotnum		
Функція:	int cotnum (x.f)		
v	flash x;		
	FILE *f:		
Файл :	mrio2.c		
Опис:	Виведе big/flash-число на екран або в файл. використовуючи в якості бази		
	числа значення, яке в даний час присвоюється змінній екземпляра IOBASE.		

	Флеш-число буде перетворено для подання в точці, якщо змінна RPOINT =		
	ON. В іншому випаде його як частку.		
Параметри:	big/flash – число x та дескриптор файлу f . Якщо $f - stdout$, вихід буде на		
	екран, якщо ні, то в файл, відкритий дескриптором <i>f</i> .		
Повернене	Кількість вихідних символів.		
значення:			
Обмеження:	Немає.		
Приклад:	mip->IOBASE=16;		
	cotnum(x,fp);		
	Виводить x у шістнадцятковій формі до файлу <i>fp</i> .		
	mirkill		
Ф!_	······································		
Функція:	$\frac{void mirkin(x)}{void x}$		
Файл ·	mrcore c		
Опис:	Знишує big/flash – число, прирівнюючи його до нуля звільняє від нього		
	пам'ять.		
Параметри:	big/flash – число x.		
Повернене	Жодне.		
значення:	_		
	powmod		
Функція:	void powmod (x,y,z,w)		
	big x,y,z,w;		
Файл :	mrpower.c		
Опис:	Підносить число до степеня та бере його по великому модулю. Внутрішньо використовує арифметику Монтгомері, якщо модуль <i>z</i> непарний. Цю функцію можна додатково пришвидшити для конкретних модулів шляхом виклику спеціальних процедур (якщо ваш компілятор дозволяє). Модульний множник <i>КСМ</i> буде автоматично викликаний, якщо <i>MR_KCM</i> був визначений у <i>mirdef.h</i> та встановлений на відповідний розмір. Альтернативно, модульний множник <i>Comba</i> буде використовуватися, якщо <i>MR_COMBA</i> визначений таким чином, і модуль має вказаний розмір. Експериментальний копроцесорний код буде викликаний, якщо визначено <i>MR_PENTIUM</i> . Слід визначити лише один із цих умов.		
Параметри:	big x,y,z,w.		
	На виході $w = x^y mod z$.		
Повернене	Жодне.		
значення:			
Оомеження.	highits		
	bigbits		
Функція:	int bigbits (n, x)		
	int n;		
	big X;		
Фаил:	mroits.c		
Опис:	Створює випадкове big-число заданої бітової довжини. Використовується вбудований простий генератор випадкових чисел irand.		
Параметри:	Велике число x і цілі числа n. На виході x містить велике випадкове число n		
	біт завдовжки.		
Повернене	Жодне		
значення:			
Обмеження:	Немає.		
Приклад:	bigbits(100,x);		

Генерує 100-бітове випадкове число.

Параметри кривої Едвардса майже простого порядку над полем

1	Dec	Hex	
р	11579208923731619542357098500868790785326998 4665640564039457584007913129639501	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
n	28948022309329048855892746252171976963373169 931171801824889495879912655174863	40000000000000000000000000000000000000	
d	24	18	
X	25320802586794500263203547481190957015558063 656385909487478718360165689944879	37FB10FEF3EAC946BDDDAF6AA23C0A087495 D05F9EF4E68E34E6451864D56B2F	
Y	44263557162068748502919190978710306369602874 782592811177776285379660209456044	61DC4918C4BC3234240B0C8A9934F41B6C134D 54864F827E12CE2B2557A803AC	

з характеристикою поля $p = 2^{256}$

2	Dec	Hex
р	11579208923731619542357098500868790785326998 4665640564039457584007913129639349	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	28948022309329048855892746252171976963373169 931171801824889495879912655174863	40000000000000000000000000000000000000
d	319	13F
X	18336267022793275410964528580037856763177526 592039354128520883460488832032447	2889F59837465E702D9A1FFD5725079CF5A44786 D295107DABA01E2D8F0D1EBF
Y	31337192652039744007921008289133309869444260 564823666081120281371384797542521	454838F54D5E9B9332D12B2F60274D7689CBF06 0F78BC81C665C1A1A3A513879

3	Dec	Hex
р	11579208923731619542357098500868790785326998 4665640564039457584007913129639013	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	28948022309329048855892746252171976963357524 003033751936551228399944822236563	40000000000000000000000000000000000000
d	107	6B
X	47556993841100739599424433290368298966202815 917097662198812481846395255609889	69244DFCA2DA84637C7C0D8D2CD59E391078A E07E3F248722122A9BEF8735A21
Y	34044891700198722664598583844526653582950099 841318639922151360849104869553857	4B44B9D0F04ADF1FA3C57D958BD9E83C4787F 2114F444D8D7218798C308076C1

4	Dec	Hex
р	11579208923731619542357098500868790785326998 4665640564039457584007913129638637	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	28948022309329048855892746252171976963368905 359188240366612659790205947058519	40000000000000000000000000000000000000
d	68	44
X	10496104309555724686411124505902476833996350 3805376124293211059788221507559317	E80DD85A537A44FD65DB1799048A60F324827E 3ED2D280ABFB37661CD941DF95
Y	21242416729692867371974626096097394263911919 881993621979141041541317911378284	2EF6C823E475BE6B03665F228F1DB65F3AEEB0 76EE53044482674E6D0E8FF96C

Продовження таблиці 3.1

5	Dec	Hex
р	11579208923731619542357098500868790785326998 4665640564039457584007913129638397	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	28948022309329048855892746252171976963194920 896565118575978537791938089771029	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA3C8D C9AC1EDAE7723F05213DC50E015
d	94	5E
X	10221052751111625706516497724199211052858072 1726822461754176861682179775922980	E1F91BC517A66C51A0CD1B7194C3BA26EE83D 1F2EB431E0A5D3F64E4AFD40324
Y	58052323272934185741891857335940880274867462 404750853533431956677041616194734	8058735974E50F868276CAEAA1A5849BE694A04 1E35E2C3AF8100244D7CA0CAE

Таблиця 3.2

Параметри кривої Едвардса майже простого порядку над полем

з характеристикою поля $p = 2^{384}$

1	Dec	Hex
р	39402006196394479212279040100143613805079739 27046544666794829340424572177149721061141426 6254884915640806627990304669	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	98505015490986198030697600250359034512699348 17616361666987342401948311493316124779945938 098654427930647013059784399	40000000000000000000000000000000000000
d	532	214
X	37860509992361177582258534417652674557100145 58472095340831113479845870352020124577868076 5778587088417324215330090097	F5FC151B6264CB53A4B879AA9A1F4A5156BBF 063B56AAA912617C0E4CEFF15D2DF497D9AEF 12374A22D22C3B402B2C71
Y	26012950913295234978622520348207118993372599 75385048797520927779890291340902824194733247 0756140181331299298796792753	A9027207E88074F4AFA3D44D4590DD04BAFBF 6AE3D321091F500C783F4707940B7F5EBDD9332 5C5391843F9A78526BB1

2	Dec	Hex
р	39402006196394479212279040100143613805079739 27046544666794829340424572177149721061141426 6254884915640806627990302533	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	98505015490986198030697600250359034512699348 17616361666987627714008946833997268206183865 726294548569701298705364129	40000000000000000000000000000000000000
d	67	43
X	58261320653658379748556555332812600319995683 55126384120151619444654264107330221621026497 636124646839647828693991624	25DA67A2BCA7B317923BD7537E3F781E433EB2 8F0224070701BBDF3DF0D63D26BA5409747D7A B030E2BB6FE78593C0C8
Y	49745883148293005848933408879821983901630890 24561755804282844284952514128201362112745717 473101125579720240052169562	20520FB9FCABB124725D8FF3AD5B2004DC296 B245A1D57C689962B2A9D0EABCFD94CC4157E 7CD0809055711EB35DEB5A

3	Dec	Hex
р	39402006196394479212279040100143613805079739 27046544666794829340424572177149721061141426 6254884915640806627990299541	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	98505015490986198030697600250359034512699348 17616361666989053325453926932465648799219726 446172343045089466228834199	40000000000000000000000000000000000000
d	772	304
X	37098545717916464853110998994376441061355470 43282155949177820506247648379209503696225854 6980494306682736591623728426	F108BBC769E3358598060F9C1C5EB79C6492860 F58967AC7D7E50B23B21767B3D8A360C346B2A A22A801E0DD652CAD2A
Y	20049086756029240168979067176197058613587066 20638871338691888900925084081584712575399853 0156115933356173311208830514	8242F49FA453B08E85B033A3399C0EECFB57522 496A9DFE1FC8423C009951649DD1FF90F9B49A A9C6E28AD374A67B632

4	Dec	Hex
р	39402006196394479212279040100143613805079739 27046544666794829340424572177149721061141426 6254884915640806627990299349	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	98505015490986198030697600250359034512699348 17616361666989878774642711096478812296247202 615001159915611335154572127	40000000000000000000000000000000000000
d	276	114
X	35137077252190919496587968101976345408441190 17132350111701373596942375995375706286050590 1103795957440709638469482028	E44A4A622DAA298B94A167989E99ADFF06180 D11EAA618386D7B173C82C4C1E9822C47B7C7F 5B26663C8BF3074C4762C
Y	12831611111371283101934288524831923718441453 13206807988910496554097149273335698041371152 6642778082790717408869540214	535E607ABF5739C3E5A946F9AD44C899C33BF0 0B04CAE695080D622B28DA64CA0B55AB041BF 971382D956739A3AAE176

Таблиця 3.3

Параметри кривої Едвардса майже простого порядку над полем

з характеристикою поля $p = 2^{512}$

1	Dec	Hex
р	$\begin{array}{c} 13407807929942597099574024998205846127479365\\ 82059239337772356144372176403007354697680187\\ 42981669034276900318581864860508537538828119\\ 46569946433649006083221 \end{array}$	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	33519519824856492748935062495514615318698414 55148098344430890360930441007518405126134457 36220066515147934100158598747475094307363660 1341402240469528982943	40000000000000000000000000000000000000
d	269	10D
X	43046380597677236918434480114169121317872065 20416609456797264784841803531103661784713230 37322943652452004529525462264461822135736467 2767914084560567247872	5230A1EE747050A072BD7319741586EA520388B 6B53094571C821A2FC9A9E83D56665346B5DB04 C43E75261DBDA512728FAAFAC48AE9260A5A1 84E2933E3A400
Y	27374793099677091760423610510556576343089791 51422285915637231906177894560683535901762571 26141281310823616344249693945914310794442807 188517297401383160453	53A0D50CC63C9219762F451978AEF214DBCFCC 3A5CB5EF27124991A86B42B3A1A832724A0E6B 930FDD1DA2E27A540D6B675E4422C444F529C5 08F0BAE7D0A85

2	Dec	Hex
р	13407807929942597099574024998205846127479365 82059239337772356144372176403007354697680187 42981669034276900318581864860508537538828119 46569946433649006082269	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	33519519824856492748935062495514615318698414 55148098344430890360930441007518370586201943 87154673316589859146005262089761738039690723 8503661244493287116197	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
d	377	179
X	88597343811717371087556294075707525932477409 08886513363817185271029862755816849123937823 55447264488990570054063409518125212820747786 9936169605016729333243	A9297AC52D51EF4745E5E558F6217B302052A39 544DFE6DC04FE427850225E232BC379E11F6C51 FDB0C9D0C2511BC3E945E25B9829B00C4DD92 843328606ADFB
Y	86455503668724465625333164807242986656488138 32725284029798720279497293062458262197550131 70011799670050813851866997665179879350569198 9600047652380085531119	A51291E6175265F4C5755445CF271E51E9248C72 8D01CC388C3938E477F3A94C69F21873F7CB97C 64AE7D33A1056B41BB0E95436F88A03555C7291 1F313331EF

Продовження таблиці 3.3

3	Dec	Hex
р	13407807929942597099574024998205846127479365 82059239337772356144372176403007354697680187 42981669034276900318581864860508537538828119 46569946433649006080637	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	33519519824856492748935062495514615318698414 55148098344430890360930441007518407480050918 05097884849023290546744883643236649541028702 8256297201383219167099	40000000000000000000000000000000000000
d	175	AF
X	88362013022735650739457696274545086569028078 87394026515909596547743730643485300826964440 03100689333011836929730516718068952498496561 7442036654492004997048	A8B673C87778EE5D31B9A404334AB9B5A572C8 EB536C2C91443F112F8961B1E1BBE4E7AC851E 8AA509F0B9AD2D9C203A816B67E0796AD7FF2 9726D262EA957B8
Y	67610772410924923539045835968188318906223094 45547158112661771293181461536708813664770037 66540142516982685036311802911107883359778203 3833198934951602625403	81177507F05F730D44D26B9D14B0FFAC6558F68 34314F0414A9D6A9E48608C5F08507D8273AF13 26ABD50A49B901462F3BE8005B63FC8FF851B8 53FF48B31B7B

4	Dec	Hex
р	13407807929942597099574024998205846127479365 82059239337772356144372176403007354697680187 42981669034276900318581864860508537538828119 46569946433649006079621	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	33519519824856492748935062495514615318698414 55148098344430890360930441007518396353790343 80127071186565467594771585681184808756007207 6516114450014792038811	40000000000000000000000000000000000000
d	969	3C9
X	44031675018094023729469583128212617257026004 16103728084786199165375897394442739369540011 46334644392803613645499046855845141772485322 6831333756059727381050	54123C034D18682F739A011463EE02332B358256 02C853A8EDE6DD1657894A47C2D6E1D2EF39D C434504051DB60A690FAFFA10B9053E37268D3 AF352F18B423A
Y	89560914678244680596165542755899003935070225 55100483100644056648682675845369599847044504 72677180016336927718431197405761133524235371 0810420013399548874515	AB0076944360C99551AE3AB73E24473AD55987 DFD6378DD3A6D89A4B2C88576F837341D4141E 791B512483B6AEED65E09F68A64CE5B3B78AF1 6924634C2BCF13

5	Dec	Hex
р	13407807929942597099574024998205846127479365 82059239337772356144372176403007354697680187 42981669034276900318581864860508537538828119 46569946433649006077517	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
n	33519519824856492748935062495514615318698414 55148098344430890360930441007518397574859115 34210550442196835811514229286893314430518103 1055780134069835884667	40000000000000000000000000000000000000
d	85	55
X	54560698017668004203358466775061879069827829 37321353853441030055636984730642647514848735 89740504036740589421476121246380605336402151 7067680380714875038403	682CB6B299DBE8983409E0A21839FC9D80066C 91E7239D532251AE3FF4AC87F549C0005883852 A1BACC4236B8FF08492519B7947D292779AD51 2D14A83732AC3
Y	38329460290175713584790046562547197227970091 50216531011598486336024328071059966751102034 85923336077737113771948884462980829409975850 8429376318289005082204	492F0CC7E947498364D0E4E15A82EF57ACB975 FFD09C0FCD3BA967A7DACE72FD2151648FEB1 1A12F3ED9F1297469285D2C26A1CFB2DDDF23 B946E540A8B5765C

Додаток Г *Таблиця* 3.4

Результати скалярного множення точок кривої Едвардса над полем

з характеристикою $p = 2^{256}$

Pe	Результати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою $p = 2^{256}$	
P	37FB10FEF3EAC946BDDDAF6AA23C0A087495D05F9EF4E68E34E6451864D56B2F,	
(x,y)	61DC4918C4BC3234240B0C8A9934F41B6C134D54864F827E12CE2B2557A803AC	
k ₁	B25F0539178DC46B0D7E504550FC71EC835BC884A086C91195F2076AC358FBAB	
Q1	FC88C48510DB7415CEE2CEC0014D9F8F600D36B9DE8AE9F089C6543279B20E94,	
(x,y)	9A29536CEFF9119986DDDE64F670B1AF105FABE59DD343449560C665C73F9D53	
t ₁	0.003	
k ₂	CF5035BB5229D6891A389FCDC8153ED1A34C11FF97E8A96E29AA3AF64C90EAA3	
Q2	BD185C24120D194793AAE1B46E6EE9BC954A86A4C678CA1210705C43527D3AA7,	
(x,y)	C9BAD8362ABB91392A207A814D1FCA03912E77BDF0F569D01D15A391A7334C83	
t ₂	0.004	
k ₃	F80F55D5D203071626143B45E27219FDA2F579C2107E81516077697B4941B40F	
Q3	CA3123F00D710ADC2FA98A7815A07B8EE79049EFBF4526FCCD6358DA337C02E5,	
(x,y)	F381D56459251196E0B808C6861D4539061B46CB044D7F57C9C111283E43FB61	
t ₃	0.004	
k4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF	
Q4	E2FA5C61D4A882AD464ED222CFB0FFEE14C362A6210C8162A7B93ECC06709092,	
(x,y)	CC32C3BD53B35309409956DF48A37BAF39630B36598AC67DE753DF7BAB5C77B	
t ₄	0.003	
k 5	B5C85EA4C5B62C885CA2AFC54D972952D8B219DCA286A5CC3FF8EFF8D14FFF1C	
Q5	7501C41677457DE0DE8DED18711546BCB1EC7C192F0227DBBCA1225C121C159E,	
(x,y)	60BF3F7E8984AD36CD3DD9F0735B02E418F2B3F78A8A5E04CFA7BF99490CDFCA	
t5	0.004	
t _{cep}	0.0036	

Pe	Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою $p=2^{256}$	
Р	2889F59837465E702D9A1FFD5725079CF5A44786D295107DABA01E2D8F0D1EBF,	
(x,y)	454838F54D5E9B9332D12B2F60274D7689CBF060F78BC81C665C1A1A3A513879	
k ₁	B25F0539178DC46B0D7E504550FC71EC835BC884A086C91195F2076AC358FBAB	
Q ₁	D497C3C4C29E33F4E70C54C83B0AFBA3A015C330980DE76D61BC7F8F907854FB,	
(x,y)	DFD72A7D2B65D3EB6471B053A4AC4B6BE3D481C2A3198F352D3BA74FCCB047E3	
t ₁	0.004	
k ₂	CF5035BB5229D6891A389FCDC8153ED1A34C11FF97E8A96E29AA3AF64C90EAA3	
Q2	AECEBEF810CBC477D289BB8A60ADFC7AFE41C6A25051493249E53B1296AE0C51,	
(x,y)	C20833D17BFC231E3BE2CAE574484C54868F9912BF9204DE8B0608DD31F87F8D	
t ₂	0.003	
k ₃	F80F55D5D203071626143B45E27219FDA2F579C2107E81516077697B4941B40F	
Q3	4F9F18766E119F882722CD4533057BBBCC363D27BF86C345306FE67855990B63,	
(x,y)	F045789BE3BC923CCA1926C91C32E25FD0C1D1438FB9A782ACE57BACDD79907B	
t ₃	0.004	
k4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF	
Q4	F53AA4763C99A22BC12339F3BACC711FAA5E57BA695FDBE7330F3206641DAF29,	
(x,y)	D08F367C06610D740BD57EFBB83F06D370E1A7AFF1F9CFC43F4DC47D911F30DA	
t ₄	0.003	
k5	B5C85EA4C5B62C885CA2AFC54D972952D8B219DCA286A5CC3FF8EFF8D14FFF1C	
Q5	8F46E503513BA897FAE2DFB3A5B3C5BA9EBE78C36E42018800FB89991AC712C8,	
(x,y)	80C23B757EAEC5F9C80526629D067CC67EDD82BC302D84B21A1944112437733C	

t ₅	0.003
t _{cep}	0.0034

Р	Результати скалярного множення точки \mathbb{N} 3 кривої Едвардса над полем з характеристикою $p=2^{256}$	
P (x,y)	69244DFCA2DA84637C7C0D8D2CD59E391078AE07E3F248722122A9BEF8735A21, 4B44B9D0F04ADF1FA3C57D958BD9E83C4787F2114F444D8D7218798C308076C1	
k ₁	B25F0539178DC46B0D7E504550FC71EC835BC884A086C91195F2076AC358FBAB	
$\begin{array}{c c} Q_1 \\ (x,y) \end{array}$	11A18CAAAF789B95D3B5DE7B0B355F8025924DCEFBF9C79815CFBBBEF14DDA2F, 11BCC3C6748157522D703C300B8DA49A56AFE856D8980EF34B2FCA29FC2562DF	
t ₁	0.003	
k ₂	CF5035BB5229D6891A389FCDC8153ED1A34C11FF97E8A96E29AA3AF64C90EAA3	
Q2	7F86330AFAE452DD3ECD5B0E712D1CE177713A9EF847D1DA51D08D2316E7A62B,	
(x,y)	544C3A826A4F71CE9971F9ABD56113D909D328EB0E29CCBF68881C5CC9081FC2	
t ₂	0.004	
k ₃	F80F55D5D203071626143B45E27219FDA2F579C2107E81516077697B4941B40F	
Q3	C6600133EEE4098C6C4B09527AC48CA07AF3E355577D3A1E5250C2D10AFAB0D2,	
(x,y)	66FB746D5A99A491291979333A91A8806C6E307050BFE78EDBB19E66A848C732	
t ₃	0.004	
k4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF	
Q4	55B2BE545AA7E1709342F2BDC9E1C3F259CCCAB3CBE5A66DA3D68111FDE916E9,	
(x,y)	C41EA8DA3BEE7FAD4D5B74F94DA43382FE9B5FDC08D6F8B536E0C57A7510413E	
t4	0.004	
k 5	B5C85EA4C5B62C885CA2AFC54D972952D8B219DCA286A5CC3FF8EFF8D14FFF1C	
Q5	1F5303C06CAC426CBC33CA94487E3AABEDDABBA79318FF98BC41A70DE63CADBA,	
(x,y)	505C31E09A4FD9807C617C3D58CACB97EBD2FADB1C765B9EA4C1AE65FA71983A	
t ₅	0.004	
t _{cep}	0.0038	

Pe	Результати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою $p=2^{256}$	
Р	E80DD85A537A44FD65DB1799048A60F324827E3ED2D280ABFB37661CD941DF95,	
(x,y)	2EF6C823E475BE6B03665F228F1DB65F3AEEB076EE53044482674E6D0E8FF96C	
k ₁	B25F0539178DC46B0D7E504550FC71EC835BC884A086C91195F2076AC358FBAB	
Q1	A1918F9BEB2030910139E578F4C5E9217C20248DF3FABC2CCBEE3F0798D9B360,	
(x,y)	28240EE304E088AE7F04503857D39F2E31EACC824068B876B2F65FAF7215E317	
t_1	0.003	
k ₂	CF5035BB5229D6891A389FCDC8153ED1A34C11FF97E8A96E29AA3AF64C90EAA3	
Q2	12A8735D3F4784433825E5EC9F62BFE14A948156CB5B0F398FECCDA8781C08FA,	
(x,y)	524D88C98332D0CD81429FBD2E7BF22122AF51DC77904E968611BD1E7442E982	
t ₂	0.004	
k ₃	F80F55D5D203071626143B45E27219FDA2F579C2107E81516077697B4941B40F	
Q3	67BAA6ADAD7B88B68E8984EEB285F6CD00154630314F1E717F8A1D8F6B1409B8,	
(x,y)	6C03DA1601C010E20D4F76B73A20E8DC17D0D9B6114DCFA6124BB7C6A38FEB9C	
t3	0.006	
k4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF	
Q4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF,	
(x,y)	33D02B50E25F0DF7520CD0C9920D8D45848F81458449DB05B243D7184398E5C4	
t ₄	0.003	
k 5	B5C85EA4C5B62C885CA2AFC54D972952D8B219DCA286A5CC3FF8EFF8D14FFF1C	
Q5	B6EBDDDA9605FF56A83F88887343261ECAD996CA757EF68E5BBD0D74B66B52EA,	
(x,y)	316BF982CCC8C967601A9F082C7D7A959654849938671364A63F1507DF47F0B4	

t ₅	0.004
t _{cep}	0.004

Результати скалярного множення точки № 5 кривої Едвардса над полем з характеристикою $p = 2^{256}$	
Р	E1F91BC517A66C51A0CD1B7194C3BA26EE83D1F2EB431E0A5D3F64E4AFD40324,
(x,y)	8058735974E50F868276CAEAA1A5849BE694A041E35E2C3AF8100244D7CA0CAE
k ₁	B25F0539178DC46B0D7E504550FC71EC835BC884A086C91195F2076AC358FBAB
Q1	B4D82B30839481E459A5E98A3C6D2AA4EDBD5E5E8FB309FD236F6CE413DA0491,
(x,y)	1131724884D1DD83B453A64B59241531666E6FABC0D7D9957E7EDDD02CC58F6D
t ₁	0.004
k ₂	CF5035BB5229D6891A389FCDC8153ED1A34C11FF97E8A96E29AA3AF64C90EAA3
Q2	EC79644551A427DED90329EF514D959D2C49A003AD504E5603768C7BE949A604,
(x,y)	6721F4B248734DBF384C593C0134034A9A35C88BAE507A22F80174035BCCC0C1
t ₂	0.004
k ₃	F80F55D5D203071626143B45E27219FDA2F579C2107E81516077697B4941B40F
Q3	A1B65EFA7C9EE5DBDF875CF4D4E0CF9795DE123DB08996730A8C807807693A5F,
(x,y)	A08D7D879AE38C8220AAE0568E657BA954E1F4638C722D2EC4B2D1C311BC73FB
t ₃	0.003
k4	C78247DBF9F9685B349747675818E996D1802BABE252A0DCC6039DC4AFDE9EFF
Q4	427B1AB0ED8D83C9375820B5456BB9B056EA396D5645B154FAFA567C019115F2,
(x,y)	84A228B6C3D7CA4F75A2586C6D282BEA3077CA6F3751A438F64758D138656044
t4	0.003
k5	B5C85EA4C5B62C885CA2AFC54D972952D8B219DCA286A5CC3FF8EFF8D14FFF1C
Q5	315B58E53A708F54401E633C694251D2A8834C3C64DB7E74A685123BBDD3BDB2,
(x,y)	CF1EED745F1BC85176D07659D502A1A35826E82A4EFE0AF8336C5E66C6F231D1
t ₅	0.003
t _{cep}	0.0034

Таблиця 3.5

Результати скалярного множення точок кривої Едвардса над полем з характеристикою $p = 2^{384}$

Результати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою $p = 2^{384}$	
Р	2B8D5997842C553D8A8F7CD8C62D7AAAE37EF7E52E5CBD98D2427258DEAA77F43B224E6
(x,y)	C1E46BC50F3BB7838D9C77379,
	45653A0F9C3558B3C89A5266F6442DBF7979C763B20535EAB352DB9F5E656D2CC14BD8C1B
	16FC6A7FE41784530B1EEB3
k1	BD1254C454617C8FD1C09807890001137F4615B16484201C3066A87BD261CB62673C03DD3564
	C91195F2076AC358FBAB
Q1	2F3C6F1948EBA2D598F61EBBC2A27B5B406B7A36A8F79A59B6153CAD15EB5D9D15F121653
(x,y)	E8022394FD3405106D0C4B9,
	170237DC41F44AADCC6FF85B6F1536005D5FAC801E46B6FC62E8FA18F5A2032A4D5F96722B
	C34C6AE6A3E121A965C52B
t_1	0.011
k ₂	367E79341D9067CA3B8E014279691F4BB5CC05CF353358156A9A9F455BD727465428BC6C9D71
	3AF6F261D231D2678CCD
Q2	75B3C96E69F9D2C6320375BAFC1CF6D5A1F709860EAE3436188CEF0FF04DACC33CBDE3DF5
(x,y)	AFB1078E404EB2AF08F0E63,
	DFBEA06BC9AD2990A8EDCA807800BACC46436E3D755C5E446639AC4C2E41B5EAFF16DF93
	4CD4E6CC980BAB81827A5957

t ₂	0.011
k ₃	3596B73F2F27C5D11EE4AEE6AEAB3A6C9E94EB86AB285EC464FD2AC87C95FCEB92217699C
	96027C817574D563BAC18CB
Q3	3BAB4DF5C91328FAAE12502BCC2B67158ABA3438F6CC0683E56CAE394221DFEE80EBCDD8
(x,y)	1FCAA00F0BCA86E47C897DA2,
	9A821EADA040F289EBDC5DD44824C032021B14C8CEC7BC69AA3E86D0A1287DC77BEBE256
	8398467F4765D765649A2223
t ₃	0.011
k4	2CCF717F183424184192EC0177357FBA8189BE35D52F0B9A87C4160D95BD98B4700636954C08
	DAC448CE3DC6B3C58355
Q4	C140A42C7A703FA06933C98E5D0AE05098DA72943695A8D30C27661C630E8CB795D1BCC2D5
(x,y)	2ED269DBD522D7697CDCE1,
	DBD2234F63C5F33F30BF7B8DB923FAF1AB1E9FB28CE40E0B742FFA4A56CB4E613CF587346
	B629B3394AC0D6D3A8E47B
t4	0.014
k5	5B131958F6534ADD51C359F6989E1B628F5FCFC3A3CF6C135A70978719B2D9848141750DD1A
	B38E2812B9FB9A291FEA
Q5	E78A922C90ED6BE8935F7DE2854CC0077CFFBB3D24688CC02F350A129B54C665F121BF54770
(x,y)	3ACCAF67BAA97EAB3C034,
	679849DF050532354BA6088C0F88A9E7819E56EBC4B51778BF9DE645279B6FF5C57F23D3DD6
	00DD5BF9E59EB8ABBAF57
t ₅	0.014
t _{cep}	0.0122

Р	Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою $p = 2^{384}$	
Р	470E08D8AE8685B8EB2E3A49147E146AACF4155B06F27E27A2F4C87B69D627D405B5107B532	
(x,y)	7CBDA389E7F3CDD3A4342,	
	4D9DCA8CA3FC5344C384F81370E56BA789CB3DBE102B98CAC8F4632C2A618B4D0B759D991	
	F71C5B416018800B5366AE	
k 1	BD1254C454617C8FD1C09807890001137F4615B16484201C3066A87BD261CB62673C03DD3564	
	C91195F2076AC358FBAB	
Q 1	7973CFF7D1581325F8F7E301604BC783BA07F5195F884D3824B3B3492D621046449DE04EBD3D	
(x,y)	A4DB8FED1D4D63CB1FDF,	
	12CAD32B3DBEC6B1F5B44A44D12375652346A8EC4ED804D488FC6C11725A7C51CB6FF55C8	
	28C0CB8BEC62017B82AE198	
t ₁	0.011	
k ₂	367E79341D9067CA3B8E014279691F4BB5CC05CF353358156A9A9F455BD727465428BC6C9D7	
	13AF6F261D231D2678CCD	
Q ₂	14278491F02F14A441ADDF561D03EFD1D7E8E25E9E76F7390AAD36499157B3F2B65B2F69E09	
(x,y)	6DA90417BAAAB787C8245,	
	33D01816D4E580BD66311E9E4A9B8353521423A5BBA81883763720F9F0AF4E1F5A49113E6E8F	
	C50F5C1B385917AAAD0C	
t ₂	0.011	
k3	3596B73F2F27C5D11EE4AEE6AEAB3A6C9E94EB86AB285EC464FD2AC87C95FCEB92217699C	
	96027C817574D563BAC18CB	
Q ₃	CF8A7D26C64B0A3E33AC2AB98C57945D43BCC541DB1A69E926129B152551D0F0D3A121AEA	
(x,y)	7560CDFDE9F31BB5E1E32F0,	
	6291D596ED6E81BBDF4E16D8E0BE167C4D32DEBEE06E4DF38578BEF2BE51A3DAD20402E2B	
	20640A79D8AB06145CE8A95	
t ₃		
k4	2CCF/1/F183424184192EC0177357FBA8189BE35D52F0B9A87C4160D95BD98B4700636954C08	
	DAC448CE3DC6B3C58355	
Q_4	BE4333BECC335528A853CB1ADAEBB84BDB2CE7B4FF91C19C33DD08D2AD803D39C102F48D	
(x,y)	6884A4ACA5E/ADC698619F69,	
	813C8A78D37D5B6253813933A094667A9FA18AF8AA6FE66B18CB56B28BE9960EEFE64BF104	
	U008B/2DAU/DUAUBF/EUTU	
τ ₄	0.011	

k5	5B131958F6534ADD51C359F6989E1B628F5FCFC3A3CF6C135A70978719B2D9848141750DD1A
	B38E2812B9FB9A291FEA
Q5	B754A6E3AB8FB505D263A7A225517D4606467130680BB8CBA170BB5C3DD48B377595CD0AA
(x,y)	084C8DA7075E4EC8968B40F,
	DBED1574D31459E4672166B3D39F82CA29437EFF9145214BA16939D4CBA5A42C87F7CFA9C9
	2A3D845E0A90EC7BACF06
t5	0.011
t _{cep}	0.0112

Р	Результати скалярного множення точки № 3 кривої Едвардса над полем з характеристикою $p = 2^{384}$	
Р	523ABC1A5AF820063D26B084EAD0FBC7C731F654CDD1A69DF390DDCECBDEC6AF7E158B	
(x.v)	144EDEF81612C5B3E595DD484F.	
	B855C45CD16694B9C35D9D1368E839FA56D4BAB0401736259818DE0900BF7E18D543992257A	
	7FAD84E3137A78797F833	
k ₁	BD1254C454617C8FD1C09807890001137F4615B16484201C3066A87BD261CB62673C03DD3564	
	C91195F2076AC358FBAB	
O ₁	C77B0767AD037C8A79353EF0F451A52296407F3840A0DC39D0A5E0A90C7D81ABCEF3D005A	
(x,y)	6C81ACB3E2B821C8C5BB870,	
	6C5B02EEBFC2AC78BA5159563A4C5B346B6FDC9A1433E1D8E0890DB0C87584E993B26FA75	
	EA3226C6137F9F9C1D09FA7	
t ₁	0.011	
k ₂	367E79341D9067CA3B8E014279691F4BB5CC05CF353358156A9A9F455BD727465428BC6C9D7	
	13AF6F261D231D2678CCD	
Q2	1D2190F8AC4A2D0FE1975BDF46F4228B3DCA000D4904EC561F988A48C80678A9589F465EE7	
(x,y)	765B1C45F6F0C9011B348E,	
	97DD84041CBEE9BE3C3D4A016C0227C9C39046E32FE0A7D60624420DC0651D2D7A658C18C	
	C219A08596AA2F48136223D	
t ₂	0.01	
k ₃	3596B73F2F27C5D11EE4AEE6AEAB3A6C9E94EB86AB285EC464FD2AC87C95FCEB92217699C	
	96027C817574D563BAC18CB	
Q ₃	E7971CF0BD56B079AF3C544A468CF413B611B22DA251EBA0C6C8B46B71843DBDE5E80F58C	
(x,y)	205622995F39C0F3D85A152,	
	3D866AC2F/C54D620E01CAE3D/34/11D82C40348514891B2FEFF4B/D104D65C/DC6350862C	
	B//E4E/34D8FA4B831BF61	
t ₃		
K4	2CCF/1/F183424184192EC01//35/FBA8189BE35D52F0B9A8/C4160D95BD98B4/00636954C08	
$\left(\mathbf{v}, \mathbf{v} \right)$	C2 \ 126F758C3EBC5E1D6BD07	
(x,y)	D0B051E6540D62E2A7A2C53B07DA7607C303AD46ADA30B424A2807004AEEE10A403E4B2B2	
	3015D9BA23463160830A527	
t4	0.011	
ke	5B131958E6534ADD51C359E6989E1B628E5ECEC3A3CE6C135A70978719B2D9848141750DD1A	
K	B38E2812B9FB9A291FEA	
O ₅	DA2FF125ED86A75B0003A816729E123A865DCD9653C9BF474750F055D19268214866B8D17C1	
(\mathbf{x},\mathbf{y})	B6C95E4DBF7BEDF1E6B0C,	
	2702ADB1202C9A6505AC12DE322D95935235AD755E3D6758A0B3ECB3B4C73B3EC696F12969	
	93DF800403365F96CF06FC	
t ₅	0.013	
t _{cep}	0.0112	

Po	Результати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою $p = 2^{384}$		
Р	4F501508724598418F99869CADBF875E2F3B4A17A74AEB9A414538D4A532906030F8D64D0CB9		
(x,y)	EE0E3D0B1C25A77DE77E,		
	AFC9472BE3F1874919B90E69246C0F84B5F5DD062EEFE449B4439816D4E3BE4AAC08007BC46		
	3EB813B441202BD0863F6		
\mathbf{k}_1	BD1254C454617C8FD1C09807890001137F4615B16484201C3066A87BD261CB62673C03DD3564C		
	91195F2076AC358FBAB		
Q1	3E43627C489B0714A72EF371F2DD3F9563C0FDCC5A059C1A9B3AA9D427560AFCD4272AC4B		
(x,y)	5BFBB6DDDCF8C0187C455A3,		
	EE947DC9F75E521E0DD8A81B177DA09388F0524CBDEBB341014C8E21471DA120AF968BC9F6		
	F55F8E0766C1CB3BE9DB8		
K 2	30/E/9341D906/CA3B8E0142/9691F4BB3CC03CF353358156A9A9F455BD72/465428BC6C9D71		
	3AF0F201D231D2078UUD A 2242 A EC2C95 A DEE119E4926469E2D972D3D0DD220DE46750D0E0C92D27D72C957D4271E99		
Q_2	A2342AFC2C63ADEF116F4630408F3D6/3D2B9DB339DE40/39B0ECC63D3/D/2C93/B43/1E06		
(x,y)	UC034CADDUU2F084A140E, 186D0D16EAD6E99EE03ED4DCC0C0242343090D1ED9E402C051E190333EEDC55E52AE0051E2C		
	160D0B10FAB0F66EE92FD4DCC9C9545242960B1ED6F495C951E169222EEDC55F55AE0951F5C 246233ED4C7EC491B3959		
ta	0.011		
k2	3596B73E2E27C5D11EE4AEE6AEAB3A6C9E94EB86AB285EC464ED2AC87C95ECEB92217699C		
K5	96027C817574D563BAC18CB		
O3	D39293954F31075C15B0ADC1B241327F4AA53F25A2A9A1A7B9C1F5B8CD79769A129CC3F557		
(x,y)	E1C57437F3F8C741273536,		
	3A1FC6F767B648FFCD71E6882214259D917AC212EF23AEB611B623DE02741A8F37349D36755D		
	1B8183FCAA7C31DD2B91		
t ₃	0.013		
k4	2CCF717F183424184192EC0177357FBA8189BE35D52F0B9A87C4160D95BD98B4700636954C08		
	DAC448CE3DC6B3C58355		
Q4	2C8D6767FA176D391C86760C0A6CAFC085A0744B47241F14A8A1748788A53AD53EDE161352F		
(x,y)	7F2B6AC56E108BDAF0C66,		
	8949/F62B1/2DA93F6C3824B45574CB7956E5266915FEA466CC677F6BB6F86018D83E2F3B2EB		
	USA4E8A/9F3A92313E82		
t4			
K 5	3B131938F6334ADD31C359F6989E1B628F5FCFC3A3CF6C135A70978719B2D9848141750DD1A		
	B38E2812B9FB9A291FEA 7782229851424 A A CEE22E52022 A 2DD5ED40E44EE15E07 A 42E84720744CE10C4 A 77D0 A EC0728C		
$\left \begin{array}{c} \mathbf{Q}_{5} \\ (\mathbf{x}, \mathbf{y}) \right $	//055205145AAACFE25F55955A2BD5EB0UE00FF15F9/A42F80/3U/00CE19C4A//DUAEC9/28C F8883D000R08505AF7AAR		
(x,y)	DE76ED070375AC7A0D, DE76ED0773E8000B6&2750655086&1&23E0120B6DEC2D6&B2B0/03116C5C37&&507116721E8		
	EA98C6DE5E9E413D772E8		
ts	0.012		
tcan	0.0116		

Таблиця 3.6

Результати скалярного множення точок кривої Едвардса над полем з характеристикою $p = 2^{512}$

Резули	ътати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою $p = 2^{512}$
Р	39DBCA29BDE102C9E4AF8B86AAAFC6591A1F8035DA10194D311A2C29A894ADCA0529EF80
(x,y)	C4C84282187ED732F40FACF3E0D4236703FDDB14A01A7EB05594072F,
	7E9625B235C54B7DEA64C8B5C0B6ACC8F7C4AFF995EC4B71A39B486B84D53927697CEB356
	EE89F84E9F90E82B1BEAA4B5AAC56496A62F0046EC0152C9C4EA659
k1	BA76FAE790DCB4A9F15290A2D80D4389187E4E68F90CF520AE9B686E3D67D985611A193148
	9E8E72D2BD4681BBF31B1DFD5C03DD3564C91195F2076AC358FBAB

Q ₁	C2334FDF36CEF73CB3E0D6F41BD6B88FFD3160689E320FDD7D14FE9DCBD7AB15DA392803
(x,y)	521333C43749024FBB2DEAF15E3981C6BA9024C99F09F2C31FE89F96,
	E31D72479BDC64350EB978F514C2D7C39418F6C9D6653FFCA6A5D61E10188686743C7BF5B3F
	F5B6290591CDA48C29568AA70CFF3D7450A458F10CDCCBE2ECE5C
t_1	0.046
k ₂	A5420B393140DBEDC6BC39AF65FFC573BE0A49821C8768F9F9BCF009CF3CC42D373A838B5
	FC26D54DDAE75ACD6CB72C8328053A0B2F481516077697B4941B40F
Q2	DDDFDB25FF4FDAB6F878B4DAE99FCAFB93DF4504048FD7005A943DC7DF516A1098F101B6
(x,y)	E1B199F038FB277B226B910D223D26FBD3572C764C9E0CCB7FFE960,
	C2BB9AB91137DBCEC2ED08CAB88BBC194FFAACC4CD9FD1C31CFA943650D9DAD8372583
	FCB488C4D1CA05F3BEDC3BD1DAEFE0E2A05C04BBAEA1E5A500E4717EC0
t ₂	0.046
k ₃	2F1DBB39EBBBDB43B9D502AB0B4CCBFFB94DDF17E951589934501D51DAA2E66986F7C8B
	AC818D6BAEDB3DB4F48B016E2E5679E899198A5CC3FF8EFF8D14FFF1C
Q3	93A5D9CA5DA80C304556B964CD522E9563EEAC28A1CE8B93A7A50E3E0E5A54D714EC7E87
(x,y)	CB489A311B7EE54A698AF7AF3357D8C50A69A85EF6C879790850B4F0,
	B7257667CDD6EC84C45A6C64E1DDA129E97192906C6849B859D5157B39BD8CE2FB3B23C5A
	052C6EFC670C7EB0A252CE35A1AF5B271D7DA7D7E7F0C6A41464AC8
t ₃	0.045
k4	EA60D512DE6A1B05FC4EFD5666C4BC247B4EE54F97F8D95F90454EF47003B6598C11E99D20
	A1DD10E318529F30EA193ED861C1206C638CD736CC678DF6ACDDD1
Q4	91BEA7B59C5CC539F9D512B09E76CDEFEC67457795C5B6B93D5522F09D21847ABD3AED011
(x,y)	CAA475DE572272B39D655AD43635D26AEA2C0888C3E3D277F8CDAFB,
	4208983150F1F46797EBFDDE8034C637C273ACC684ABA1E81AC78B4275C1070E8B32813DEA
	B288F39A99C4F9DB24DD043F0F267CFECBC7B63DF43741E8ED7E9C
t4	0.047
k5	E65D14E10FC782EAE2D51D94FB55967CE30A9904BF0F53B29CB825CB89CEB4D89E829E9BB
	0044B14092FA6930C39B047A581A1B49449F997EDFB12ADB73C04A
Q5	ADC44D91BACC714E5EDC75493EF56B833681E99F10A2991E2DA17B639630105DDC5DFBAE
(x,y)	74C6263F845DC6EEA691CBC34F98E2531EACEFCDFCDE3E478CC30978,
	563B89D6F61F0D89958709C1EB9219DD01F202331EFED3A71FA31020BBC9FB0B74A68B914B
	B17D22B4614247E16F9817389ABEA1E0D6014B78046EEEA6F2A272
t ₅	0.053
t _{cep}	0.0474
-	

Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою $p = 2^{512}$	
Р	47396FEDE8B433E8B6EE416E61FA9A3A61774A4AD8358581E481E0F456495E2ACD6472CBE4DB1D
(x,y)	C69FB426F3D09F31B98B0C5E0E9BA35D4319949FB79D420E3F,
	CFBD2EAE8F8F41DC96121BF256F1A3C01AD0771CA7459221026E3F5486B995BD37B5F9A4DC6DD
	D208FF2A69AF044EB1DBC13DFE58D603460EF0FA86909C2A3F6
k1	BA76FAE790DCB4A9F15290A2D80D4389187E4E68F90CF520AE9B686E3D67D985611A193148
	9E8E72D2BD4681BBF31B1DFD5C03DD3564C91195F2076AC358FBAB
Q1	B9796418AC510DE8B72600D6D959E92B14EA0EC0F5C578981905F3DF20D2079C260DF30DF93
(x,y)	A5A1864769D3BCEA9408635764CEDA0EE7FDBB1707B6D30FE8949,
	A823AD551C7EDF2016359F7AB1EB38199AFEC2F6AC8D55FE8A3B13124BD67ACBA5F6BF8C
	5EFFAC1EC2D99D89FE77B6B8619F9234A6D5998F7FF44015CB55DDF2
t1	0.049
k ₂	A5420B393140DBEDC6BC39AF65FFC573BE0A49821C8768F9F9BCF009CF3CC42D373A838B5
	FC26D54DDAE75ACD6CB72C8328053A0B2F481516077697B4941B40F
Q2	426D79C97E0D9DD7557452A8FD145B68CB6783F9EC2F8D1A093793ED8352512A2805893DCED4A2
(x,y)	1C665DD773A926622445EFFD3CA56D5AC42D41AE1512BE90E3,
	6DB1AE56106D1D21532A74BB14FFC6F39595A759ECBCB766C402B25CE73439AA746EF5DF9C66D
	E29CDE35FC7FF31D17AEA06E9B20521462E3774AFBF399FC44
t ₂	0.044
k3	2F1DBB39EBBBDB43B9D502AB0B4CCBFFB94DDF17E951589934501D51DAA2E66986F7C8BAC818
	D6BAEDB3DB4F48B016E2E5679E899198A5CC3FF8EFF8D14FFF1C

Q3	DD34D9CB0234A4208A85FADA76C904B7D59B7AA4A546A48A9C05F37C68838BD3BD5DB64
(x,y)	37650592CC18EBEE054351AD5102EB459DF01D11668DB73FD1CBF0D80,
	458C4B07D1DEBD9014444A94BF40CB4C94C51E9364095A7F5F87E51F6383DF86647441176AA
	D834CA5FD22B2F6A454E8BE79D4DDF918071EC4A9110B35B23424
t ₃	0.047
k4	EA60D512DE6A1B05FC4EFD5666C4BC247B4EE54F97F8D95F90454EF47003B6598C11E99D20A1DD
	10E318529F30EA193ED861C1206C638CD736CC678DF6ACDDD1
Q4	943D854B2E33E7E0CF3525EE6DE7BBDFE94E6C50D67AF3C5CE1D1E5B62BBD17D5FE1F2B267AD
(x,y)	CCA773B60EE4EF346E8F6C127FA586326A949F26196CED98F4B,
	458C4B07D1DEBD9014444A94BF40CB4C94C51E9364095A7F5F87E51F6383DF86647441176AAD834
	CA5FD22B2F6A454E8BE79D4DDF918071EC4A9110B35B23424
t ₄	0.045
k5	E65D14E10FC782EAE2D51D94FB55967CE30A9904BF0F53B29CB825CB89CEB4D89E829E9BB0044B
	14092FA6930C39B047A581A1B49449F997EDFB12ADB73C04A
Q5	C7053FEEAA901303A52B23CDD6772E55E314871CD12E208B40B5D8B259BA7F724EB89D7C73
(x,y)	D43ED5398711A1828145BE5315B35D6834EBAE40BA742179154A4A,
	A82A2F83F9FF2D8C394A20D07A7A98B7AF2FF5CEA145FE96F8AF0D97CC991B8079A137B8D4EFE
	B2642F9AAE75B6F380DAC3609A537F9316CC8D79634EE2E4E7F
t ₅	0.042
t _{cep}	0.0454

Резули	Результати скалярного множення точки № 3 кривої Едвардса над полем з характеристикою $p = 2^{512}$	
Р	9359CA76205C5439933F51964ACEE23C4387A16381A60D6CB7DFB308D3021B46B05AB7A249CA2B	
(x,y)	91C9BF23A2D96EFFB14F1F9758C83DD25A9AE8FB5C0491FB7F,	
	F90ECE5D2202A94AE21C0B5108163A4A251BE53804A4A72A8F3657F7FB025359D3C2A4F027698BF	
	E06C54EBC108E8AFBF513D7D808E449464BBDAFF4D920845D	
k1	BA76FAE790DCB4A9F15290A2D80D4389187E4E68F90CF520AE9B686E3D67D985611A1931489E8E7	
	2D2BD4681BBF31B1DFD5C03DD3564C91195F2076AC358FBAB	
Q ₁	B7A6EA2BE147796C4B0DD1B13C8373A6473002B28462A3A1B449B3893C1A19BF76F9ED936F6AF7	
(x,y)	AC764889C02E21092818C4D0FB2D1B844EF3301177C4506410,	
	3FA27B3A50A7279BE852AFDD59881DCD68DD2EEF46BAAF1C0D18097A4663FCE3E5CE9A9F82F9	
	DE3AED450523D41FCB2AC727109F650CF271314486F0E6255833	
t ₁	0.05	
k ₂	A5420B393140DBEDC6BC39AF65FFC573BE0A49821C8768F9F9BCF009CF3CC42D373A838B5FC26	
	D54DDAE75ACD6CB72C8328053A0B2F481516077697B4941B40F	
Q2	9B6C6522FCB3AE9DB1DB61A750FBBFCF85B871979807C4857A2F4ACB74DCB8E5C746D3AF089A	
(x,y)	9462DEF670E6B7BF3209C56A019CA289406A3EFFB0D948F1FA9E,	
	3CA3A846B553E8754E478D625A5DCA1A9C36DAE73614FA93E0A422DEA3D233E9447AA6FCD57E	
	20427ADA762172F6176E42ECE42CE0F2BCEDAFA1DF9B9252EAD9	
t ₂	0.042	
k3	2F1DBB39EBBBDB43B9D502AB0B4CCBFFB94DDF17E951589934501D51DAA2E66986F7C8BAC818	
	D6BAEDB3DB4F48B016E2E5679E899198A5CC3FF8EFF8D14FFF1C	
Q3	E101B1F0729FCA0C76C4F6D350E30F2973D60C0BB3047C62687B40026D30FE188FB430C8B9346560	
(x,y)	B8BBB316C3F74FAC5C30F367883522EC38A2B9EA4AC38C4C,	
	85A40057C0F9BCEE76A7BB08CBF7166021C832901616D8DB0A087F753E9D190D933E4C5E4271456	
	9B60B7D4189AC58E4C227430C93255DF6DB8DADAB5AA1940A	
t3	0.043	
k4	EA60D512DE6A1B05FC4EFD5666C4BC247B4EE54F97F8D95F90454EF47003B6598C11E99D20A1DD	
	10E318529F30EA193ED861C1206C638CD736CC678DF6ACDDD1	
Q4	9A8ADFAD29F71ED3D373FF33B06323749337AEBC4C1E39E376034DB2A0891C0FFB37E7A16FE412	
(x,y)	0086E974256A29118316FEB2279533DF81AFA6F009262D0D9,	
	24E28C6848AB1EA9029F796A8F07C37860828F2F4FC6035906611DE3997083CAB2AEFC21E8CA069	
	E7A9888A1B57ADD566150465C7EF469AD08B1C3483E47D74B	
t4	0.043	
k5	E65D14E10FC782EAE2D51D94FB55967CE30A9904BF0F53B29CB825CB89CEB4D89E829E9BB0044B	
	14092FA6930C39B047A581A1B49449F997EDFB12ADB73C04A	

ECDD0AA1ED636248E89F1E9CC0A194BCF02F7F4299C5479A2D771C32CC36A085140A032D3C5003
336B0ABEF645EF9D68F1974057654389F53D6CF66B660E1C2B,
A6DE97CA7F6246A0F6D7871700356357A996A927A6DD88FD1DA572A50107ED661AD72BC307D9B
C99F52B63F6643F8EDC238DC536AE79CABCD5E67849250842C1
0.043
0.0442

Резули	ьтати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою $p = 2^{512}$
P (x,y)	D7100BFE834D7FBEB3BCBAABA9CB2D10DDD2E9103FB5C684E2FE991A3E17F7D80CE8CB349FA C7056AB57CCCB6AB1A0ACFA5E9767CA9B864E578842A913DB52F3, 5F2DA4AA6F383835CD16BF1C476720242FD29083ACB88DF8A8908943202BE86A6D09EB2BF4F62A 945AA9F1C98CD3D64A1C38B3D8D634AD1B45A7074B6E55F6F6
k ₁	BA76FAE790DCB4A9F15290A2D80D4389187E4E68F90CF520AE9B686E3D67D985611A193148 9E8E72D2BD4681BBF31B1DFD5C03DD3564C91195F2076AC358FBAB
Q ₁ (x,y)	6E919B72480B04674A1034A4BA1C12694E57540F01976D21321F44F00BC3680D9890DF408CD64696E 22DFA8338ED12492C1029052C8C8C4EEFA81E1C214AFDD3, 4201E03C60C4A44EBE094810C32E5948378925F2493861F37E42319EF885F73E936C32BC12178DAE4 90A75426C22ED20867E0DD47633594D7D950E7C4F080128
t_1	0.046
k ₂	A5420B393140DBEDC6BC39AF65FFC573BE0A49821C8768F9F9BCF009CF3CC42D373A838B5 FC26D54DDAE75ACD6CB72C8328053A0B2F481516077697B4941B40F
Q ₂ (x,y)	F377A35F6BD784E4AD0FE3B73076DBEA206A7D850ACEE95F14EA73A43A1D2C4BF8124149348A5 C977A4BE09439D221F20033EF08AD98481158E1ED18B3BEA3D7, 8CDF18AD7E7A7B2BA2E9BF104E81D7CFD1F22A64AB1EFD33678DA4B6F121E46E27BF1D80DDC DA96B0CEE0E7CA900BD9FB2E5D04BC3ACE9A9C36EBDCA9A6F1245
t ₂	0.047
k ₃	2F1DBB39EBBBDB43B9D502AB0B4CCBFFB94DDF17E951589934501D51DAA2E66986F7C8B
0.	AC818D0BAEDD5DD4F48B010E2E5079E899198A5CC5FF8EFF8D14FFFFC
(\mathbf{x},\mathbf{v})	1172403824EB53798B0FCB5410204191EC16127948600A779.
(,))	28A0AACCDB3D8B0B061F39B076763B509D4C58C3EF994DBABF87E3A6241DE6B93945409E7777D 08195126DB2533CEC34A963A7B6C469E09E4A6CD0C085D3441
t ₂	0.047
k ₄	EA60D512DE6A1B05FC4EFD5666C4BC247B4EE54F97F8D95F90454EF47003B6598C11E99D20 A1DD10E318529F30EA193ED861C1206C638CD736CC678DF6ACDDD1
Q4	FAD6990274026185602442C3C7E95EF12F8D4D0FF66202CDFB1A79A4183235BFEE2CB9683204EF6
(x,y)	B02FED176B7CC35671A1D142B194C0B59C0853B9AB0A1B483,
	5F6020135110F54E46DA90BB2CA9026A4FF66E5A9C876BEC84BB3C9B314B0BDE1ED03B99FF9920 2B1FF9F5D04DDDD4D47834838CB72CF7D2473C78F9F4D93918
t4	0.044
k5	E65D14E10FC782EAE2D51D94FB55967CE30A9904BF0F53B29CB825CB89CEB4D89E829E9BB
5	0044B14092FA6930C39B047A581A1B49449F997EDFB12ADB73C04A
Q5	8BAC2CF533BFDA1D7D3B043A2ACF8FD2D544AF00032F2721E461364C609D8272B7667AAEF10A7
(x,y)	E47E9753B4B84EF24D92D0C898FD9FA1024D745D2569C1E9BAA,
	43EBCD2D768677A30C31194F44A9D35E9346624407703D4D0B3462CAC97D054D8CCF8EBEE5FDA
+	/5D/4/BDDDF04ADEF/353E9255F6DF5BE4D29/355F6/EC16F9C
t	0.0456
lcep	

Резули	Результати скалярного множення точки № 5 кривої Едвардса над полем з характеристикою $p = 2^{512}$	
P	682CB6B299DBE8983409E0A21839FC9D80066C91E7239D532251AE3FF4AC87F549C0005883852A1B	
(x,y)	ACC4236B8FF08492519B7947D292779AD512D14A83732AC3,	
	492F0CC7E947498364D0E4E15A82EF57ACB975FFD09C0FCD3BA967A7DACE72FD2151648FEB11A	
	12F3ED9F1297469285D2C26A1CFB2DDDF23B946E540A8B5765C	
k ₁	BA76FAE790DCB4A9F15290A2D80D4389187E4E68F90CF520AE9B686E3D67D985611A193148	
	9E8E72D2BD4681BBF31B1DFD5C03DD3564C91195F2076AC358FBAB	
Q ₁	1BA6D699DD923A321CB1A2ADAA896BFB67C08F587A3D14806B65C70453B989EF6728BCBDF1B5	
(x,y)	3CD7987E750E93A7BAA94EC39D7E4B96150CB77F37FD33B7F76B,	
	6056ADE99168BADABB9A750BE0A927C1C8153DFB249043C61D2F389F6E0683E17306F132049FA32	
	7EB979C40E3C7F8754D3AF9A0EFC57CA36015DE2A03F2D99E	
t ₁	0.051	
k ₂	A5420B393140DBEDC6BC39AF65FFC573BE0A49821C8768F9F9BCF009CF3CC42D373A838B5	
	FC26D54DDAE75ACD6CB72C8328053A0B2F481516077697B4941B40F	
Q_2	7325F1113D33069EC8D8387DC3B83888095BEAFCA2480FAD7617151882392E221D82A84D52710FF9	
(x,y)	AA034917BECF627B275879975B6B32C6A2DA7B3B17C9427F,	
	9/4559064/A/AE8/D4AE618D6528989A980F9F2F44CD824D2DDE2E8B10/9/36881F1DF0111/2//52	
4	C32D05549A5BE6/3F514146346D0C/2C3E30DA2C1DD5EEFB	
t ₂		
K3	2F1DBB39EBBBDB43B9D502AB0B4CCBFFB94DDF1/E951589934501D51DAA2E66986F/C8B	
	AC818D0BAEDB3DB4F48B010E2E50/9E899198A5CC3FF8EFF8D14FFF1C	
Q_3	5321BAC55D545740A198A5DF5EE1A5028D1A41DA2F710CFBF2C2D5CA51A5A95100529FD189CC8	
(x,y)	050/FCDC2/E10D555E00E0ECD056A6D59DC600FD20F05010E54, 6E658DCB0E57D0E26D825238C7721B5022D6DD77E4CE40167B400E810487348B6064C7EC4DE268	
	005FA7759B0F38463F706C3AFB8833F7FBB0F5569AA0D5974B	
t ₂	0.052	
k.	EA60D512DE6A1B05EC4EED5666C4BC247B4EE54E97E8D95E90454EE47003B6598C11E99D20	
K 4	A1DD10F318529F30FA193ED861C1206C638CD736CC678DF6ACDDD1	
04	106BCE18725A208C01453E150D1E7369191620FEA33C794C0E33D78D5D34BA354409E2A67AE4DC3	
(\mathbf{x},\mathbf{v})	9558DAB17CDB56E5A92BDC7A1466DBF4AC0EE0A9B2F2F5681.	
(,))	D2A4CC1C610116421545A9BC62C5C7DA703C055D8B5A7724857FE70DF49CCEFB4E2FB3AC5BED	
	CE924E77FC01AD56E146E45747224FD0858BDAEC87419863020B	
t4	0.049	
k5	E65D14E10FC782EAE2D51D94FB55967CE30A9904BF0F53B29CB825CB89CEB4D89E829E9BB	
-	0044B14092FA6930C39B047A581A1B49449F997EDFB12ADB73C04A	
Q5	A894865A487E0DFEAA887703D197AA8664170FE78501829DDDBDC04B846C863BE2032BE61695A3	
(x,y)	6E1FD8955A9A43C3957175C97F25895A2160617136D8A44DC9,	
	9C3C06847E70624FDC3078036B202FEDEB953798AF8FAE25FE831727A45E33CEB54402BBD23260B	
	365D9934D93A2DC6A54BD0A9CB3D6E06E1EA04652048031BB	
t ₅	0.06	
t _{cep}	0.0514	

Додаток Д

Таблиця 3.7

Результати скалярного множення точок кривої Едвардса над полем

з характеристикою $p = 2^{256}$

Резули	Результати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою	
$p = 2^{256}$		
	Вхідні дані	
A	2	
В	18	
n	4000000000000000000000000000000029E26087789BC2815BDFF97093543CCF	
Q	37FB10FEF3EAC946BDDDAF6AA23C0A087495D05F9EF4E68E34E6451864D56B2	
(x,y)	F,	
	61DC4918C4BC3234240B0C8A9934F41B6C134D54864F827E12CE2B2557A803AC	
	Результати обрахунків	
g_Q^x	326525C888CE8CCC99C96EB30B43F24192A7D93160D566F6FB0653A836F77F0A	
g_Q^{γ}	3C476DCE76879B97B7E9E6EACD9617C9CF62E774D5D0050949E38F779E00EBE4	
v_0	24CA4B91119D19993392DD661687E482FB6D51DB490F0B6C9A2CADDFDA9AC14	
L C	5	
u_Q	90570170EAD2A1685B27B51BBACCC95979C3400A4847E137875AAF881FB8C31	
v	24CA4B91119D19993392DD661687E482FB6D51DB490F0B6C9A2CADDFDA9AC14	
	5	
W	3532BB6A2D246FDC8C1FC528EB6342D255B7BB8E9A5143F7C981254B6A45B010	
	Коефіцієнти ізогенної кривої	
<i>A</i> ′	80C862AA7EE8001FE21AD018F5889719484884DFC880E6510C086F274F6F016	
Β'	B9CE018C400F0F82B219BE190492C40A34822469B6DB341A4B7D3938C119C82	

Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою	
$p = 2^{256}$	
	Вхідні дані
Α	2
В	13F
n	40000000000000000000000000000000000000
Q	2889F59837465E702D9A1FFD5725079CF5A44786D295107DABA01E2D8F0D1EBF,
(x,y)	454838F54D5E9B9332D12B2F60274D7689CBF060F78BC81C665C1A1A3A513879
	Результати обрахунків
g_Q^x	2BD9755616A820F746E6846DEEE0AB168296B416C18D934D5F14EEE42FF9C03C
$g_0^{\tilde{y}}$	356F8E156542C8D99A5DA9A13FB165139A7029A27B2D9DFC6C1CA3DCC102C78
- Q	9
v_Q	17B2EAAC2D5041EE8DCD08DBDDC1562CCB2ABA0C0A596C89008D95C2A3671
	84F
u_Q	6E977B7C4800DACEA000EC580E3D0A30CCF846F0733A05CA711E7166BD283A7
v	17B2EAAC2D5041EE8DCD08DBDDC1562CCB2ABA0C0A596C89008D95C2A3671
	84F
w	27E9B68344414BC69C636C45B96CE286F86837C21DC89EE165F23FE548BC7549
Коефіцієнти ізогенної кривої	
<i>A</i> ′	9816AA31D6EB6573AFED3B4AB3951207C2FBA06BDC455767874A33E481556C9
B'	289C02692236ED91B9480A17EE05CE505733E0588B4C4A2EEA6DA8D7B196D50D

Продовження таблиці 3.7

Результати скалярного множення точки № 3 кривої Едвардса над полем з характеристикою	
	$p = 2^{256}$
	Вхідні дані
A	2
В	6B
n	40000000000000000000000000000000000000
Q	69244DFCA2DA84637C7C0D8D2CD59E391078AE07E3F248722122A9BEF8735A21,
(x,y)	4B44B9D0F04ADF1FA3C57D958BD9E83C4787F2114F444D8D7218798C308076C1
Результати обрахунків	
g_Q^x	2170F51C7710D6B1639323500F429A24F05CE90418489A917A931124BBA28183
g_Q^y	29768C5E1F6A41C0B87504D4E84C2F87CB475A02297065F94D2BAAE3C53E8337
v_Q	2E1EA38EE21AD62C72646A01E853449C29CBD51433E34C6E4B1EDA0152FDD73
u_Q	320D272FE74E18FEBAAEA082274DB23C0ED72F79FB335E0689B62379290AD4C
v	2E1EA38EE21AD62C72646A01E853449C29CBD51433E34C6E4B1EDA0152FDD73
W	58D860F3ADFBEA6DA23BC249831825FEAB30CF5FE479BE3150D5C1CB7F4410A
Коефіцієнти ізогенної кривої	
<i>A</i> ′	31966CE359579D121C409EDF6765FA8F510D62209D1BF87998FA9088F825D256
B'	1921559563E1C9700905DAFFD6A56F60B337B9FCF95DBD267D16AFE05A675EB8

Резули	Результати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою	
	$p = 2^{256}$	
	Вхідні дані	
A	2	
В	44	
n	4000000000000000000000000000000026AD0CE5A034E9970A0131EDD7919957	
Q	E80DD85A537A44FD65DB1799048A60F324827E3ED2D280ABFB37661CD941DF95	
(x,y)	,	
	2EF6C823E475BE6B03665F228F1DB65F3AEEB076EE53044482674E6D0E8FF96C	
	Результати обрахунків	
g_0^x	2B4AB6E4965D5E89AE5DDCAFBB6D2AE553FA83067E058DA1517EF40974A44B8	
Ľ	6	
g_Q^{γ}	22126FB837148329F93341BAE1C49341D77CB8DD63C3CAA50F33C70192033FD6	
v_0	16956DC92CBABD135CBBB95F76DA55CA8147F9275BD631AB98FCB62511B6FD	
	B5	
u_0	17FF97DF1BEDF7DFCCA913577D5633574D76AD5BB1A48A044E0C4A060DE5B0	
, C	CA	
v	16956DC92CBABD135CBBB95F76DA55CA8147F9275BD631AB98FCB62511B6FD	
	B5	
w	39D91AD884FA18512ACFFB81E1DDDD59FFD8D28E85E90985B4C0A85A62867F3	
	3	
Коефіцієнти ізогенної кривої		
<i>A</i> ′	F14DB12205A4E9F30556122ADBC530BC6F23C06753ADAD41712D52256903E27	
Β'	2B1044145D2955C7D4501F72D2EEF28B0FCD9861B813207954C3C308334DB740	

Резули	Результати скалярного множення точки № 5 кривої Едвардса над полем з характеристикою	
	$p = 2^{256}$	
	Вхідні дані	
A	2	
В	5E	
n	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
	5	
Q	E1F91BC517A66C51A0CD1B7194C3BA26EE83D1F2EB431E0A5D3F64E4AFD4032	
(x,y)	4,	
	8058735974E50F868276CAEAA1A5849BE694A041E35E2C3AF8100244D7CA0CAE	
	Результати обрахунків	
g_Q^x	7AF3CE55F8F591E40800E3A933475C84E0AB70574F002D4633315FB7155D3F0	
g_Q^y	3F4F194D1635E0F2FB126A2ABCB4F6C665C30E8202E80FDDC39195D99E00470D	
v_Q	F5E79CABF1EB23C81001C752668EB909C156E0AE9E005A8C6662BF6E2ABA7E0	
u_Q	27B8EA570F29B262E5578362E10FF2A3C0043E0A592F5D237A9169A7E6147409	
v	F5E79CABF1EB23C81001C752668EB909C156E0AE9E005A8C6662BF6E2ABA7E0	
w	256758B3284A0A30A57D77E55A4794750C408273008BA1C22362A07BE073E678	
	Коефіцієнти ізогенної кривої	
<i>A</i> ′	33279F0A446684D17AFF71B63FF3662C3B2692FEF27B40A267E1C8554B4778CC	
Β'	3A2C9319E5F9B8AB7991B8BA880AF0CADD28BDE0C5D2FC04BBFF37002A6913	
	7F	

Таблиця 3.8

Результати скалярного множення точок кривої Едвардса над полем з характеристикою $p = 2^{384}$

Результати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою	
	$p = 2^{-1}$
	БХІДНІ ДАНІ
A	2
В	214
n	40000000000000000000000000000000000000
	C53331DC208A517DCB3F340EECF
Q	F5FC151B6264CB53A4B879AA9A1F4A5156BBF063B56AAA912617C0E4CEFF15D
(x, y)	2DF497D9AEF12374A22D22C3B402B2C71,
	A9027207E88074F4AFA3D44D4590DD04BAFBF6AE3D321091F500C783F4707940B
	7F5EBDD93325C5391843F9A78526BB1
Результати обрахунків	
g_0^x	1015A21A222ADDBAD42693B835E1996E13A70543ADE491DA5790B350E828FC74
- 2	5E4E511EC04B86CE0BD6763D1639836B
q_0^{γ}	2DFB1BF02EFF1616A0B8576574DE45F68A0812A3859BDEDC57D493435DDB186E
υų	51C972380C4DD38CBB86AD02C2E0C178
v_0	202B44344455BB75A84D27706BC332DC274E0A875BC923B4AF2166A1D051F8E8
Ľ	BC9CA23D80970D9C17ACEC7A2C7306D6
u_0	23C5C8AEE6E6FF5FF38DE73BCC9CFF57AAD022A858F6A0B2285D1094788A642
	DB2BB59B891E815FE4015B752F18A30C2
v	202B44344455BB75A84D27706BC332DC274E0A875BC923B4AF2166A1D051F8E8
	BC9CA23D80970D9C17ACEC7A2C7306D6

w	5BF60F42AFDE428D4B06FC8F73F180B8AF021B3F0ED3F034CCA3FFD48E0F9424
	34818959CB512EC01FA88F2D56FFBA7
	Коефіцієнти ізогенної кривої
<i>A</i> ′	1F27AAFAAA5356B3B67E3ACDE53001B33B79CB5B35124D78B5440FFC91C428E
	C31CB79C61666020D78E6F7B8FB83AA41
B'	17C45952D30EC2E22F2CF1813D4657AF336F1414698346E8F17145CA384DDBAD7
	3FAE03BEA2A3D94973E1E101D310F52

Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою	
	$p = 2^{384}$
	Вхідні дані
A	2
В	43
n	40000000000000000000000000000000000000
	E2A3E73B4AA252FB924D3974A1
Q	25DA67A2BCA7B317923BD7537E3F781E433EB28F0224070701BBDF3DF0D63D26
(x, y)	BA5409747D7AB030E2BB6FE78593C0C8,
	20520FB9FCABB124725D8FF3AD5B2004DC296B245A1D57C689962B2A9D0EABC
	FD94CC4157E7CD0809055711EB35DEB5A
	Результати обрахунків
g_0^x	38E0F3BC4305333D80874151087E15BA21DD2DE45130F673DF2F1E9BE40186DE6
, i	F3852AE96444DD57B3319EEEE8B7F3A
g_0^{y}	3F5BE08C06A89DB71B44E018A549BFF647AD29B74BC550731A0B4D1CCC35BB8
×	899B6B99A4AD4D59423FB14E733B7128E
v_Q	31C1E778860A667B010E82A210FC2B7443BA5BC8A261ECE7A7C26B7EC4D98428
	B848847A88A160605413384B8FDD89D3
u_Q	6E0343EDAC31D3F3C464E178E26AC58F0D8D2B5E604532F3469FF9209ABED9E8
	0A30C8110AFD7AA1D13B2A8BA9787B8
v	31C1E778860A667B010E82A210FC2B7443BA5BC8A261ECE7A7C26B7EC4D98428
	B848847A88A160605413384B8FDD89D3
w	145E31A4B4703911B4AEA6FBC2B93BD59614BA4AAA5E8F3C37CCA7D26ECCA6
	27190CC607F9E05201B3A5EDE7CBEF7A32
	Коефіцієнти ізогенної кривої
A'	7367AA561CBFF98FAB772D5AB1326BAAD5C3514D4165F7A13A32D6A34669184
	FF35ED25E4760B48E4EBD4CF65922167
Β'	316CA47F10EE70840F396F1DACEF5D28E56EE7F5576A155ABD3ADE6A01E411A
	AC31EF870169373D3FD6F7160542006C8

Результати скалярного множення точки № 3 кривої Едвардса над полем з характеристикою		
	$p = 2^{384}$	
	Вхідні дані	
A	2	
В	304	
n	40000000000000000000000000000000000000	
	3B5673EC7020317A99B7A2A7F97	

	1
Q	F108BBC769E3358598060F9C1C5EB79C6492860F58967AC7D7E50B23B21767B3D8
(x, y)	A360C346B2AA22A801E0DD652CAD2A,
	8242F49FA453B08E85B033A3399C0EECFB57522496A9DFE1FC8423C009951649D
	D1FF90F9B49AA9C6E28AD374A67B632
	Результати обрахунків
g_0^x	1B3B62788701F39DC633E57C3C3A4129BE7B8011E4E3E4B18A203BFF169C2B1C
- t	B9F418DFCBC6A51BEDAB9EF18BB5404D
g_0^{y}	3B7A16C0B7589EE2F49F98B98CC7E22609515BB6D2AC403D9AB734EA5BB4C80
- Q	DA2BA406BCDA68DD13324F59ACE05118F
v_0	3676C4F10E03E73B8C67CAF8787482537CF70023C9C7C963144077FE2D38563973E
t	831BF978D4A37DB573DE3176A809A
u_0	21CA7A54F10B394E3BDCC9454B397C17D0E8CC9A1FAB1EF67695903A6FAC1BE
×	0EBFE4BC000B744C7766CF556D865673D
v	3676C4F10E03E73B8C67CAF8787482537CF70023C9C7C963144077FE2D38563973E
	831BF978D4A37DB573DE3176A809A
w	A5F1BCF006CAB60E40FA7D17975B9E7BCC4C4DF63663408675CC02A30558B330
	824267C3A0544B026105F583B5674D5
	Коефіцієнти ізогенної кривої
Α'	2FAE274AB9EC7BD641F90925A5B9745E8F2CFF4D0F1911122E7D24738CC545821
	97139CD0E776FF2C6C21A99EDBFFAF3
Β'	37663D56FD075059C3926945ADC7EAA9D69E9DE4483493C5CDF68A36739BF9DB
	529A3A053858AD32FBBCB7CD54F7D05F

Резул	ьтати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою
	$p = 2^{384}$
	Вхідні дані
A	2
В	114
n	40000000000000000000000000000000000000
	F3931A347FA8BAC4843ECF19B5F
Q	E44A4A622DAA298B94A167989E99ADFF06180D11EAA618386D7B173C82C4C1E9
(x, y)	822C47B7C7F5B26663C8BF3074C4762C,
	535E607ABF5739C3E5A946F9AD44C899C33BF00B04CAE695080D622B28DA64CA
	0B55AB041BF971382D956739A3AAE176
	Результати обрахунків
g_0^x	2F4F643D1941DD7E3F0B26153D343757EF2DFBE06C9A9682527EF0E89395120B8C
- 2	5996ABA5EA95C71B2D50A9A946EA6
g_0^y	19433F0A81518C7834AD720CA5766ECC79881FE9F66A32D747233318F83F3AFDD5
- 2	4487A35CF6F57F47DA0A587F7F0F31
v_0	5E9EC87A3283BAFC7E164C2A7A686EAFDE5BF7C0D9352D04A4FDE1D1272A241
	718B32D574BD52B8E365AA153528DD4C
u_0	2750C820E69C42F29E022D612CF17F192D13AF9E2D9C766D153A88C4B21A48D5A
	1AAC51D3378C229AC063027A45124F4
v	5E9EC87A3283BAFC7E164C2A7A686EAFDE5BF7C0D9352D04A4FDE1D1272A241
	718B32D574BD52B8E365AA153528DD4C
W	2EF4FFE7320175297386949C1D6949B05A2FF1CDE1FF0A6B9EFD9A2E965409E15
	CF96FACF19D2B482187E714EE03513D

	Коефіцієнти ізогенної кривої
<i>A'</i>	226E6159D036D59118990832B9BF5D690A834293BC1F61EEFEDAA693BC6980E96
	C42A10DE9F0AA5E1AAFF5D9E32548E5
B'	374D00ADA1F5CBDDD751EFBB321EFC2D88B0635ED206B711558CB798779BC3F
	A4D0DAD9C8E8780E65B5260050B926CA3

Таблиця 3.9

Результати скалярного множення точок кривої Едвардса над полем

з характеристикою $p = 2$	512
---------------------------	-----

Результати скалярного множення точки № 1 кривої Едвардса над полем з характеристикою — 2512	
	р – 2 Вхілні лані
A	2
D	10D
D 20	40000000000000000000000000000000000000
n	40000000000000000000000000000000000000
	209E2DD4952882D5574105192C40C0D0511FEA0DF9FECE70EE05D59F 5220 & 1EE747050 & 072DD7210741596E & 520289D6D52004571C921 & 2EC0 & 0E92D566
Ų	5250ATEE/4/050A0/2BD/519/41580EA520588B0B550945/TC82TA2FC9A9E85D500
(x, y)	03340D3DD04C43E73201DDDA312726FAAFAC46AE9200A3A164E2933E3A400,
	53AUD5UCC03C9219/02F4519/8AEF214DBCFCC3A5CB5EF2/124991A80B42B3A1A
	832/24A0E6B930FDD1DA2E2/A340D6B6/5E4422C444F529C508F0BAE/D0A85
	Результати обрахунків
g_Q^x	13CFDFC282B0FB3C0296BD40E04BBC3FED1E3027E05CC0529238B14C6BAD64E3
	A34FC5C2E24BF95B0E5593B0514BFBA8F4AA2262922FF628632A4A1D91C2154D
g_0^y	358BE55E67386DBCD13A175CD0EA21BD64860678B469421B1DB6CDCAF297A98B
Ť	F39D8008DED0B9729984CE7907F6E36BBF5AF84BD8974BC6C15DB0599169A095
v_0	279FBF850561F678052D7A81C097787FDA3C604FC0B980A524716298D75AC9C7469
	F8B85C497F2B61CAB2760A297F751E95444C5245FEC50C654943B23842A9A
u_0	3745712E928216C5460747D2D621D6A5F934D6A93849C5FBD5B08DA5719694B9759
Ť	289A9383F5A996E54812B0FE35013865ECA87982FE5CEFD841A6C143B9790
v	279FBF850561F678052D7A81C097787FDA3C604FC0B980A524716298D75AC9C7469
	F8B85C497F2B61CAB2760A297F751E95444C5245FEC50C654943B23842A9A
w	2712C87A15CB0BC1BEEB03EE54C64FB50FDA2D714F889A92344EE5420F8A8C53F
	BBB6B986BBC65C7F8466345E4DF06F07D2E740309260EA61D058C525BE6BA6A
	Коефіцієнти ізогенної кривої
Α'	39E14266E5162FA7E61C9B773D0AA580BCD21E713C607CC649C91303CB3A0F1C41
	717FABAB80F1C3C54A4672300DBFCB2275AB670EA00C1C0854549C07FA017C
B'	2E7C84A96772ADB3C792E47BAE93D20C9108C1E6D343C60091D7BB31933629B4E9
_	13166FB0F012AF1FDDD741722DC8EA711C97FBB5952D9116D331F424A37442

Результати скалярного множення точки № 2 кривої Едвардса над полем з характеристикою		
$p = 2^{512}$		
Вхідні дані		
A	2	
В	179	
п	3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
	C46E59CE4CBBB6248CFE7BB582E1F490FD5F9F74433AE745EFE6351254BCDA5	

Q	A9297AC52D51EF4745E5E558F6217B302052A39544DFE6DC04FE427850225E232BC
(<i>x</i> , <i>y</i>	379E11F6C51FDB0C9D0C2511BC3E945E25B9829B00C4DD92843328606ADFB,
	A51291E6175265F4C5755445CF271E51E9248C728D01CC388C3938E477F3A94C69F2
	1873F7CB97C64AE7D33A1056B41BB0E95436F88A03555C72911F313331EF
	Результати обрахунків
g_0^x	C54939BE903236BBE7FD117DF762F5D9417626D7562169E342BE209830919BF55DF1
- •	4C64D8F0F1BB713C33EA44009DF6C29249441FDBECBA0C8DCC9A3A047A5
g_0^y	35DADC33D15B34167515577461B1C35C2DB6E71AE5FC678EE78D8E371018AD6655
- 2	C530C56D2F34C11F0FC7EFF067537EFD31335DA822100F811131A87D606E00
v_0	18A92737D20646D77CFFA22FBEEC5EBB282EC4DAEAC42D3C6857C4130612337EA
Ľ	BBE298C9B1E1E376E27867D488013BED852492883FB7D974191B99347408F4A
u_0	39DF216B3E2102AED17BDF6CEBF6B098BE029F6F2265C51BFA51BD0FFEC7BF365
Ľ	87BACAA603FD5721CDB8B59C4A00E2014A352D37B1524266207FBD70E72482E
v	18A92737D20646D77CFFA22FBEEC5EBB282EC4DAEAC42D3C6857C4130612337EA
	BBE298C9B1E1E376E27867D488013BED852492883FB7D974191B99347408F4A
W	C17EE16D632047172B0EC1FA50127C4548EB07E2E9837DB6F7B43DD63C431712A2
	4AF87AD7022264D7570F8A7389BB27B38C929A2CD3263BF246DAED4C7C92
	Коефіцієнти ізогенної кривої
<i>A</i> ′	4B23BE8E5E09DCA8F01D51145622658371627B96A2B1DD1F6492BA0E1A4FE865D
	D6FB7AC200DFAF6ADA2F0445DBDBD7E6108623F47DE8F4762426C1E654CEDA
B'	3AB587D6024A1E0E5DD298B227CF7E9A1B0192C8CB9D678FFF3A124F245A2A5E5
	9D6D8D188EAAC7186EC864E8F055B2AF9ED21F50CF9E868BB5E7354A8346720

Результати скалярного множення точки № 3 кривої Едвардса над полем з характеристикою		
$p = 2^{512}$		
	Вхідні дані	
A	2	
В	AF	
n	40000000000000000000000000000000000000	
	44F2810D554443F2E2BD624D526C8798402AB63951BFA991E6087F7B	
Q	A8B673C87778EE5D31B9A404334AB9B5A572C8EB536C2C91443F112F8961B1E1BB	
(x, y	E4E7AC851E8AA509F0B9AD2D9C203A816B67E0796AD7FF29726D262EA957B8,	
	81177507F05F730D44D26B9D14B0FFAC6558F6834314F0414A9D6A9E48608C5F0850	
	7D8273AF1326ABD50A49B901462F3BE8005B63FC8FF851B853FF48B31B7B	
	Результати обрахунків	
g_0^x	1E45E6F71DD338313434683DB022C1475716AE051CFAFE8D3277ED51CD460418FF0	
, C	D79C17B87E12382170669D05062B63214E0AF248CEEC991CE8240F2F87627	
g_0^y	3DD115F01F4119E5765B28C5D69E00A7354E12F979D61F7D6AC52AC36F3EE742D4	
- 2	97658C715E5EF552AB3F2AFBB05F24244EA54278DC6F2DF54DA7DAECC44671	
v_0	3C8BCDEE3BA670626868D07B6045828EAE2D5C0A39F5FD1A64EFDAA39A8C0831	
Ť	FE1AF382F70FC247042E0CD3A0A0C56C6429C15E4919DD93239D0481E5F0EC4E	
u_0	3230B651531A125F80711FA939AC721A4A6298D4D0A2FF0CB02FC6BCE84B9D7583	
Ť	DFC2C8AA6E6C8778B32F8089823529D8609555A4300343ED23313170826C63	
v	3C8BCDEE3BA670626868D07B6045828EAE2D5C0A39F5FD1A64EFDAA39A8C0831	
	FE1AF382F70FC247042E0CD3A0A0C56C6429C15E4919DD93239D0481E5F0EC4E	
w	228868EA6E5AD231F4AD4DC0A61A0B91A86A48C11C480103E1C4F046C596E12732	
	BEC80FCC16DA597F5092F2D4B77942F6212C8F569673EE8463EA7196526759	

	Коефіцієнти ізогенної кривої
<i>A</i> ′	1144FA58D5BFCE13F5F3ED971EA47336991D33CCDE320E7C0750BACDFB43D706E
	EB19F02856DB9DF956F139C4A8F1064A74DDF21D3543B3EE6AD39500075DFE3
B'	E452196FB8440A24F42DFBB7549AF04651802B83A07F8E4D39D6E1098DFD7EE5428
	D4D27F2A0BC2D9DD0B27B9F138608EC9E675A28DAD5FA8433D2C7BE12B2C

Результати скалярного множення точки № 4 кривої Едвардса над полем з характеристикою	
	$p = 2^{512}$
	Вхідні дані
A	2
В	3C9
n	40000000000000000000000000000000000000
	B52ECFB1E3832493DD7A1C06617A6790626B88DFAC45D806A147B99B
Q	54123C034D18682F739A011463EE02332B35825602C853A8EDE6DD1657894A47C2D
(x, y)	6E1D2EF39DC434504051DB60A690FAFFA10B9053E37268D3AF352F18B423A,
	AB0076944360C99551AE3AB73E24473AD55987DFD6378DD3A6D89A4B2C88576F83
	7341D4141E791B512483B6AEED65E09F68A64CE5B3B78AF16924634C2BCF13
	Результати обрахунків
g_0^x	130008D7536C68F77D85F6042B313DBA48C3B0C01C56D0100025BAD0A9AC22DBF
t	2CC047BECF1512AB46DF1A68830B908D7D3953DB0F41939DD5395D8A95AB092
g_0^y	29FF12D7793E6CD55CA38A9183B7718A554CF0405390E458B24ECB69A6EF5121789
- 2	27F1816DBEBF4B2C9D409D301DC650A0D20C8831DC62826D0C7612F56BB7C
v_Q	260011AEA6D8D1EEFB0BEC0856627B749187618038ADA020004B75A1535845B7E5
	9808F7D9E2A25568DBE34D10617211AFA72A7B61E83273BAA72BB152B56124
u_0	C6EED38858C11993E2076F07BDBD38A04DDC9BE99393C8A16499F984A05DB720B
Ľ	385AC6E2CEFCBE3E37DA5BC478CFC13629BC4FCFFCB151AF2E02332F5AF936
v	260011AEA6D8D1EEFB0BEC0856627B749187618038ADA020004B75A1535845B7E5
	9808F7D9E2A25568DBE34D10617211AFA72A7B61E83273BAA72BB152B56124
W	D52C83E9A3C5525EFA109D52B9D377A91B10EA9B555420DB05305A93F5A461827B
	FBFA1B744BA9DB1693A6DDC2CCDA27D84B5B285F225F86A676EB0C6676F6A
Коефіцієнти ізогенної кривої	
<i>A</i> ′	1FFA796BDC3E65518C463D6501396B9285B187EE49BDF5FFE86B3D95F46A368C3C
	45488DE1F436A9E3DFD3A468719BAB62B62483DB99E5C5F8DAD9D464C471F
B'	22BC8649C859ABF67298BB2BCEB37BA60428995C0AAB31A02DBAD85F448815571
	43F6E29677C8513ED25B026B5BA989B5453D73F1B3807F46FB7A937D5BB6B19

Результати скалярного множення точки № 5 кривої Едвардса над полем з характеристикою		
$p = 2^{512}$		
Вхідні дані		
Α	2	
В	55	
п	40000000000000000000000000000000000000	
	AF949ECB3AC390D869E51ACD0E05576A5B2F6A96416B8365C69B687B	
Q	682CB6B299DBE8983409E0A21839FC9D80066C91E7239D532251AE3FF4AC87F549C	
(<i>x</i> , <i>y</i>	0005883852A1BACC4236B8FF08492519B7947D292779AD512D14A83732AC3,	
	492F0CC7E947498364D0E4E15A82EF57ACB975FFD09C0FCD3BA967A7DACE72FD	
	2151648FEB11A12F3ED9F1297469285D2C26A1CFB2DDDF23B946E540A8B5765C	

Результати обрахунків		
g_0^x	2401664B3594A1F89E631883CB5B199CEEAC9D0CF522243E992295EE33BF25C8B7C	
- 2	7464E8FF117B517257BC2FD13A11DBB68D07951BD63863211F315F096A8D	
g_0^y	2DA1E6702D716CF9365E363D4AFA2150A68D14005EC7E06588AD30B04A631A0605	
υų	330562389A9A033296D03654DCFFACD1C2C29FABD2817B51B4BFB002674CB9	
v_0	4802CC966B2943F13CC6310796B63339DD593A19EA44487D32452BDC677E4B916F8	
	E8C9D1FE22F6A2E4AF785FA27423B76D1A0F2A37AC70C6423E62BE12D51A	
u_0	19555686D866658FFF088BA325D21F844221CADB57555F924A91FD121D0F24122BC	
Ť	4D0483DB0BAE7EA976640EEA53AAB4C003D9783ABADBAD90E11A2F39FEEB2	
v	4802CC966B2943F13CC6310796B63339DD593A19EA44487D32452BDC677E4B916F8	
	E8C9D1FE22F6A2E4AF785FA27423B76D1A0F2A37AC70C6423E62BE12D51A	
w	3D39BE442F75A70C8CE817836A5DDC4B4A568590B04CED023B1BCF4A5859F9B99	
	BB51E1BFAF2BEB4D5D1839CB9ADBAD5B0E0017FF972C953A450E585B5EE834E	
Коефіцієнти ізогенної кривої		
<i>A</i> ′	297F2010FE831AC49D0210ADA0E70FFDEAD41DD7E6CAA958E04A624B1FA88862	
	A515638F959DEFFA0C4C237E8BB8D61A78E3D51E88190C6262204B78103D3EFB	
B'	136BCC22B3C86EA825A75B68176EF9F0F7A2590B2DE584F0623D54F7958A2BED65	
	A9B9C0F06D209CC29E5CA1D1839FC38C055968AC2868D24BBA512074BA4490	